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ABSTRACT

We propose a novel method for the fast synthesis of low complexity model-based optical proximity correction
(OPC) and phase shift masks (PSM) to improve the resolution and pattern fidelity of optical microlithography.
We use the pixel-based mask representation, a continuous function formulation, and gradient based iterative
optimization techniques to solve the above inverse problem. The continuous function formulation allows analytic
calculation of the gradient. Pixel-based parametrization provides tremendous liberty in terms of the features
possible in the synthesized masks, but also suffers the inherent disadvantage that the masks are very complex
and difficult to manufacture. We therefore introduce the regularization framework; a useful tool which provides
the flexibility to promote certain desirable properties in the solution. We employ the above framework to ensure
that the estimated masks have only two or three (allowable) transmission values and are also comparatively
simple and easy to manufacture. The results demonstrate that we are able to bring the CD on target using OPC
masks. Furthermore, we were also able to boost the contrast of the aerial image using attenuated, strong, and
100% transmission phase shift masks. Our algorithm automatically (and optimally) adds assist-bars, dog-ears,
serifs, anti-serifs, and other custom structures best suited for printing the desired pattern.

Keywords: inverse lithography, OPC, PSM, pixel-based approach, non-linear programming, optimization, reg-
ularization, low-complexity.

1. INTRODUCTION AND BACKGROUND

1.1. Introduction

In the recent years, the semiconductor industry has been finding it increasing difficult to keep pace with Moore’s
law. This in terms of lithography, demands a thirty percent reduction in the critical dimension (CD) every
eighteen months as reflected in the International Road map for Semiconductors (ITRS). Circuit patterns are
commonly transferred onto silicon wafer using optical microlithography, a process similar to photographic print-
ing. A typical lithography system consists of two steps; namely the optical image formation and the resist action.
The optical imaging system is bandlimited owing to the diffraction effects resulting in severe loss of the higher
frequency components in the projected mask image (also known as the aerial image). Thus, the aerial image
is a highly distorted (blurred) version of the fed input. The photo-resist responds to the above (projected)
image and hence the resulting wafer pattern has poor fidelity due to rounding, line-end shortening, merging, etc.
Furthermore, the lithography system is subject to random (uncontrollable) process variations which give rise to
variations in the output patterns and the measured CDs. The above factors are the main culprits contributing
towards yield loss, a key factor for manufacturing productivity. Thus, the overall requirement is to design a
robust lithography system which prints wafers with high pattern fidelity. With Moore’s law continuing to de-
mand smaller CDs, this puts very stringent requirements on lithography making it the tightest bottleneck in the
semiconductor industry.

A mathematical description of the given imaging system is referred to as the process (or forward) model. The
aerial image calculations are based on the underlying optical system model (coherent, incoherent, or partially
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coherent1, 2). The resist effects are simulated using Dills model,3 Mack Model,4, 5 CTR (Constant Threshold
Resist) model,6 VTR (Variable Threshold Resist) model,7 or other models.8 We use the CTR model in our
analysis.

The resolution(R) of the lithography system is dictated by Rayleigh’s criterion,

R =
kλ

NA
. (1)

The resolution can be improved by increasing the numerical aperture of the imaging system (NA) or decreasing
the wavelength (λ) and the above parameters have been actively exploited by researchers in the past (current
values are λ = 193nm and NA ≈ 0.9). Pushing the wavelength below 193nm is practically deemed infeasible
because of the limiting cost requirements, and the physical limit for NA = 1 for dry lithography. This leaves
out the only option of decreasing the process constant k using resolution enhancement techniques (RETs).9–11

RETs are based on exploring three properties of the optical wavefront; namely, its amplitude, phase and
direction; and are accordingly classified as optical and process correction, phase-shift methods, and off-axis
illumination.12 Optical and process correction (OPC) consists of carefully changing the sizes of the openings
thereby controlling the amount of light let through. This corresponds to adding sub-resolution features to the
mask pattern, which pre-compensate for the process losses to come, thereby leading to a general improvement
in pattern fidelity. Phase-shift masks (PSM) consists of treating the mask as a three-dimensional structure and
inducing phase-shift in the transmitted electric field such that it causes favorable constructive and destructive
interference in the desired bright and dark areas respectively. Finally, off-axis illumination consists of modifying
the illuminator (source) size and shape (e.g. quasar, annular, quadrapole, dipole, etc), which affects the direction
of the incident light and ultimately the diffraction orders captured by the lenses.

