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Abstract— Multiframe image reconstruction produces images
beyond the native resolution of a digital image sensor by way
of accurate sub-pixel registration of aliased images. We present
a novel multiframe registration approach for the purpose of
enhancing resolution of digital mammogram images. We demon-
strate the ability to improve resolution while maintaining normal
radiation dosages.

I. INTRODUCTION

While relatively new, digital mammography is rapidly re-
placing film-based mammography for the screening and diag-
nosis of early carcinomas in women. Solid-state detectors have
demonstrated improved performance in terms of specificity
and sensitivity over film-based imaging for certain groups of
women such as those with dense breast tissue, women under
the age of fifty, and pre-menopausal women [1]. Unlike film-
based mammography, digital mammography provides the op-
portunity to apply sophisticated digital processing techniques
to aid in screening.

The goal of designing digital mammography systems is
to expose the patient to the minimum amount of radiation
required to accomplish the screening task. Digital mammog-
raphy systems face the same design tradeoff between image
resolution, signal to noise ratio (SNR), and illumination or
radiation strength as those found in any digital imaging
system. Shrinking the pixel dimension at the detector increases
sampling resolution at the expense of dynamic range and SNR.
While the SNR and dynamic range may be recovered through
multiple images, the increase in the total radiation exposure is
often unacceptable. Alternatively, using large detector pixels
improves both the dynamic range and the SNR of the system
at the obvious expense of resolution. This approach is often
avoided due to the resolution required to maintain the sensi-
tivity of the mammography screen.

We propose fusing multiple low-dosage images, each con-
taining spatial shifts, to produce a single high quality image at
a resolution greater than the sampling rate of the detector. Such
processing, commonly called super-resolution, has received
much attention in recent years in the image processing com-
munity. We refer the interested reader to [2], [3] for a broad
review of recent algorithmic development in this area (note that
improving the resolution of X-Ray images is also discussed in
[4], where the presented super-resolved X-Ray images in that
paper were provided by the authors of this paper). Perhaps the

most fundamental component to multiframe super-resolution
is the accurate registration of aliased images.

Digital X-ray imaging systems often contain aliasing arti-
facts. It is these aliasing artifacts which enable multi-frame
super-resolution processing to extract information beyond the
sampling rate of the detector. Multiple captured images with
phase variations allow super-resolution algorithms to unwrap
these aliasing artifacts, reconstructing the high resolution im-
age provided that accurate estimates of the subpixel motion
can be obtained. Unfortunately, motion estimation of aliased
images is an ill-posed problem and specially difficult in
the low-SNR cases [5]. Inaccurate motion estimation is one
of the main reasons why many super-resolution algorithms,
which produce excellent results when applied to simulated
data, fail to produce super-resolved images when applied
to real image sequences. To overcome this problem, in our
previous publication [6], we treated the motion estimation
errors as outliers and relied on robust statistics to remove
such artifacts from the final super-resolved image. While
the noted robust technique has proven to be successful for
variety of applications, in some medical applications it might
not provide optimal solution. Of course, if accurate subpixel
motion estimation is available, less information is discarded as
outliers. As proven in [5], to achieve accurate subpixel motion
estimation for aliased images, instead of common pairwise
image registration schemes, multi-frame schemes should be
exploited [7], [8].

In this paper, we describe a statistically optimal and numer-
ically efficient technique for registering sets of aliased low
dosage X-ray images. The results show improved resolution
beyond the resolution of the detector offering system designers
new tradeoffs in system design. In Sect. II, we describe the
challenges associated with multiframe reconstruction of digital
mammogram images. We present a novel two-stage algorithm
for jointly registering and reconstructing a set of aliased,
low-resolution images. Sections II-A and II-B describe the
multiframe block matching stage and the multiframe subpixel
registration and reconstruction stage, respectively. Section III
presents the experimental results and concluding remarks are
given in Section IV.



