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ABSTRACT

The Rayleigh criterion is generally regarded as a funda-
mental limit and due to its practical accuracy in predicting
the performance of optical imaging systems, it has unfortu-
nately become accepted as a de-facto physical law. In this
work, we will show that this limit is simply a very good rule
of thumb, which under proper conditions typically related
to the signal-to-noise (SNR) of the sensor, can be overcome.
While we will not be discussing specific methodology (e.g.
[1]) for improving resolution in this paper, it is the aim of
this work to explore how far beyond the Rayleigh limit one
can go, and to identify the theoretical limits to such resolu-
tion enhancement.

1. INTRODUCTION

For the sake of clarity and focus in the initial presentation,
we carry out the analysis in one dimension, which we will
later extend to 2 dimensions. To begin, let us assume that
the signal of interest is the sum of two impulse functions
separated by a small distance d as follows:

r(x; d) = δ(x − d

2
) + δ(x +

d

2
) (1)

When this signal is measured through an incoherent opti-
cal imaging system, the measured signal is the incoherent
sum of two sinc functions, that represent the effect of the
diffraction. As a result, the measured signal will be

f(x; d) = sinc2(x−d

2
)+sinc2(x+

d

2
)+w(x) = s(x; d)+w(x),

(2)
where w(x) is assumed to be a zero-mean Gaussian white
noise process1 with variance σ2, and we recall that

sinc(x) =
sin(πx)

πx
.
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1Clearly for a photon-limited imaging system this assumption is inap-
propriate and our analysis will eventually take this into account

According to the Rayleigh criterion of resolution [2], the
two point sources defined above are “barely resolved” when
the center of one of the sinc function falls exactly on the
first zero of the second sinc function. Accordingly, given the
above definition, the Rayleigh limit to resolution is given by
d = 1. That is, sources that are closer together than d = 1
are presumed to be not resolvable.

2. A STATISTICAL ANALYSIS OF RESOLUTION

The question of whether one or two peaks are present in
the measured signal f(x; d) can be formulated in statistical
terms. Specifically, for the proposed model, the equivalent
question is whether the parameter d is equal to zero or not. If
d = 0, then we only have one signal, and if d > 1, then there
are two “well-resolved” peaks according to Rayleigh’s rule.
So the problem of interest revolves around the values of d
in the range 0 ≤ d < 1. To be more precise, let us define
two hypotheses, which will form the basis of our work for
understanding resolution in the statistical sense. Namely,
let H0 denote the null hypothesis that d = 0 (i.e. one peak
present) and let H1 denote the alternate hypothesis that d >
0 (i.e. two peaks present).

As we have indicated, since the range of interest are the
values of d < 1, these representing resolution beyond the
classical Rayleigh limit (d < 1), it is appropriate for the
purposes of the following analysis to consider linearizing
the model of the signal around d = 0. Specifically, consider
the Taylor series expansion of s(x; d) around d = 0, for any
fixed x. (Note that this is a linearization about the parameter
d and not the variable x.) We have

s(x; d) = g(x) + d2h(x) + O(d3) ≈ g(x) + d2h(x) (3)

where terms of order d3 and higher (which are quite small
for 0 < d < 1) can be ignored and where

g(x) = 2
sin2(π x)

π2x2
(4)

h(x) =

(
2π2x2 − 3

)
cos(2πx) − 4πx sin(2πx) + 3

4π2x4
(5)
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It is interesting to note that due to the symmetry in the posi-
tion of the two sinc functions with respect to the origin, no
linear terms in d appear in the above approximation. This
simplifies the hypothesis testing problem, and in what fol-
lows we will denote d2 = D. With this definition, the hy-
pothesis testing problem can now be rephrased as follows:

Given samples xk (k = 1, · · · , N ) of the function f(xk),
decide between the two hypotheses:

H0 : f(xk) = g(xk) + w(xk),
H1 : f(xk) = g(xk) + D h(xk) + w(xk),

where the parameter D is unknown.
Before continuing with the development of a detector

structure and studying its performance, let us make a defi-
nition of signal to noise. In practice, with measurements of
the values f(xk), we can make the definition of measured
SNR per sample as

SNRm =
1

Nσ2

N∑
k=1

f2(xk) ≈ 1
Nσ2

N∑
k=1

(g(xk) + D h(xk))2

(6)
On the other hand, since the function g(xk) is indepen-

dent of the parameter D, we may further simplify the for-
mulation of the detection problem by defining

y(xk) = f(xk) − g(xk), (7)

which yields

H0 : y(xk) = w(xk),
H1 : y(xk) = D h(xk) + w(xk),

For this simpler model, the natural definition of SNR per
sample is given by

SNRs =
1

Nσ2

N∑
k=1

D2 h2(xk) (8)

It is easily seen that

SNRm =
1

Nσ2

N∑
k=1

g2(xk)+
2D

Nσ2

N∑
k=1

g(xk)h(xk)+SNRs.

(9)
In what follows, we will deal mostly with the simplified
model but we mention the relationship between the two dif-
ferent definitions of SNR because it will be convenient, and
more intuitive, later to plot the results in terms of the mea-
sured SNRm instead of SNRs.

Returning to the detection problem posed in terms of
y(xk), we observe that this is a problem of detecting a de-
terministic signal with an unknown parameter. With an ex-
plicit prior knowledge as to the likely values of D (i.e. a
prior model), we can take a Bayesian approach to this de-
tection problem. However, in general, there is no such prior
information available. Therefore, we resort to the method
of maximum likelihood (ML) for the estimation of the pa-
rameter D, and use this estimated value to form the stan-
dard Neyman-Pearson detector. This widely-used approach
is known as Generalized Likelihood Ratio Testing or GLRT.