1.2. Past Work and Inverse Lithography Techniques

The widely used approach for OPC mask design proposed by Cobb and Zakhor2 consists of parameterizing
the mask using polygons and fragmenting the mask pattern into edges and corners. These geometric elements
are then nudged and moved around while simulating the output at specified control sites (using the forward
model) until certain criteria are satisfied. The above technique is local in the sense that the changes are made
only locally to the edges or corners of the mask to correct the corresponding edge locations at the output. A
direct consequence of the above is that assist bars cannot be automatically generated. There is also a danger of
printing side-lobes and hence an extra verification step is required.13 Furthermore, phase assignments cannot
be optimally carried out forming another drawback for 65nm and smaller nodes.

Hence, there has been revival of interest in “inverse lithography” or “layout inversion” techniques in recent
times which form the thrust of this paper. Inverse lithography is an image synthesis or image design14, 15

problem, which consists of finding an image that when used as the input to a given imaging system results in the
desired output image (to within some prescribed tolerance). The image formation process can be mathematically
expressed as,

z(x, y) = T{i(x, y)}, (2)

where T{.} is the forward model which maps the input intensity function i(x, y) to the output intensity function
z(x, y). Let z∗(x, y) be the desired output intensity function. Therefore, the goal of inverse lithography technique
(ILT) is to estimate the input intensity function which will give us an approximation to the desired output
z∗(x, y). This is achieved by searching the space of all inputs and choosing î(x, y) which minimizes a distance
d(z(x, y), z∗(x, y)), where d(·, ·) is some appropriate distance metric to be defined later.

î(x, y) = arg min
i(x,y)

d(z∗(x, y), T{i(x, y)}). (3)

In our case, T{.} is the lithography forward (process) model, z∗(x, y) is the desired output wafer pattern, and
î(x, y) is the estimated optical proximity correction or phase shift mask pattern.

The pioneering work in ILT was by Sherif. et al16 who employed iterative alternating projections approach to
synthesize binary masks. Liu and Zakhor17 used simulated annealing and Pati-Kailath18 used POCS (Projection



on Convex Sets) respectively to synthesize phase shift masks. Oh, et al.19 used random-pixel flipping and
Erdmann, et al.20 proposed genetic algorithms to solve the above problem. More recently Granik21 used non-
linear programming to solve the above problem and Liu, et al13 demonstrated commercial viability of inverse
lithography techniques.

In this article, we discuss the extension of our earlier proposed framework (for image prewarping22) to
incoherent, partially coherent, and coherent imaging systems, and present extensive “layout inversion” results
for the latter case. The goal is to demonstrate automatic generation and optimal placement of assist bars using
ILT, and to obtain high contrast aerial images with good pattern fidelity by synthesizing attenuated, strong, and
100% transmission PSM. The key difference in our approach is that we formulate the mask synthesis problem
using continuous function optimization and use the gradient information to systematically exploit the solution
space. The gradient is analytically calculated in O(MNlog(MN)) operations for an M × N discrete pattern.
We use the pixel-based parametrization which results in more flexibility in mask representation. However, it also
suffers an inherent drawback that the synthesized masks are complex and hence very difficult to manufacture
and inspect. Liu and Zakhor addressed this issue in the past using a cell-based approach.23 The cells are
selected and moved around either randomly or using the knowledge from previous moves. We instead, employ
the regularization framework and use an L1 norm based penalty function to curb the mask complexity. The
above framework enables us to automatically arrive at low-complexity, high fidelity, and high contrast OPC
masks or PSM while searching the solution space.

The process model and the optimization problem are formulated in Section 2. The regularization framework
and OPC mask design is discussed in Section 3. The proposed framework is extended to the three cases of phase
shift masks, namely, attenuated, strong, and 100% transmission in Section 4. Finally, we provide conclusive
remarks in Section 5.