II. MULTIFRAME REGISTRATION AND RECONSTRUCTION

Application of standard super-resolution processing to the
problem of digital mammography faces several significant
challenges. For example, perfect immobilization of both the
patient and the imaging system is nearly impossible during
multiple acquisitions. As a results, the relative motion between
the captured images rarely follows the simple translational mo-
tion model commonly assumed by super-resolution algorithms.
When departing from the translational motion model, super-
resolution processing becomes significantly more computa-
tionally demanding. Adding to the computational complexity
is the size of the capture images. Our experimental system
produces 10 megapixel 16 bit images (20 megabytes per im-
age). Combining sets of such large images using floating point
computations is numerically infeasible for typical desktop
processors due to the memory limitations. Finally, the captured
data has extremely low SNR. To minimize total exposure,
we must use very low dosages of illuminating radiation. For
example, Fig. 1 shows the computed SNR1 as a function of
exposure dosage (mAs) for a our phantom breast object. Our
multiframe imaging approach is targeting very low exposure
levels of around 10 mAs corresponding to roughly 3-4 db.
Standard registration algorithms perform poorly at such low
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Fig. 1. The graph shows experimentally observed signal to noise ratios (SNR)
for different exposure levels (mAs). The SNR was computed using images of
a phantom breast resolution chart.

SNR limiting the ability to perform enhance the resolution.
We address the computational challenge by applying a novel

super-resolution approach in a tile-based fashion. When using
tile-based processing, the relative shifts between data sets is
well approximated by the translational (or rotational) motion
model. Furthermore, applying the algorithm to small tiles
reduces the memory requirements of the multiframe recon-
struction algorithm. Finally, the small tiles allow us to perform
more sophisticated multiframe registration algorithms which
jointly estimate the set of unknown registration parameters.

In our forward model, we assume that the observed images
yk are composed of translated B ×B pixel blocks or tiles of

1In this work, the SNR was computed numerically as SNR= 20log10
s
n

,
where s is half the pixel value between the black and white signal regions
and n is the noise standard deviation in flat regions.

the downsampled high resolution image x. We represent this
as

yk =
∑

t

Rt(ok)DS(mk,t)zt + ek (1)

where the vector lexicographically ordered yk represents
NL ×NL samples of the observed image undersampled with
respect to the high resolution image z by a factor of d in
each dimension. The vector zt represents samples of the tth
unknown dB×dB high resolution image tile lexicographically
ordered as a (dB)2× 1 vector (zt is the blurred version of xt

[6] and the deblurring details are omitted in this paper due
to space limitations). The warping operator S(mk,t) of size
(dB)2× (dB)2 represents the sub-pixel spatial shifts between
similar tiles in the captured images. The spatial shifting is
described by the vector mk,t for the kth frame. In our model,
we assume that these spatial shifts are continuous values in
the range of [−d, d]. This corresponds to the range of sub-
pixel motions in the captured images. The downsampling
operator D of size B2 × (dB)2 captures the undersampling
of the detector. We assume that the captured images are
undersampled by an integer factor d. The NL × B2 matrix
Rt(ok) represents the super-pixel shift of the downsampled
block in the captured image coordinates. The block is shifted
by o pixels. Finally, ek of size N2

L × 1 represents the noise
inherent in the analog-to-digital conversion. For our purposes,
we assume this noise to be uncorrelated zero-mean noise with
standard deviation σ.

The general problem of super-resolution is to combine
K + 1 captured low-resolution images and estimate the high
resolution image z. To accomplish this task, the algorithm
must also estimated the collection of unknown motion vectors.
Without loss of generality, we assume that the initial image
y0 defines the coordinate system of the high resolution image
and hence we only have to estimate the unknown motion
parameters for K images for a given set of K + 1 low
resolution frames. To simplify the presentation, we use an
underline notation to represent the larger set of unknown
motion vectors o = [o1, . . . ,oK ]T and m = [m1, . . . ,mK ]T .

The algorithm follows a two-stage process to reconstruct
the high resolution image z. First, the algorithm performs
multiframe block matching to find the set of super-pixel tile
shifts Rt(o). The multiframe nature of the block matching
reduces the matching artifacts common to pair-wise matching
applied to low SNR data. Second, using the estimates R̂t(o),
we jointly register and reconstruct a high resolution blurry
image by estimating the set of subpixel shifts mt and the
image tile zt. This process is repeated for every tile to fully
reconstruct the high resolution image z.

