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ABSTRACT
We present a novel approach to the problem of detection of
visual similarity between a template image, and patches in a
given image. The method is based on the computation of a
local kernel from the template, which measures the likeness
of a pixel to its surroundings. This kernel is then used as a
descriptor from which features are extracted and compared
against analogous features from the target image. Compar-
ison of the features extracted is carried out using canonical
correlations analysis. The overall algorithm yields a scalar
resemblance map (RM) which indicates the statistical like-
lihood of similarity between a given template and all target
patches in an image being examined. Performing a statistical
test on the resulting RM identifies similar objects with high
accuracy and is robust to various challenging conditions such
as partial occlusion, and illumination change.

Index Terms— object detection, local metric learning,
kernel regression, canonical correlation analysis, test statis-
tic, principal component analysis

1. INTRODUCTION AND OVERVIEW

Analysis of visual objects in images is a very important com-
ponent in computer vision systemswhich performobject recog-
nition, image retrieval, image registration, and more. Areas
where such systems are deployed are diverse and include such
applications as surveillance (security), video forensics, and
medical image analysis for computer-aided diagnosis, to men-
tion just a few. The generic problem of interest addressed in
this paper can be briefly described as follows: We are given a
single “template” or “example” image of an object of interest
(for instance a picture of a face), and we are interested in de-
tecting similar objects within other “target” images. The tar-
get images may contain such similar objects (say other faces)
but these will generally appear in completely different con-
text and under different imaging conditions. Examples of
such differences can range from rather simple optical or ge-
ometric differences (such as occlusion, differing view-points,
lighting, and scale changes); to more complex inherent struc-
tural differences such as for instance a hand-drawn picture of
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a face rather than a real face. As an example, we refer the
reader to Figure 1 (a). To date, many methods based on such
features as histograms, gradients, and shape descriptors have
been proposed to address this problem. We refer the interested
reader to [1] and references therein for a good summary. Our
proposed method is based on the calculation and use of what
we call local regression kernels which are local weights com-
puted directly from the given pixels in both the template and
the target images, as elaborated below. The origin and moti-
vation behind the use of these local kernels is our earlier work
on kernel regression for image processing and reconstruction
[2]. In that work, we derived localized nonlinear filters which
adapt themselves to the underlying structure of the image in
order to very effectively perform denoising, interpolation, and
even deblurring [3].
The fundamental component of our so-called steering ker-

nel regression method is the calculation of the local steering
kernel (LSK) which essentially measures the local similarity
of a pixel to its neighbors both geometrically and radiomet-
rically. The key idea is to robustly obtain local data struc-
tures by analyzing the radiometric (pixel value) differences
based on estimated gradients, and use this structure informa-
tion to determine the shape and size of a canonical kernel.
More specifically, the local kernelK(·) is modeled as a radi-
ally symmetric function such as a Gaussian.

KHi
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K(H−1
i

(xi − x))

det(Hi)
, i = 1, · · · , P 2, (1)

where xi = [x1i, x2i]
T is the spatial coordinates, P 2 is the

number of pixels in a local window and the so-called steering

matrix is defined as
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where h is the smoothing parameter, and the matrixCi is estimated
from a collection of spatial gradient vectors zx1

(·) and zx2
(·) within

the local analysis window around a sampling position x. The “steer-
ing” matrix H

s
i modifies the shape and size of the local kernel in a

way which encodes the local geometric structures present in the im-
age. (See Figure 1 (b) for an example.) We refer the reader to [2] for
further details. 1

1Note that other local kernels such as in [4] and [5] are also applicable in
the proposed approach.
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Fig. 1. (a) A face and some possibly similar images (b) Ex-
amples of local steering kernel (LSK) in various regions

In what follows, at a position x, we will essentially be using
(a normalized version of) the function KHi

(xi − x) as a function
of xi and Hi to represent an image’s inherent local geometry; and
from this function we will extract features which will be used to
compare the given patch against patches from another image. As we
note later, normalization of this kernel function yields robustness to
illumination, contrast, and color differences.