2. PROCESS MODEL AND PROBLEM FORMULATION

Optical System
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Figure 1. Approximated forward process model
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Figure 2. The sigmoid
function sig(u) = 1/(1 +
e−80(u−0.5))

We employ the approximated forward process model illustrated in Fig. 1 in our analysis. Note that m in
Fig. 1 denotes a vector representing the mask which plays the part of the input intensity function i(x, y) used
in (2) and (3). The aerial image calculations are performed on the basis of coherence, incoherence, or partial
coherence of the underlying imaging system. The resist effect is simulated using the constant threshold resist
(CTR) model to bring the contours in the output pattern on target. The resist operation can be described using
a Heaviside operator (hard threshold) defined as

Γ(u) =

{
0, u ≤ tr
1, u > tr

(4)

Employing the Heaviside operator results in a discrete combinatorial optimization problem14, 17 . Therefore,
we approximate the above operator using sigmoid; a smooth, continuous function.24 We employ the logarithmic
sigmoid function,

sig(u) =
1

1 + e−a(u−tr)
, (5)



where the parameter a dictates the steepness of the sigmoid. A large value of a leads to a very steep sigmoid
which closely resembles the hard thresholding operation. The parameter tr is the threshold parameter of the
sigmoid and is set equal to the threshold level of the resist in accordance with the constant threshold resist model.
As an example, Fig. 2 illustrates the behavior of a sigmoid with a = 80 and tr = 0.5. The above approximation
enables us to use gradient-based continuous function optimization techniques like steepest-descent to solve the
mask design problem.

Since we employ the pixel based approach, the first step is to represent the input, output, and the desired
patterns using 2-D discrete images. We define vectors z∗, z, m ∈ <MN×1 which are obtained by sampling and
lexicographic ordering of z∗(x, y), z(x, y), and m(x, y) respectively. Throughout our discussion, z∗ represents
the prescribed binary pattern, z represents the gray-level output pattern, and m represents the input pattern fed
to the imaging system (can be binary or gray-level). The number of samples along the horizontal and vertical
directions are given by M and N respectively.

2.1. Modelling the Imaging System

We now discuss the aerial image calculations and process models for the three imaging systems of interest.

2.1.1. Coherent Imaging System

In the case of coherent imaging system, the spatial distribution of the output electric field amplitude z(x, y) is
linearly related to the input electric field amplitude generated by the mask m(x, y). This can be mathematically
described as,

z(x, y) = m(x, y) ∗ h(x, y) (6)

where h(x, y) is referred to as the amplitude spread function (ASF) of the given imaging system.25

Typical lithography systems employ a circular lens aperture, where the coherent imaging system now acts as
an ideal low pass filter with cutoff frequency NA/λ. The higher frequency components of the diffracted mask
image are lost by the finite lens aperture stop thereby causing a blurry version of the mask image at the imaging
(wafer) plane. The convolution kernel h(x, y) is defined as the Fourier transform of the circular lens aperture
with cutoff frequency NA/λ.1, 25 Therefore,

h(x, y) = jinc(r) =
J1(2πr NA/λ)

2πr NA/λ
(7)

where r =
√
x2 + y2 and J1(·) is the Bessel function of first kind.

The photo-resist responds to the intensity of the electric field, where intensity is defined as the square of the
complex amplitude. Therefore, the forward model is defined as,

z = sig(|Hm|2) (8)

The sigmoid function simulates the resist behavior and acts on the aerial image |Hm|2 (square of the amplitude),
giving the output pattern z. Two important points to note; the kernel H ∈ <MN×MN is the jinc function h(x, y)
sampled using the same interval as z, and | · |2 operator here implies element-by-element absolute square of the
individual vector entries. Finally, for partially coherent imaging systems, the optical kernel h(x, y) can be instead
substituted by the optimal coherent approximation proposed by Pati-Kailath.18

2.1.2. Incoherent Imaging System

An incoherent imaging system is linear in intensity (or irradiance) and can be mathematically described as,1

|z(x, y)|2 = |m(x, y)|2 ∗ |h(x, y)|2. (9)

The kernel h(x, y) is defined in (7), and | · |2 once again implies absolute square of the individual elements. Note
that the phase of the input electric field does not contribute towards the output. Hence, for incoherent imaging
systems we restrict ourselves to only binary masks. The photo-resist directly responds to the above electric field
intensity and the forward model is defined as,

z = sig(H̃|m|2) = sig(H̃m) (10)

The filter H̃ in (10) is known as the point spread function of the imaging system and is a jinc-squared function,
whereas |m|2 =m for binary masks.