A. Fast Multiscale Multiframe Block Matching

The first stage of the super-resolution algorithm involves
multiframe block matching to estimate the set of unknown
super-pixels shifts. The goal of this first processing stage is
to produce a set of captured image tiles which contain only
subpixel shifts. We achieve this by minimizing a cost function



of the form

J1(pt, ot) =
∑

k

‖RT
t (ok)yk − pt‖2. (2)

In this formulation, the vector pt represents the unknown alias-
free “reference” downsampled version of the image tile zt. We
define pt as

pt = DHzt, (3)

where H represents an idealized low-pass filter to remove any
aliasing artifacts associated with the downsampling operation.
This multiframe estimation formulation is a joint estimation
of both the alias-free downsampled tile and the super-pixel
registration parameter. Since the first frame y0 defines the
coordinate system, we are essentially looking for blocks in
the set of images {yk} which best fit an estimate of the
tile pt. Since the captured images yt are not free of aliasing
artifacts, we implicitly treat the aliasing artifacts as noise. This
assumption holds in practice because the strength of the alias-
free signal is much stronger than that of the aliased content
in digital mammogram images.

The cost functions of Eq. 2 falls into the class of estimation
functionals known as separable nonlinear least squares (NLS)
problems [9]. Such problems may be expressed as nonlinear
search problems in a reduced space. For example, if we were
to know the super-pixel motions ot exactly, estimation of pt

would be reduced to a simple linear least squares (LS) problem
where the estimate would be given by

p̂t(ot) =
1

K + 1

(∑

k

RT
t (ok)yk

)
. (4)

The vector RT
t (ok)yk represents the cropped portion of the

image yk matching the unknown image tile region pt. Plug-
ging this estimate back in to the original cost function, we
obtain a cost function of only the unknown super-pixel motions

J1(ot) =
∑

k

‖RT
t (ok)yk − p̂t(Rt(o))‖2. (5)

In this way, we have reduced the problem of joint registration
and reconstruction to that of a registration problem with
implicit reconstruction.

In practice, we impose a limit on the space of the pixel
shifts based on geometric consideration of the imaging system.
We assume the space of block shifts is constrained to a
[−W,W ] search window around the reference frame image
block RT

t (0)y0. This reduced search space significantly re-
duces the computational complexity of the multiframe block
matching algorithm.

It is interesting to note that the traditional approach of
estimating motions in a pairwise fashion is a simple approxi-
mation of this function where the estimate of the reference tile
is given by p̂t = RT

t (0)y0. Inserting this estimate into Eq. 2
produces a sum of K independent sub-optimization problems
corresponding to the traditional pair-wise block matching
approach. To give an idea of the performance degradation,
we perform a simple Monte Carlo experiment using three

one-dimensional signals. The three signals are all low-pass
versions of a random signal having different low-pass filter
cutoff frequencies controlling the amount of texture in the
signal. The graph of Fig. 2 compares the registration error
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Fig. 2. The graph compares the average registration error (RMSE pixels)
using three frames (two unknown super-pixel shifts) versus SNR, where
the solid and dashed lines represent the pairwise and multiframe errors,
respectively. We experimented on three random signals having increasing
amounts of signal texture.

in estimating o by way of multiframe (5) or the pair-wise
block matching. The simulation uses 500 samples for each
data point. We use K + 1 = 3 frames for three different
random signals with varied amount of signal texture. The
performance difference demonstrates the loss incurred while
estimating in a pairwise fashion as opposed to the optimal
multiframe approach. This performance gap increases in case
we use more frames. As we shall see experimentally, the
inferior performance of pairwise approximation is significant
for the digital mammography images.