It is readily shown that the ML estimate for the parame-
ter D is given by

D̂ =
∑N

k=1 y(xk)h(xk)∑N
k=1 h2(xk)

= (hT h)−1hT y (10)

where

y = [y(x1), · · · , y(xN )]T

h = [h(x1), · · · , h(xN )]T

The test-statistic resulting from the Neyman-Pearson likeli-
hood ratio, with D = D̂ is given by [3]

T(y) =
D̂2

σ2
hT h. (11)

We note that the expression for the test-statistic is essen-
tially and energy detector with the condition that the value
of D is in fact estimated from the data itself. For any given
data set y, we decide H1 if the statistic exceeds a specified
threshold:

T(y) > γ. (12)

The choice of γ is motivated by the level of tolerable false
alarm Pf (or false-positive) in a given problem. Typically,
Pf is kept very low. In any event, the standard Neyman-
Pearson detector is designed to produce the largest detection
rate (Pd) for a specified Pf .

The detection and false-alarm rates for this detector are
related as

Pd = Q(Q−1(Pf ) −
√

λ) (13)

= Q(Q−1(Pf ) −
√

N SNRs) (14)

where the parameter λ is:

λ =
D2

σ2
hT h =

1
σ2

N∑
k=1

D2 h2(xk) = N SNRs, (15)
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and where Q is the right-tail probability function for a stan-
dard Gaussian random variable (mean zeros, and unit vari-
ance.); and Q−1 is the inverse of this function. Recalling
from (9) that

SNRs = SNRm − 1
Nσ2

gT g − 2D

Nσ2
hT g (16)

with
g = [g(x1), · · · , g(xN )]T .

we observe that the detection rate can be written a func-
tion of the pre-specified false alarm rate, and the measured
SNR per sample. It is worth noting here that the detector
structure, due to our knowledge of the sign of the unknown
distance parameter, is in fact a Uniformly Most Powerful
(UMP) detector in the sense that it produces the highest de-
tection probability for all values of the unknown parameter,
and for a given false-alarm rate.

A particularly intriguing and useful relationship we have
studied is the behavior of the smallest peak separation d,
which can be detected with very high probability (say 0.99),
and very low false alarm rate (say 10−6) at a given SNRm.
We have examined this question by setting the values of
Pd = 0.99 and Pf = 10−6 in (13), and studying the result-
ing implicit curve which relates the variables SNRm and d.
Specifically, Figure 1 shows the SNRm in units of decibles
against the minimum detectable d at detection probability
of at least 0.99 and at false-alarm rate of 10−6. The samples
xk for this case were acquired over the range [−10, 10] at
just above the Nyquist rate. In this plot a fit to the curve is
also shown. This very good fit has the following functional
form:

dmin = αSNR−1/4
m , (17)

or equivalently,

d2
min = α2 1√

SNRm

, (18)

where for the specific case shown in Figure 1, a best fit in
the least-squares sense yielded the value of α = 1.27. The
relation (17) is a neat and rather intuitive one which can
be used to, for instance, understand the required SNR per
sample to achieve a particular resolution level of interest
below the diffraction limit.

Figure 2 shows the same curve for different sampling
rates. Namely, curves are shown for Nyquist rate, twice
Nyquist, four times Nyquist, and eight times Nyquist. The
minimum detectable d becomes smaller as the number of
samples increases, but it does not do so at a very fast rate.
In fact, upon closer examination, we find that the exponent
of SNRm in relation (17) does not change with increasing
number of samples, but instead, as the number of samples
N is increased, the coefficient α is reduced accordingly. We
will quantify the rate of decrease of α with N in our ongoing
work.

3. SUMMARY

The main conclusion that can be drawn from the above anal-
ysis is that in deciding the minimum resolvable separation
between two sources from sampled data, two main factors
enter into play; first, and foremost, is the SNR per sample
of the imaging array. We have shown that, at least in the 1-
D example here, the minimum detectable d behaves as the
inverse of the SNR figure raised to the fractional power of
1/4, indicating that with sufficiently high SNR, resolution
beyond the diffraction limit is indeed possible. A second pa-
rameter of importance is the sampling rate, the increase of
which can also improve performance. Though several ear-
lier papers (e.g. [4] and [5]) carried out somewhat similar
calculations, none have addressed nor posed the question of
resolution in the particular context of the minimum resolv-
able distance and in particular the GLRT framework.

While the results we have obtained are intuitively pleas-
ing, significant work remains to be done. For instance, we
are presently carrying out the analysis for the scenario where
the two sources are of unequal amplitude. Also, it would be
interesting to further study whether the particular position of
the samples (instead of, or in addition to, simply increasing
the number of samples) would improve performance. We
suspect this to be the case. We are also studying statistical
lower bounds on the estimation error covariance for the am-
plitude and separation parameters. Finally, in the continua-
tion of our work, we plan to extend these results to multiple
dimensions.
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Fig. 1. Minimum detectable distance d between two point
sources of equal amplitude as a function of the measured
SNR (in units of dB) per sample. Note that d = 1 corre-
sponds to the diffraction limit. It is assumed that the prob-
ability of detection is Pd = 0.99 and probability of false
alarm is Pf = 10−6. The fit shows remarkable accuracy.
Sampling is just above Nyquist rate.
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Fig. 2. Minimum detectable d at Pd = 0.99 and Pf = 10−6

as a function of measured SNR (in units of dB) per sample.
Different curves correspond to various number of samples
in the image.
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