2.1.3. Partially Coherent Imaging System

Real-world lithography system are partially coherent and can be modelled using Hopkins diffraction model.1

Pati and Kailath18 proposed an approximation to the above model called the sum-of-coherent-system (SOCS)
by using the singular value decomposition of the transmission cross coefficient matrix. In their approach, the
P th order approximation to the aerial image formulation can be calculated using the weighted sum of P coherent
systems. The forward model now becomes,

z = sig




P∑

j=1

σj |Hjm|
2


 (11)

where Hj for j = 1, . . . , P are the amplitude spread functions (also referred to as optical system kernels) of
the coherent systems, and σ1, . . . , σP are the singular values. The singular values quickly decay to zero thereby
facilitating an accurate reduced order approximation.

2.2. Optimization Problem Formulation

In this article, we focus on the mask synthesis problem for the case of coherent imaging systems. Every pixel
mj of the mask can be represented as a complex term mj = pj + iqj where i =

√
−1. In our analysis we restrict

ourselves only to strong (180 degree) phase shift. Therefore qj = 0 for j = 1, . . . ,MN thereby requiring us to
estimate only the real part (pj) of the mask (which we henceforth refer to as mj for notational convenience). We
formulate the mask design problem as finding the optimized mask layout m̂ that minimizes the cost function
F (m), defined as the L2 norm of the difference between the desired pattern z∗ and the output pattern z. That
is,

m̂ = argmin
m
{F (m)} = argmin

m
||z∗ − z||22 = argmin

m

MN∑

k=1

(z∗k − zk)
2

(12)

Later in Section 3, we refine this approach by introducing the regularization terms and augmenting the cost
function. From (8) we observe that every pixel in a coherent imaging system undergoes a cascade of convolution,
squaring, and sigmoidal operation. Therefore, the output pixel zk in (12) can be represented as,

zk =
1

1 + exp


−a




MN∑

j=1

hkjmj




2

+ atr




, (13)

for k = 1, . . . ,MN where H is the jinc function defined in (7).

The estimated mask is either two or three tone depending on the employed RET. Therefore, the transmis-
sion valuesmj for j = 1, . . . ,MN should be allowed to take only specific values as summarized in the table below.

RET Allowable transmission values
OPC 0 or +1

6% Attenuated PSM -0.2449 or +1
18% Attenuated PSM -0.4243 or +1

Strong PSM (100% transmission) -1 or +1
Strong PSM (With chrome) -1 or 0 or +1

The optimization problem (12) is therefore subject to the constraints given by the allowable transmission
values of mj . This would unfortunately result in a combinatorial optimization problem, thereby preventing the
usage of gradient information to explore the search space. To overcome this problem, we relax the parameter
values to lie within a range [m,m]. Hence, the optimization problem in (12) is subject to the following inequality
(bound) constraints

m ≤ mj ≤ m for j = 1, . . . ,MN . (14)



3. OPC MASK DESIGN

We now discuss the proposed optimization algorithm for synthesizing OPC masks for coherent imaging systems.
We also introduce the regularization framework to guarantee near binary results, ease of manufacturing, and
good quality aerial image.

3.1. Mask Optimization Algorithm

In the case of OPC masks, the transmission values are restricted to either 0 or 1. For coherent imaging systems,
the optimization problem is defined using (12) and (13) subject to the constraints

0 ≤ mj ≤ 1 for j = 1, . . . ,MN.