B. Iterative Multiframe Sub-pixel Registration

After finding estimates of the super-pixel shifts R̂T
t (o), we

address the problem of multiframe sub-pixel registration and
reconstruction algorithm. We begin by using the super-pixel
blocks estimates to crop the input images

ỹk,t = RT
t (ok)yk. (6)

At this point, we (ideally) have a set of image tiles {ỹk,t}
containing only sub-pixel shifts related to the high resolution
image tile according to

ỹk,t = DS(mk,t)zt + et (7)

The maximum likelihood (ML) estimate of both the set of
sub-pixel shifts mt and the unknown high resolution image
tile zt is computed as the minimum of

J2ML
(zt, mt) =

∑

k

‖ỹk,t −DS(mk,t)zt‖2. (8)

If we have some prior information about the unknown high
resolution image z, we may incorporate this into the cost



function to regularize the estimation problem. For instance,
the unknown signal may be a Gaussian random variable with
a covariance matrix Cz. Assuming for the time being that
the signal is zero-mean, the Maximum a-posteriori (MAP)
estimate of the high resolution image and motion parameters
is the minimum of the cost function

J2MAP (zt, mt) =
∑

k

‖ỹk,t −DS(mk,t)zt‖2 +
σ2

λ
zT

t C−1
zt

zt.

(9)
Since the cost functions of Eq. 8 and Eq. 9 are again

separable NLS problems, we can perform a similar reduction
as that in Sect. II-A. We focus on the MAP estimate henceforth
where the estimate of the unknown image tile is

ẑt(m + t) = Q−1(mt)g(mt) (10)

where

Q(mt) =
∑

k

ST (mk,t)DT DS(mk,t) +
σ2

λ
C−1

zt

g(mt) =
∑

k

ST (mk,t)DT ỹk,t

Plugging this form back into Eq. 8 we obtain a variable
projections formulation [10]

J2(mt) = gT (mt)Q
−1(mt)g(mt) (11)

which must be maximized over the space of mt. At this point,
we apply the numerical tricks originally described in [11]
to speed up the optimization of the nonlinear cost function.
We refer the reader to [11] for more information about
this process. After running our optimization routine over the
simplified cost function, we use Eq. 10 to obtain an estimate
of the high resolution image tile.

III. EXPERIMENT

Our experimental imaging system is based on a modified
Mammomat NovationDR digital mammography system. The
system uses a stationary selenium-based detector having 85
µm pixels. Pixels with this size correspond to a Nyquist
sampling rate of 5.6 line pairs per millimeter (lp/mm). We
use a CIRS Model 011A breast phantom (CIRS Inc., Norfolk
VA) to test out imaging algorithm. We introduce shifts in the
image by two methods. First, we allow the X-ray tube to rotate
by ± 1 degree. Second, we manually move the breast phantom
to introduce motion into the system. The manual motion in the
range of a few mm is completely uncontrolled. We acquire 15
frames at the low dosage level of 11.3 mAs at 28 kVp tube
voltage. As a point of reference, we also acquire a single frame
at the normal dosage of 226 mAs at 28 kVp tube voltage. We
focus on the results of the test resolution chart to explore the
contrast performance of the multiframe imaging system.

We apply our algorithm to 100 × 100 pixel tiles in the
captured image to estimate 400 × 400 pixel high resolution
images (enhancement d = 4). Figure 3 compares the perfor-
mance of the pair-wise matching and sub-pixel registration
with the multiframe matching and registration approaches.

The top-left image shows the reconstructed (factor d = 4)
image where the both the super-pixel shifts ot and the sub-
pixel shifts mt were estimated in a pairwise fashion. The
image contains significant artifacts due to the errors in the
super-pixel registration estimates. These errors occur because
the pair-wise block matching is confused due to the periodic
nature of the resolution chart and the low SNR. The top-right
image shows the reconstructed image where the super-pixel
shifts ot were estimated using the multiframe approach and
the sub-pixel shifts mt were estimated in a pairwise fashion.
The accurate multiframe block matching eliminates the coarse
artifacts, but the image contains small sub-pixel motion error
artifacts. The bottom-left image shows the reconstructed image
when both the super-pixel and sub-pixel motions ot and mt

were estimated using multiframe approaches. The images on
the bottom-right show cropped portions of the resolution test
chart. The multiframe sub-pixel registration algorithm better
aligns the resolution bars.

