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Abstract

This paper addresses the problem of generating a super-
resolution (SR) image from a single low-resolution input
image. We approach this problem from the perspective of
compressed sensing.  The low-resolution image is viewed
as downsampled version of a high-resolution image, whose
patches are assumed to have a sparse representation with
respect to an over-complete dictionary of prototype signal-
atoms. The principle of compressed sensing ensures that
under mild conditions, the sparse representation can be
correctly recovered from the downsampled signal. e will
demonstrate the effectiveness of sparsity as a prior for reg-
ularizing the otherwise ill-posed super-resolution problem.
We further show that a small set of randomly chosen raw
patches from training images of similar statistical natureto
the input image generally serve asa good dictionary, in the
sense that the computed representation is sparse and the
recovered high-resolution image is competitive or even su-
perior in quality to images produced by other SR methods.

1. Introduction

under generic image priors such as Huber MRF (Markov
Random Field) and Bilateral Total Variation, 11, 25].

However, the performance of these reconstruction-based
super-resolution algorithms degrades rapidly if the mag-
nification factor is large or if there are not enough low-
resolution images to constrain the solution, as in the ex-
treme case of only a single low-resolution input image [
Another class of super-resolution methods that can over-
come this difficulty are learning based approaches, which
use a learned co-occurrence prior to predict the correspon
dence between low-resolution and high-resolution image
patches 2, 26, 16, 5, 20].

In [17], the authors propose an example-based learn-
ing strategy that applies to generic images where the low-
resolution to high-resolution prediction is learned via a
Markov Random Field (MRF) solved by belief propaga-
tion. [23] extends this approach by using the Primal Sketch
priors to enhance blurred edges, ridges and corners. Nev-
ertheless, the above methods typically require enormous
databases of millions of high-resolution and low-resoluti
patch pairs to make the databases expressive enough, In [
the authors adopt the philosophy of LLE] from manifold
learning, assuming similarity between the two manifolds in
the high-resolution patch space and the low-resolutioctpat

Conventional approaches to generating a Super_space. Their algorithm maps the local geometry of the low-
resolution (SR) image require multiple low-resolution resolution patch space to the high-resolution patch space,
images of the same scene, typically aligned with sub-pixel 9enerating high-resolution patch as a linear combinatfon o
accuracy. The SR task is cast as the inverse problem ofmeighbors. Using this strategy, more patch patterns can be
recovering the original high-resolution image by fusing represented using a smaller training database. However, us
the low-resolution images, based on assumptions oring a fixed number K neighbors for reconstruction often re-

prior knowledge about the generation model from the sultsin blurring effects, due to over- or under-fitting.

high-resolution image to the low-resolution images. The

In this paper, we focus on the problem of recovering

basic reconstruction constraint is that applying the imagethe super-resolution version of a given low-resolution im-

formation model to the recovered image should produceage. Although our method can be readily extended to han-
the same low-resolution images. However, because muchdle multiple input images, we mostly deal with a single in-

information is lost in the high-to-low generation process, put image. Like the aforementioned learning-based meth-
the reconstruction problem is severely underdetermined,ods, we will rely on patches from example images. Our
and the solution is not unique. Various methods have beenmethod does not require any learning on the high-resolution
proposed to further regularize the problem. For instance,patches, instead working directly with thew-resolution

one can choose a MAP (maximum a-posteriori) solution training patches or their features. Our approach is mati/at



directly used to recover the corresponding high-resatutio
patch fromDj,. We obtain a locally consistent solution by
allowing patches to overlap and demanding that the recon-
structed high-resolution patches agree on the overlapped a
eas. Finally, we apply global optimization to eliminate the
reconstruction errors in the recovered high-resolution im
age from local sparse representation, suppressing naise an
= 9 ' . = 2 & ensuring consistency with the low-resolution input.
Figure 1. Reconstruction of a raccoon face with magnificeféc- Compared _to the afo_remennoned learning-based meth-
tor 2. Left: result by our method. Right: the original imagéere ods, our algorithm requires a much Smallgr database. The
is little noticeable difference. online recovery of the sparse representation uses the low-
resolution dictionary only — the high-resolution dictiopa
is used only to calculate the final high-resolution image.
The computation, mainly based on linear programming, is
reasonably efficient and scalable. In addition, the contpute
sparse representation adaptively selects the most relevan
patches in the dictionary to best represent each patch of the
given low-resolution image. This leads to superior perfor-
mance, both qualitatively and quantitatively, compared to
methods §] that use a fixed number of nearest neighbors,
generating sharper edges and clearer textures.

The remainder of this paper is organized as follows. Sec-
tion 2 details our formulation and solution to the image
super-resolution problem based on sparse representation.
y=Lx = LDoy, 1) Section3, we discuss how to prepare a dictionary from sam-
ple images and what features to use. Various experimental
results in Sectiod demonstrate the efficacy of sparsity as a
prior for image super-resolution.

by recent results in sparse signal representation, whieh en
sure that linear relationships among high-resolutionalgn
can be precisely recovered from their low-dimensional pro-
jections 3, 9].