The above problem can be solved using constrained optimization algorithms like BFGS (Broyden, Fletcher,
Goldfarb, Shanno) or gradient-projection.26, 27 The bound-constrained optimization problem can be further
reduced to an unconstrained optimization problem using the following parametric transformation,

mj =
1 + cos(θj)

2
for j = 1, . . . ,MN (15)

where θ = [θ1, . . . , θMN ]
T is the unconstrained parameter vector. The re-parameterized cost function can be

formulated in terms of the parameter vector θ as follows,

F1(θ) =
MN∑

k=1




z∗k −
1

1 + exp


−a




MN∑

j=1

hkj

1 + cos(θj)

2




2

+ atr







2

. (16)

We can now employ the simple steepest-descent search method to minimize the above cost function. This re-
quires the first order derivatives of (16), and the gradient vector ∇F1(θ) ∈ <MN×1 can be analytically calculated
using the following expression,

∇F1(θ) = d = a(HT [(z∗ − z)¯ z¯ (1− z)¯ (Hm)] )¯ sin(θ), (17)

where ¯ is the element-by-element multiplication operator. The nth iteration of steepest descent is given as,

θ
n+1 = θ

n − sdn (18)

where s is the step-size. Here, we would like to highlight the useful fact that due to the structure of (17), the
steepest descent iterations can be quickly and directly carried out on the 2-D image array (matrices) with no
need for the raster scanning operation.27 This saves valuable time and considerably eases the implementation.
Finally, we note that the estimated mask m̂ using the above framework has continuous transmission values
between 0 and 1. Therefore, we need a post-processing operation to find the optimal threshold tm to convert m̂

into a physically realizable mask m̂b.
22

3.2. Regularization Framework

Inverse lithography problem is an ill-posed problem.28 The continuous function formulation implies that there
can be infinite number of input (gray level) patterns all giving rise to the same binary pattern at the output.
However, we are interested in solutions comprising of only two or three tones to achieve physically realizable
masks. Moreover, we want our synthesized mask patterns to have low-complexity in order to control the mask
manufacturing costs. In general, we may want to inculcate (or promote) certain desirable properties in the



solution. These can be incorporated as prior information about the solution and by employing the regularization
framework.28 In general, the problem formulation can be described as follows,

m̂ = argmin
m
[γfidF (m) + γreg R(m)] (19)

where F (m) is the data-fidelity term, and R(m) is the regularization function used to direct the unknown
parameter m towards the desired solution space. γfid and γreg are user-defined scalars for adequately weighing
the first (data fidelity) term against the second (regularization) term. We employ the above framework with the
aim of achieving three goals which are introduced in the following sections.

3.2.1. Discretization Penalty Term

The bound constraints in (14) imply that m̂ can have pixels with continuous gray values. Therefore, a post-
processing (binarization) step is required to obtain the binary mask m̂b from m̂.22 However, this forms an
extra overhead operation, and is sub-optimal because the pattern-error for m̂b cannot be guaranteed to be under
control. Therefore, the first regularization term is employed to ensure that the estimated mask is near-binary.
Every pixel mj now has an associated penalty given by the quadratic function (see Fig. 3),

r(mj) = 1− (2mj − 1)2.
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As described earlier, the mask transmission values will be constrained to lie in [0, 1] and hence we are only
interested in the behavior of the cost function in that range. The penalty incurred is zero for transmission values
0 or 1 and increases as we move away from binary region in either direction (maximum at mj = 0.5). Thus we
favor the estimated pixels to have values closer to 0 and 1 while exploiting the search space. The regularization
term is defined as the sum of penalty of all pixels as follows,

Rdis(m) =
MN∑

j=1

r(mj) =
MN∑

j=1

[
1− (2mj − 1)2

]
= 4mT (1−m), (20)

where 1 = [1, . . . , 1]T ∈ <MN×1. The gradient ∇Rdis(m) ∈ <MN×1 of the discretization penalty term is given
by,

∇Rdis(m) = (−8m+ 4), (21)

which can be used in conjunction with (17) and (18) while carrying out the steepest-descent iterations as before.