pairwise block matching 
pairwise registration

multiframe block matching 
pairwise registration

multiframe block matching 
multiframe registration

Fig. 3. The top-left image shows the reconstructed (factor d = 4) image
where the both the super-pixel shifts ot and the sub-pixel shifts mt were
estimated in a pairwise fashion, containing artifacts due to the errors in the
super-pixel registration estimates. The top-right image shows the reconstructed
image where the super-pixel shifts ot were estimated using the multiframe
approach and the sub-pixel shifts mt were estimated in a pairwise fashion.
The accurate multiframe block matching eliminates the coarse artifacts, but
the image contains small sub-pixel motion error artifacts. The bottom-left
image shows the reconstructed image when both the super-pixel and sub-pixel
motions ot and mt were estimated using multiframe approaches. The images
on the bottom-right show cropped portions of the resolution test chart. The
multiframe sub-pixel registration algorithm better aligns the resolution bars.

Figure 4 gives a visual example of the performance of
the multiframe reconstruction algorithm in terms of resolution
enhancement. The image on the top left (a) shows a single
low resolution image tile for an input low dosage (11.3 mAs)
image. The image on the top right (b) shows an image taken at
normal dosage (226 mAs) linearly interpolated by a factor of
4×. At the improved SNR, we observe the aliasing artifacts
present at the 9 and 10 lp/mm resolution bars. The bottom
left image (c) shows the resulting estimate p̂t after motion



compensating and averaging the 15 frames. Interestingly, we
observe that the image appears to have better SNR than
the single normal dosage image even though the cumulative
dosage of the multiframe image is only 169.5 mAs. The image
appears slightly blurry, however, due to averaging over the sub-
pixel shifts. This suggests that the multiframe imaging might
also provide an interesting contrast vs SNR tradeoff variable
as opposed to the standard dosage control. The bottom left
image (d) shows the estimate of the high resolution tile ẑt after
applying the full multiframe registration and reconstruction
algorithm. The aliasing artifacts are eliminated and contrast is
restored above the Nyquist rate.

(d)(c)

(b)(a)

Fig. 4. (a) low-resolution low-dosage image y0,t (3 db). (b) Interpolated
normal dosage image (12.4 db). (c) Interpolated average of 15 super-pixel
registered frames p̂ (13 db). (d) Multiframe reconstructed image ẑt (11.2
db).

To get an idea of the effective modulation transfer function
(MTF) of the multiframe system, we plot slices through the
full resolution test chart region in Fig. 5. The top curve shows
the slice through an interpolated normal dosage image tile.
The middle curve shows the slice through the multiframe
average image p̂. In both of these cases, we observe the
apparent aliasing beyond the Nyquist sampling frequency of
5.6 lp/mm. The bottom graph shows a slice through the
multiframe resolution enhanced image ẑ. The system exhibits
alias-free sampling out to more than 2× the native sampling
limit of the detector. The contrast drops low enough to fall
into the noise around 11 or 12 lp/mm

IV. CONCLUSION

In this paper, we have proposed a novel method for ac-
quiring high resolution X-ray images by combining multiple
lower resolution images. The proposed multiframe registration
algorithm demonstrates superior performance over standard
pair-wise registration techniques in this low SNR regime.
The experimental results confirm that multiframe imaging
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Fig. 5. The three curves show slices through the horizontal resolution bar
charts. The sampling rate of the system corresponds to around 5.6 lp/mm.
The top curve shows a slice through the normal dosage image interpolated
by a factor of four. We clearly observe evidence of aliasing for the spatial
frequencies above this sample rate. This becomes more apparent as we look
at the middle slice through the interpolated motion compensated average. In
this slice the contrast above the sampling rate is destroyed by averaging out
the aliasing artifacts. The bottom slice shows the slice through the multiframe
reconstruction. The slice clearly shows contrast preservation beyond 2× the
sample rate of the system.

can provide a new tradeoff in the SNR versus resolution
tradeoff for digital mammography. In the future, we explore
the fundamental tradeoffs between radiation exposure, number
of frames, and reconstruction performance.
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