Very recently, a related method by Shechtman et al.[6] intro-
duced a similar matching framework based on the so-called “local
self-similarity” descriptor. It is worth mentioning that this (inde-
pendently derived) local self-similarity measure is a special case of
our local steering kernel and is in the same spirit as a number of
other local data adaptive metrics which have been used for regres-
sion (e.g. [2, 4, 5]) in the image processing community. It is the aim
of this paper to begin the process of applying the local kernel idea (in
particular the local steering kernel) to problems involving detection
of similarity across images, and later videos. As mentioned earlier,
while the method proposed by Shechtman et al. [6] is related to our
method, their approach fundamentally differs from ours in the fol-
lowing respects : 1) Since the calculation of LSK is stable even in
the presence of uncertainty in the data [2], our approach is robust
even in the presence of noise and even missing pixels; 2) The ap-
proach in [6], similar to selective feature techniques such as SIFT
[1] filters out “non-informative” descriptors, while in our method we
apply Principal Components Analysis (PCA) to the derived LSK in
order to learn the most distinctive features of the data; 3) Finally,
while [6] explicitly models local and global geometric relationship,
we instead apply Canonical Correlations Analysis to the densely de-
rived features which has the desirable property of being affine in-
variant. From a practical standpoint, it is important to note that the
proposed framework operates using a single example of an image of
interest to find similar matches; does not require any prior knowl-
edge about the class of objects being sought; and does not require
segmentation of the target image. To summarize the operation of the
overall algorithm, given an example (i.e. template) patch, we first
calculate the LSK [2] from this patch at all pixel locations. Next,
a dimensionality reduction step using standard PCA produces a fea-
ture vector of modest dimensions. A similar feature vector computed
from candidate patches in the target image is then compared against
the template feature using Canonical Correlations Analysis (CCA).
This last step produces a “resemblance map” showing the likelihood
of similarity (i.e. confidence values) between the reference and tar-
get patches (See Figures 2 and 4 for a graphical overview.)

Fig. 2. System overview

The proposed framework is general enough as to be extendable
to 3−D for such applications as action recognition, suspicious be-
havior detection etc. using an analogous 3−D local steering kernel
[7]. The discussion of this aspect of the ongoing work is outside the
scope of this paper. In the next section, we provide further techni-
cal details about the various steps outlined above. In Section 3, we
demonstrate the performance of the system with some experimental
results, and we conclude this paper in Section 4.

2. TECHNICAL DETAILS

Assume that we are given a “target” or test image B ∈ R
(M×N)

and that we have a template (example) image A ∈ R
(m×n) where

M ≥ m, N ≥ n. The task at hand is to find patches of B that are
similar to A. The first step in the proposed algorithm is to calculate
the local steering kernel (LSK) measuring the relationship between
a center pixel and its neighborhood pixels, at each pixel from both
A and B. As illustrated in the Fig. 1(a), in general, faces are non-
rigid and their appearance can vary due to colors, lighting condition,
occlusion, rotation,and scale changes, etc. However, the LSK (Fig.
1(b)) captures inherent local geometric properties shared by very dif-
ferent looking faces.

To be more specific, the local steering kernel functionKj(xi −
x) is calculated and normalized as follows

K
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As an illustrative detail, we note here that at each reference pixel x,
with a preselected window size of P ×P ,Kj

A(xi − x) results in an
array of P 2 numbers. Therefore, since A is of size m × n, overall
K

j

A(xi − x) is a collection of P 2 × mn numbers.
To organize these numbers into a manageable array, letKA,KB

be matrices whose columns are vectors k
j
A,k

j
B , which are column-

stacked (rasterized) versions ofKj

A,K
j

B respectively, as follows.

KA = [k1
A, · · · ,k

mn
A ] ∈ R

P2
×mn

, (3)

KB = [k1
B , · · · ,k

MN
B ] ∈ R

P2
×MN

. (4)

As described in Fig. 2 the next step is to apply PCA 2 to KA

for dimensionality reduction and to retain only its salient charac-
teristics. Applying PCA to KA we can retain the first (largest) dx

2It is worth noting that the use of the PCA here is not critical in the sense
that any dimension reduction method can be used.
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Fig. 3. (a) : XA learned from a collection of LSKs KA, (b):
Feature vectorsFA from templateA, (c) : Feature vectorsFB

from target image B. Eigenvectors and feature vectors were
transformed to image and up-scaled for illustration purposes.

principal components 3 which form the columns of a matrix XA =

[xA1
, · · · , xAdx

] ∈ R
P2

×dx .
Next, the features FA and FB are obtained by projecting KA

andKB onto the principal subspace defined byXA as follows:

FA = K
T
AXA ∈ R

mn×dx ,

FB = K
T
BXA ∈ R

MN×dx . (5)

Fig.3 illustrates the principal components inXA and shows what the
features FA, FB look like for a particular example.

The next step in the algorithm is the measurement of a “dis-
tance” between the computed features, FA and FB(x)(=a chunk of
FB centered around the pixel x). For this purpose we employ the
powerful framework of Canonical Correlations Analysis (CCA)[8]
as it is pointed out in the previous section. The key idea behind CCA
is to find unit direction vectors u, v along which the two sets of vari-
ables, FA,FB(x) ∈ R

mn×dx are maximally correlated.