3.2.2. Complexity Penalty Term

The pixel-based approach allow tremendous flexibility in representing the mask patterns but also suffers the
inherent disadvantage that the masks are rather complex and hence difficult to manufacture and inspect. Re-
searchers in the past have reverted to post-processing operations to simplify the output,19 but this approach
is again sub-optimal. We follow the regularization framework and employ a penalty function to direct our al-
gorithm towards generating low-complexity masks. Isolated perturbations, protrusions, etc are not preferred
because they increase the storage and manufacturing cost. Hence we seek a penalty term which suppresses these
effects. To achieve this, let us first define an auxiliary variable called the activation pattern f where,

fj = |mj − z∗j | for j = 1, . . . ,MN.

The on pixels in f indicate the positions where pre-warping occurred; so the pre-warped pattern can be obtained
by simply flipping the corresponding pixels in z∗ from 1 to 0 or 0 to 1.

There are a variety of penalty terms that one can employ depending upon how one defines mask complexity.
Akin to the idea of Total Variation (TV)28 penalty, we choose to penalize the mask complexity using the local
variation of the activation pattern as follows29:

||∇f ||1 = ||Qxf ||1 + ||Qyf ||1, (22)

whereQx,Qy ∈ <MN represent the first (directional) derivatives and are defined asQx = I− Sx andQy = I− Sy

where Sx and Sy shift m along horizontal (right) and vertical (up) direction by one pixel respectively.

This approach, while relatively simple, enables us to decouple the features of the underlying prescribed
pattern z∗ from m thereby capturing only the changes occurring due to prewarping. Isolated holes, protrusions,
and jagged edges have higher associated penalty. The regularization term in (22) suppresses these effects and
forces the changes to be spatially smoother and less abrupt.

The gradient ∇RTV (m) ∈ <MN×1 of the complexity term is given as:

∇RTV (m) = [Qx
T sign(Qxf) +Qy

T sign(Qyf)] ¯ sign(m− z∗), (23)

which can be used in conjunction with (17) and (18) while carrying out the steepest-descent iterations as before.

3.2.3. Aerial Image Penalty Term

The lithography process needs to be robust to the process errors introduced by undesirable focus and exposure
variations. This can be achieved by availing a good quality aerial image; one with sharp contrast or steep
transitions along desired edge locations. To achieve the above goal, we employ a penalty term defined as the
L2 norm of the difference between the desired pattern and the aerial image obtained using the input mask.
This penalty term will be particularly useful for phase shift masks, where it forces constructive or destructive
interference in desirable regions thereby boosting the contrast. For a coherent imaging system, the penalty term
is given as,

Raerial(m) = ||z∗ − |Hm|2||22 (24)

and the gradient ∇Raerial(m) can be calculated as,

∇Raerial(m) = −H
[
(z∗ − |Hm|2)¯ (Hm)

]
(25)

It is interesting to note that the optimization problem can also be formulated using (24) as the fidelity term
instead of (12). This will guarantee a high quality aerial image, however the contour fidelity will be very poor.
The above approach is useful in case of isolated contacts where the dose can be varied to bring the CD on target
and hence contour fidelity is not an issue of concern.



3.3. Results

The augmented cost function to be minimized is defined as the sum of the fidelity term and the regularization
terms:

J(m) = γfidF (m) + γaerialRaerial(m) + γdisRdis(m) + γTV RTV (m) (26)

Fig. 5 illustrates the estimated masks and the binary output patterns obtained using a coherent imaging
system with λ = 193nm, NA = 0.85, and the resist threshold tr = 0.3. The desired pattern is a 100nm random
logic contact holes pattern sampled at 10nm. We observe that our optimization algorithm automatically adds
assist bars and adjusts the sizes of the centers to bring the output contours on target. The assist features
are also shared between adjacent contacts. Fig. 4 compares the aerial image slices and indicates a tremendous
improvement in the peak intensity. We also observe that the side-lobes are under control and the assist bars do
not print. However, the assist features are broken, irregular, curvy, and complex, making the mask very difficult
to manufacture; hence, we repeat the experiment by employing the complexity penalty term (λTV = 0.001).
This leads to a comparatively simple pattern (see m̂b on the right in Fig. 5) and the assist bars tend to become
square or rectangular in shape which are more preferable.
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Figure 5. The synthesized masks (top row) and the output binary patterns (bottom row) for 100nm random logic contact
patterns. m̂b (left) is estimated using λfid = 0.75, λaerial = 0.25, λdis = 0.002, and λTV = 0 and m̂b (right) is estimated
using same parameters except λTV = 0.001

4. PSM MASK OPTIMIZATION

We now move our discussion to phase shift mask design and demonstrate the extension of our framework to the
cases of attenuated phase shift mask, strong phase shift mask, and 100% transmission phase shift mask.

