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ABSTRACT

We propose a fast algorithm for solving the inverse problem
of resolution enhancement (superresolution). Robustness is
achieved by a non-linear regularizer and a method based on
variable splitting is used to obtain an equivalent linear for-
mulation. Special attention is paid to fast implementation
using the Fourier transform. In particular, we show that a
degradation operator (downsampling) can be implemented in
the frequency domain and that all computations can be per-
formed very efficiently without losing robustness. To our
knowledge, this is the first attempt towards a very fast SR al-
gorithm, which retains favorable edge-preserving properties
of non-linear regularizers.

Index Terms— superresolution, deconvolution, total
variation, half-quadratic algorithm

1. INTRODUCTION

Superresolution (SR) imaging has been an attractive research
topic in the last decade. Numerous methods have been pro-
posed in the literature, see a recent book [1] on this topic. In
theory, SR allows us to get beyond the resolution of imaging
sensors. The fundamental principle that makes SR possible is
an aliasing effect. In other words, the image sampling must
be coarser than what the Shannon Theorem dictates. To fully
recover high frequency information, which is corrupted by
the aliasing effect, we need more than one input image. The
SR efficiency depends on how the input images differ. Ide-
ally, if the images capture exactly the same scene but shifted
by some small sub-pixel translation, reconstruction is usu-
ally very good. There are methods, which we do not treat
here, that work with only one image. They are referred to
as example-based methods or hallucination methods, but they
belong to a category of smart interpolation methods (such as
LARKs [2]) rather than to true SR.
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We formulate the problem in the discrete domain and
throughout the text we use a vector-matrix notation. Images
are assumed to be rectangular, grayscale and represented as
column vectors by lexicographically ordering their pixels.
Let the k-th acquired image gk be related to an unknown
image u according to a formation model

gk = SHku + nk . (1)

Matrix Hk denotes blurring, i.e., convolution with some ker-
nel (point spread function = PSF) hk, S models camera sensor
functionality and it is called a decimation matrix. Vector nk
stands for additive noise. Convolution matrices Hk’s model,
for example, a camera-motion blur, out-of-focus blur and/or
atmospheric turbulence.

It is well known that the problem of estimating u from
gk’s is ill-posed, thus this inverse problem can only be solved
satisfactorily by adopting some sort of regularization (in
stochastic terms we call it prior information). A popular re-
cent approach is to let the unknown image u be represented as
a linear combination of few elements of some frame (usually
an overcomplete dictionary) and force this sparse represen-
tation by using the lp-norm (0 ≤ p ≤ 1). Either we can
search for the solution in the transform domain (coefficients
of the frame elements), which is referred to as the synthesis
approach, or regularize directly the unknown image, which
is called the analysis approach. Analysis versus synthesis
approach has been studied earlier [3]. If the frame is an
orthonormal basis, both approaches are equivalent. More in-
teresting however is the case of redundant representation (e.g.
undecimated wavelet transform), when the two approaches
differ. Conclusions presented in [3] suggest that for deconvo-
lution problems (and therefore for SR as well), the analysis
approach is preferable, because sparsity should be enforced
only on a part of the redundant representation (e.g. high-pass
bands) and this can be easily implemented only in the analysis
approach.

Using the analysis approach, we formulate SR as a non-
linear regularized energy minimization problem. We adopt
an additive half-quadratic algorithm [4] and show that all
computations (even decimation) can be done in the frequency
domain. To our knowledge, this is the first attempt towards



a very fast SR algorithm, which retains favorable edge-
preserving properties of non-linear regularizers. The next
section describes the proposed method and addresses PSF es-
timation and fast implementation. Sec. 3 concludes the paper
with a real-data experiment.

2. REGULARIZED SUPERRESOLUTION

The decimation matrix S in the formation model (1) consists
of convolution with a sensor PSF and downsampling by a fac-
tor ε that corresponds to our desired resolution enhancement.
The SR factor is an integer value, typically ε = 2, 3. We
model the sensor PSF as a Gaussian function with a known
variance.1 We include the sensor PSF convolution in Hk’s
and then the decimation matrix S is a simple matrix where a
single element equals 1 in each row at a position that corre-
sponds to the downsampling factor. For example, for a 1D
signal and ε = 2, S = [10000 . . . ; 00100 . . . ; 00001 . . . ; . . .].

Let the size of each gk be M × 1 (the number of pixels
in the input image is M ), then the size of u is N × 1, where
N = ε2M . Let K be the number of input images. We can
stack (1) for all k’s and write

g = SHu + n , (2)

where the size of S, g = [gT1 , . . . , gTK ]T and H = [HT
1 , . . . ,H

T
K ]T

is KM × KN , KM × 1 and KN × N , respectively. Note
that the decimation matrix S is now a replicated version of
the original one in (1) and is equal to IK ⊗ S, where IK is an
identity matrix of size K ×K and ⊗ denotes the Kronecker
product. For the sake of brevity, we keep the same symbols S.
Note that if the column-wise sum of SH has zeros, the above
model can be considered also as an inpainting problem.