ρ = max
u,v

(FAu)T (FB(x)v)√
(FAu)T (FAu)(FB(x)v)T (FB(x)v)

, (6)

where u,v are called canonical variates, and ρ is canonical correla-
tions and can be computed by a coupled eigenvalue problem based
on auto-covariance matrix and cross-covariance matrix of FA and
FB(x). The CCA, in addition to maximizing the mutual correla-
tions, has an affine-invariant property which is desirable for similar-
ity detection. We refer the reader to [8] for more detail. Due to the
orthogonality of eigenvectors (each column of XA), the columns of
the feature matrix (FA) are correspondingly mutually uncorrelated.
In order to employ CCA, however, the columns of the feature matrix
(FA) should be correlated. To deal with this problem, we vectorize
FA, FB(x) to fA , fB(x). Then, resulting ρ boils down to a simple

3dx is typically selected to be a small integer such as 3 or 4

Fig. 4. Left: Resemblance map (RM), Right: RM embedded
in target B after non-maxima suppresion[9].

correlation coefficient. 4

The final step in the algorithm is to compare the computed canon-
ical correlation value to a threshold 5which will indicate whether the
pair of features from the two images are sufficiently similar or not. If
we assume that in the null condition, the local regions of the image
are dissimilar, then we would expect the canonical correlation value
to be small. But to be more precise, we employ one of the several
available significance tests which rely on the assumption of Gaus-
sianity of ρ̂ in the null hypothesis. The larger the value of this test
statistic, the more similar the pair of feature vectors are. We use the
canonical correlation value to compute a “resemblance map” (RM),
which will be an image with values indicating the likelihood of sim-
ilarity between the reference patch and the given image. The value
of the resemblance mapRM(i, j) is calculated as follows:

RM(i, j) =
ρ2
(i,j)

1 − ρ2
(i,j)

, where {
i = 1, · · · , M − m + 1,

j = 1, · · · , N − n + 1.
} (7)

In Fig.4, an example resemblance map is presented. Red color
represents higher resemblance. Here we employ the idea of non-
maxima suppression [9] for the final detection. Namely, since the
RM provides us confidence values, we take the region with the
highest value and eliminate the possibility that any other object is
detected within some radius of the center of that region again. Then
we iterate this process until the next highest value falls below the
threshold.

3. EXPERIMENTAL RESULTS

In our experiments, gray-scale images are used as the input (template
A and targetB). We compute LSK of size 9× 9 as descriptors. As a
consequence, each pixel in A and B yields an 81-dimensional local
descriptor K respectively. Then we reduce this dimensionality by
using PCA. We tested our system on some of the MIT+CMU frontal
face test set[10]. We used 65 images 6 which contain a total of 233
faces. Fig. 6 shows some results on this dataset. We achieved 81%

4We note that this is a special case. More generally, if higher dimensional
data such as color images or video are under consideration, we first vectorize
the feature matrix from each color channel or each frame and collect them
into columns of the feature matrix. In general, these columns of the result-
ing feature matrix will be correlated and can be treated directly using CCA
approach.

5For instance, this threshold can be set to achieve a 99% confidence level
computed from an estimate of the empirical pdf of the test statistic.

6The current implementation of the algorithm is not robust to large ro-
tations and scale changes; hence we selected a subset of the MIT+CMU
database on which to illustrate the results.
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detection rate with a handful of false positives. However, for the sake
of completeness, we also show the Receiver Operating Characteristic
(ROC) curve. A ROC curve representing the performance of our
system on this test set is shown in Fig. 5. We also tested our system
to detect objects such as airplane, motorbike, car, and ferry on the
Caltech 101 dataset [11]. Fig. 7 shows that detection results using
one “template” motorbike. The performance of our system appears
to be competitive with the method [6] and methods cited therein.
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Fig. 5. Receiver Operating Characteristic (ROC) curve on the
MIT+CMU test set.

Fig. 6. Detection results on the MIT-CMU dataset[10]. Only
one template image is used for matching for all cases.

4. CONCLUSION

In this paper, we have proposed a novel and powerful statistical ob-
ject detection framework. Our main contribution consists of a gen-
eral statistical object detection framework based on local steering
kernels, and calculation of test statistics derived from canonical cor-
relation analysis. The proposed framework is general enough as to
be extendable to 3−D for such applications as action recognition,
suspicious behavior detection etc. using analogous 3−D local steer-
ing kernel [7]. Improvement of the computational complexity of the
proposed method is also a direction of future research worth explor-
ing.

Fig. 7. Detection results on the Caltech 101 object database
[11].
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