4.1. Attenuated PSM

Attenuated phase shift masks consist of quartz and molybdenum silicide (MoSi) instead of chrome. MoSi (unlike
chrome) allows a small percentage of light intensity (typically 6% or 18%) to pass through it. The thickness of



MoSi is chosen such that light which passes through is 180◦ out of phase compared to the transmitting quartz
regions. In our discussion, we focus on the 6% intensity transmission AttPSM masks. Every pixel mj can now
have only two amplitude transmission values equal to −

√
0.06 = −0.245 (the 180 degree phase shift with weak

transmission) or 1 (100% transmission with no phase shift). The optimization problem is formulated similar to
(12) subject to the constraint that mj = −0.245 or 1. We reduce it to a non-linear programming problem using
the bound constraints −0.245 ≤ mj ≤ 1. The parametric transformation should now map the unconstrained
variable θj to the above range and is given as,

mj = 0.6225(1 + cos(θj))− 0.245 (27)

The quadratic penalty term is employed where pixels having values −0.245 and 1 have zero penalty and the cost
increases as we move towards the center of the range (also see Fig. 6),

r(mj) = −m2
j + 0.755mj + 0.245 (28)

The two-tone AttPSM m̂b is simply obtained by thresholding the estimated mask m̂ with tm = 0.3775.
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Figure 6. Discretization penalty term for AttPSM
(maximum penalty is at mj = 0.3775)
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4.2. 100% transmission PSM

As the name suggests, 100% transmission PSM is an extreme case of AttPSM and does not use the opaque
chrome features at all. It is an all transmissive mask consisting of only zero and 180 degree phase shift features.
Thus the synthesized mask can only have values -1 or 1. We formulate the optimization problem similar to
(12), subject to the constraint that mj = −1 or 1. Once again we relax the condition and impose the bound
constraints −1 ≤ mj ≤ 1 and perform the parametric transformation mj = cos(θj) to reduce the problem to
an unconstrained optimization problem. The quadratic penalty term now has zero penalty at −1 and 1 and
maximum penalty for mj = 0 (see Fig. 7),

r(mj) = −m2
j + 1. (29)

Hence, everything is pushed towards -1 and 1 thereby easing the discretization step.

4.3. Strong PSM

The final discussion is for strong PSM where the mask features can have values 0 (chrome) or 1 (quartz with
no phase shift) or -1 (quartz etched to provide 180 degree phase shift). The bound constraints and parametric
transformation are similar to those employed in 100% transmission PSM. The only difference occurs in the
discretization regularization term since we now want a three-tone mask. We employ a fourth order quartic
penalty term where each pixel has an associated cost,

r(mj) = −4.5m4
j +m2

j + 3.5 (30)
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Fig. 8 is the plot of the above function. Note that the entire range from [−1, 1] is divided into three equal
intervals. The penalty is lower for pixels having values -1, 0, or 1, whereas it is maximum for -1/3 and 1/3.
Finally, m̂j ∈ [−1,−0.33), m̂j ∈ [−0.33,+0.33), and m̂j ∈ [+0.33, 1] are quantized to -1, 0, and 1 respectively to
obtain the three-tone mask m̂b.

4.4. Results for PSM
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Figure 10. The estimated 6% AttPSM mask (left), the corresponding aerial image (center), and the final binary output
pattern (right) for coherent imaging system with λ = 193nm and NA = 0.85. The black and white regions in m̂b

correspond to -0.245 and 1 respectively.

We now demonstrate results for the above discussed PSM. During our experiments, we observed that a new
two step optimization procedure is more efficient than the direct one step optimization technique employed
earlier. The new strategy is described below.
Step 1 - To start with, we minimize the cost function defined as,

J(m) = Raerial(m)
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Figure 11. The estimated 100% transmission PSM (left), the corresponding aerial image (center), and the final binary
output pattern (right) for coherent imaging system with λ = 193nm and NA = 0.85. The black and white regions in m̂b

correspond to -1 and 1 respectively.