The analysis formulation applies a regularizer directly to
the unknown image and minimizes a functional of the form

E(u) =
γ

2
||SHu− g||2 +Q(u) , (3)

where ‖ · ‖ denotes the l2-norm. The first term is the data
term, which is determined by our formation model (2), and
Q(·) is a non-linear regularization functional utilizing the lp-
norm (0 ≤ p ≤ 1). Weight γ is inversely proportional to the
variance of noise n and it can be also viewed as a regulariza-
tion parameter.

Arguably, the best known and most commonly used reg-
ularizer in the analysis approach is the total variation (TV)
norm [5]. An anisotropic version of TV directly translates in
our notation to Q(u) = ‖Du‖1, where D = [DTx ,D

T
y ]T and

Dx, Dy are matrices performing derivatives with respect to x,

1SR is surprisingly stable to this choice. The only requirements are that
the sensor PSF must perform averaging of the neighboring pixels and the
neighborhood size should be close to the the desired SR factor, e.g., for ε = 2
the size should be 2× 2 or slightly larger.

y, respectively. Here we use a superior (isotropic) TV model,
which takes the form

Q(u) =
N∑
i=1

√
([Dxu]i)2 + ([Dyu]i)2 =

N∑
i=1

‖Diu‖ , (4)

where [·]i denotes the i-th element of a vector and Di is a
2×N matrix having the i-th row of Dx as the first row and the
i-th row of Dy as the second row (Di calculates the gradient at
the i-th pixel). The isotropic TV is thus the l1-norm of image
gradient magnitudes.

The l1-norm in the regularizer introduces nonlinearity and
direct minimization of (3) would be a slow process. A simple
procedure that solves this problem is called variable splitting,
which decouples the l2 and l1 portion of (3) by introducing a
new variable and converting the problem to two simpler min-
imization steps. One can then use the augmented Lagrangian
method [6] or split Bregman iterative method [7] to minimize
this new problem. Here instead, we adopt a so-called additive
half-quadratic algorithm [4], which is based on the same idea
of variable splitting and show that it minimizes a relaxed form
of the original energy (3). Let us replace the TV regularizer
by

Qφ(u) =
N∑
i=1

φ(Diu) , (5)

where

φ(s) =

{
β
2 ‖s‖

2 if ‖s‖ < 1
β

‖s‖ − 1
2β otherwise

(6)

Note that s is a 2 × 1 vector and in the case of TV it corre-
sponds to the image gradient. FunctionalQφ is a relaxed form
of the original Q in (4), being quadratic around zero and TV
elsewhere. As β →∞, Qφ → Q. It is proved in [4] that

φ(s) = min
t

(
β

2
‖s− t‖2 + ‖t‖

)
(7)

and the minimum is reached for

t =
s
‖s‖

max
(
‖s‖ − 1

β
, 0
)
, (8)

which is a generalized shrinkage formula for vectors. The
relaxed form of TV becomes

Qφ(u) =
N∑
i=1

min
vi

(
β

2
‖Diu− vi‖2 + ‖vi‖

)
(9)

and it is now a quadratic function with respect to u as op-
pose to the original formulation in (5). Interestingly, similar
derivation can be done for any “lp-norm”, 0 ≤ p ≤ 1, with the
nonquadratic part of φ in (6) proportional to ‖s‖p. A closed-
form shrinkage formula as in (8) exists only for p = 0 and
p = 1. For any other p, a simple and sufficiently accurate ap-
proximation in the form of a shrinkage formula exists as well.
However, this is outside the scope of this manuscript.



Substituting the relaxed regularizer in the energy (3), we
obtain

E(u, v) =
γ

2
||SHu− g||2 +

N∑
i=1

(
β

2
‖Diu− vi‖2 + ‖vi‖

)
.

(10)
The energy becomes now a function of the additional vari-
able v = vec([v1, . . . , vN ]T ), due to variable splitting, where
vec(·) generates a column vector by lexicographically order-
ing elements of its argument. The energy function is now
quadratic with respect to u and the derivatives are linear. Min-
imization with respect to the image is a solution to a set of
linear equations and minimization with respect to v is given
by the shrinkage formula:

u∗ = arg min
u
E(u, v)⇐⇒(

HTSTSH +
β

γ
DTD

)
u∗ = HTST g +

β

γ
DT v , (11)

v∗ = arg min
v
E(u, v)⇐⇒

v∗i =
Diu
‖Diu‖

max
(
‖Diu‖ −

1
β
, 0
)
. (12)

The restoration algorithm alternates between these two mini-
mization steps until a convergence criterion is met. Since this
is a type of EM (Expectation-Maximization) algorithm, con-
vergence to the global minimum is not guaranteed and in the-
ory initialization is important. However, our extensive testing
shows that the algorithm is quite stable with respect to initial-
ization and we thus start with v = 0.

2.1. Estimation of blurs

Estimation of PSFs hk can be carried out in the SR framework
as proposed in [8]. However, the computational overhead in-
troduced by minimization with respect to PSFs is excessive
and in many practical applications not necessary. SR can
hardly recover high-frequency information if this information
is decimated by substantial blurring. If input images undergo
complex geometric warping, complicated and lengthy regis-
tration is necessary. However, SR typically requires registra-
tion with sub-pixel accuracy, which is difficult to achieve in
practice. We thus consider only the sensor PSF, which we
assume to be known, and translation as a geometric transfor-
mation. Shifts between images are estimated with sub-pixel
accuracy using an optical flow algorithm with hyperbolic nu-
meric as proposed in [9]. We then shift the sensor PSFs ac-
cordingly and use them to implement blurring matrices Hk’s.

2.2. Fast implementation using FFT

The second minimization step (12) is element-wise and can
be computed in O(N) time.

More challenging is the first step (11), which requires in-
verting a huge N ×N matrix (HTSTSH + β

γDTD). One can
apply iterative solvers, such as conjugate gradient (CG), to
avoid direct inversion, but we want to do even better and have
a one-step solver. In our formulation, both H and D are con-
volution matrices. To avoid any ringing artifacts close to im-
age boundaries, H and D should perform “valid” convolution,
i.e., the output image is smaller and covers a region where
both the input image and convolution kernel are fully defined.
If we properly adjust the image borders, by using for example
function edgetaper in MATLAB, we can replace “valid” con-
volution with block-circulant one and ringing artifacts will be
almost undetectable. In addition, the sparsity regularizer also
helps to reduce the artifacts. The 2D discrete Fourier trans-
form (DFT) diagonalizes block-circulant convolution matri-
ces and inversion is thus straightforward. The product STS
becomes a block diagonal matrix under the DFT as also ob-
served in [10]. Its effect on the image spectrum can be visu-
alized as follows: divide the spectrum into non-overlapping
ε × ε blocks, calculate a mean block by summing up the
blocks element-wise, and replicate the result ε × ε to form
a spectrum of the original size. More precisely, let û(ω1, ω2),
1 ≤ ω1, ω2 ≤

√
N denote the DFT of an image u(x1, x2),

and û(ω1, ω2), 1 ≤ ω1, ω2 ≤ ∆ =
√
N/ε denote a vector of

size ε2×1, which we obtain from û(ω1, ω2) by concatenating
(i, j)-th elements of each block of û. For example, for ε = 2
we have û(ω1, ω2) = [û(ω1, ω2), û(ω1 + ∆, ω2), û(ω1, ω2 +
∆), û(ω1 + ∆, ω2 + ∆)]T .

Under the DFT and some permutation, (HTSTSH +
β
γDTD) becomes block diagonal with ∆2 blocks of size
ε2 × ε2. Each block is given by

1
ε2

K∑
k=1

ẑk(ω1, ω2)ẑTk (ω1, ω2)− β

γ
diag{̂l(ω1, ω2)} , (13)

where ẑk = ĥ
∗
k � ĥk, (·)∗ denotes complex conjugate and �

element-wise multiplication. Vector l̂ is constructed from the
DFT of discrete Laplacian and diag{·} stands for a diagonal
matrix.

To conclude, minimization in (11) is calculated entirely in
the DFT and requires ∆2 inversions of small ε2 × ε2 matri-
ces. Each DFT can be carried out withO(N logN) cost using
the FFT algorithm. The cost of one inversion is in the worst
case O(ε6). The overall complexity of minimization with re-
spect to u is thus O(N logN + Nε4). It is important to note
that the inversions are performed only once in the whole al-
gorithm, since the inverted matrices are independent of the
updated v. If we used CG iterative minimization and kept all
matrix multiplications in the DFT, the complexity would be
O(N2 logN). Our algorithm is thus by a factor of N faster.



3. EXPERIMENTS AND CONCLUSION

We recorded two video sequence, one with a compact digital
camera (640 × 480) and one with a mobile phone (320 ×
240), took five consecutive frames from each and estimated
SR images (ε = 2) using the proposed method. Parameters
were set as follows, camera data: γ = 500, β = 10; and
mobile data: γ = 100, β = 10. Parameter γ is proportional
to SNR, β is a threshold and depends on the intensity range
of input images. The maximum of 10 iterations was sufficient
to achieve very good results. Results are in Fig. 1 (a) and (b).
Improvement in resolution is clearly visible.

We have proposed superresolution with nonlinear regular-
ization implemented in the Fourier domain, which is N -times
faster than the equivalent implementation in the image do-
main. Currently, we use the additive half-quadratic approach.
In the future more elaborated algorithms such as augmented
Lagrangian will be tested.
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(a)

(b)

Fig. 1. (a): (top) one of five images (640×480) acquired with
a digital camera, (bottom) the super-resolved image (1280 ×
960). (b): (top) one of five images (320× 240) acquired with
a mobile phone, (bottom) the super-resolved image (640 ×
480). For better visual comparison, only small sections of the
original images are shown.