Since the only term employed is the aerial image penalty, our goal is to estimate a mask which improves the
overall contrast of the aerial image. The steepest descent iterations are initialized asm0 = z∗. Note that contour
fidelity is not accounted for and hence the resulting contours will not be on target.

Step 2 - We now minimize the augmented cost function defined in (26) which includes the contour fidelity,
complexity, and discretization terms. The steepest descent iterations are initialized using the estimated mask
pattern obtained from Step 1. Phase shift masks can result in very high contrast aerial images by causing con-
structive or destructive interference wherever desirable. An advantage of the two step strategy is that the phase
assignments are primarily made during the first step, whereas the contour fidelity, tone, and simplicity criteria
are addressed during the second round of optimization. Furthermore, the initial guess obtained from Step 1 is
often quite far from the initial pattern, and hence the two step approach helps exploit the search space better.

Fig. 10 illustrates the synthesized 6% attenuated PSM for a coherent imaging system with λ = 193nm and
NA = 0.85. The desired pattern consists of two 120nm thick bars separated by 50nm. The experimental
parameters are as follows: a = 25, tr = 0.3, λfid = 1, λaerial = 0.25, λTV = 0.01, λdis = 0.01, and s = 5. We
observe that the optimization algorithm automatically adds assist bars in all four directions. The width of the
assist bars and their placements from the center feature are calculated as part of the optimization procedure.
Fig. 9 illustrates the central horizontal slice of the aerial image. If the desired binary pattern is itself fed as the
input to the imaging system, the aerial image barely has any modulation and the two bars are not distinguishable.
However, the synthesized AttPSM mask causes good modulation and the assist features do not print.

Fig. 11 illustrates the synthesized 100% transmission PSM for the same imaging system. The experimental
parameters are as follows: a = 25, tr = 0.3, λfid = 0.75, λaerial = 0.25, λTV = 0.01, λdis = 0.01, and s = 5. Note
that our goal is to create a horizontal separation between the two bars. However, the corresponding region in the
synthesized mask is a zero phase shift fully transmissive (white) contiguous region. The destructive interference
is actually created by the two vertically separated 180 degree phase shift (black) features giving a sharp contrast
aerial image as observed in Fig. 9. The result also demonstrates that our algorithm can produce synthesized
masks which are very different from the desired patterns.

Finally, Fig. 12 illustrates the result using a strong PSM. The experimental parameters are as follows: a = 25,
tr = 0.3, λfid = 1, λaerial = 0.25, λTV = 0, λdis = 0.01, and s = 1.5. Once again the synthesized mask is quite
different from the desired pattern. We also see three assist features around the main pattern which improve
the contrast of the aerial image. The aerial image slices in Fig. 9 demonstrate an improvement in the contrast.
Furthermore the side-lobes are below the resist threshold tr and hence they will not print.
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Figure 12. The estimated strong PSM (left), the corresponding aerial image (center), and the final binary output pattern
(right) for coherent imaging system with λ = 193nm and NA = 0.85. The black, gray, and white regions in m̂b correspond
to -1, 0, and 1 respectively.

5. FUTURE WORK AND CONCLUSIONS

We proposed a new framework for fast and efficient pixel-based binary and phase shift mask design. The mask
design problem was reduced to an unconstrained continuous function optimization problem, which was iteratively
solved using the analytically evaluated gradient information. The regularization framework was effectively used
to control the tone and complexity of the resulting masks. The aerial image quality was also successfully boosted
for phase shift masks. The proposed technique can be readily extended to employ RET’s for optical maskless
lithography, proximity correction in e-beam lithography, and DOE source design for off-axis illumination. With
the semiconductor industry striving to adhere to Moore’s law and the critical dimensions hitting 45nm, there
has been tremendous interest in model-based inverse lithography techniques. The algorithms and framework
presented in this paper are promising and they have, and will, contribute towards that direction.
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