To be more precise, ldD € R"*X be an overcomplete
dictionary of K prototype signal-atoms, and suppose a sig-
nalxz € R™ can be represented as a sparse linear combi-
nation of these atoms. That is, the signal veataran be
written asz = Doy whereay € R¥ is a vector with very
few (« K) nonzero entries. In practice, we might observe
only a small set of measurememt®f x:

where L € R¥*™ with & < n. In the super-resolution
context,z is a high-resolution image (patch), whitg is
its low-resolution version (or features extracted from lif)
the dictionaryD is overcomplete, the equatian= Da is . .
underdetermined for the unknown coefficientsThe equa- 2. Super-resolution from Sparsity

tiony = LDacis even more dramatically underdetermined.  The single-image super-resolution problem asks: given a
Nevertheless, under mild Conditions, the sparsest solutio low-resolution imagy, recover a higher-reso]ution image
ay to this equation is unique. Furthermore Iif satisfies X of the same scene. The fundamental constraint is that the
an appropriate near-isometry condition, then for a wide va- recoveredX should be consistent with the inpi¥;

riety of matricesL, any sufficienty sparse linear represen- Reconstruction constraint. The observed low-resolution

tation of a high-resolution imagein terms of thel) (_:an.be imageY is a blurred and downsampled version of the solu-
recovered (almost) perfectly from the low-resolution iraag tion X

[9, 21]. Figurel shows an example that demonstrates the Y =DHX (2)

capabilities of our method derived from this principle. Bve  Here, 17 represents a blurring filter, ant the downsam-

for this complicated texture, sparse representation BSOV  pjing operator.

a visually appealing reconstruction of the original signal Super-resolution remains extremely ill-posed, since for
Recently sparse representatiqn has been applie_d tomany given low-resolution inpufY’, infinitely many high-

other related inverse problems in image processing, suchesolution imagesx satisfy the above reconstruction con-

as compression, denoising(], and restoration’7], often straint. We regularize the problem via the following prior
improving on the state-of-the-art. For example In][ the on small patches of X:

authors use the K-SVD algorithmi][to learn an overcom- Sparse representation prior. The patchess of the high-
plete dictionary from natural image patches and success- €p prior. P 9

. . ., resolution imageX can be represented as a sparse linear

fully apply it to the image denoising problem. In our set- L - ) .
. . . __combination in a dictionaryD;, of high-resolution patches
ting, we do not directly compute the sparse representation L .

; . : : sampled from training imageés:
of the high-resolution patch. Instead, we will work with two .
coupled dictionariesD;, for high-resolution patches, and x ~ Dpa forsomea € R™ with [aflo < K. (3)
D, = LDy, for |0W‘reSO|Ult|0n patch_es. The Sparse repre-  isimilar mechanisms — sparse coding with an overcompletédary
sentation of a low-resolution patch in termsBf will be — are also believed to be employed by the human visual systém [




To address the super-resolution problem using the sparse Solving ) individually for each patch does not guar-
representation prior, we divide the problem into two steps. antee compatibility between adjacent patches. We enforce
First, using the sparse prioB)( we find the sparse repre- compatibility between adjacent patches using a one-pass
sentation for each local patch, respecting spatial compati algorithm similar to that of 13].° The patches are pro-
bility between neighbors. Next, using the result from this cessed in raster-scan order in the image, from left to right
local sparse representation, we further regularize anderefi and top to bottom. We modify5] so that the super-
the entire image using the reconstruction constrahtIip resolution reconstructio®;« of patchy is constrained to
this strategy, a local model from the sparse prior is usedclosely agree with the previously computed adjacent high-
to recover lost high-frequency for local details. The globa resolution patches. The resulting optimization problem is

model from the reconstruction constraint is then applied to ) ,
min ||a|}; st. [|[FDia— Fyl5<e

remove possible artifacts from the first step and make the )
image more consistent and natural. |PDra — wl|3 < e,
2.1. Local Model from Spar se Representation where the matrixP extracts the region of overlap be-

_ _ _ tween current target patch and previously reconstructed
As in the patch-based methods mentioned previously, high-resolutionimage, ang contains the values of the pre-
we try to infer the high-resolution patch for each low- viously reconstructed high-resolutionimage on the oyerla

resolution patch from the input. For this local model, we The constrained optimizatiof can be similarly reformu-
have two dictionarie®, andD}: Dy, is composed of high-  |ated as:

resolution patches anf), is composed of corresponding min \|af; + %Hba — g3, (8)
low-resolution patches. We subtract the mean pixel value

for each patch, so that the dictionary represents image tex\whereD =
tures rather than absolute intensities.

For each input low-resolution pataj) we find a sparse
representation with respect19,. The corresponding high-
resolution patche®;, will be combined according to these
coefficients to generate the output high-resolution paich
The problem of finding the sparsest representation cdn

be formulated as: 2.2. Enforcing Global Reconstruction Constraint

min [|alo st. [[FDia - Fyll; <e, (4) Notice that £) and (7) do not demand exact equality

hereF i i feat tracti tor. Th . between the low-resolution patghand its reconstruction
whereF is a (linear) feature exiraction operator. The main Dy,a. Because of this, and also because of noise, the

role of F' in (4) is to provide a perceptually meaningful con- high-resolution imageX, produced by the sparse repre-

str?/:/n? O'rl]l 29"" clostily tk;]e poegc_legm r?uitgapproxmate sentation approach of the previous section may not satisfy
y. We Wil discuss the choice af in Sections. the reconstruction constrairit)(exactly. We eliminate this

Although the optimizatio_n p_roblem41 is NP-hard in discrepency by projectindly onto the solution space of
general, recent results,[ 8] indicate that as long as the DHX — Y, computing

desired coefficientgx are sufficiently sparse, they can be
efficiently recovered by instead minimizing thenorm, as X* =arg n%én X — Xl st. DHX =Y. (9)
follows:

FD[ ~ Fy
3PD, andy = {ﬁw]' The parametef

controls the tradeoff between matching the low-resolution
input and finding a high-resolution patch that is compatible
with its neighbors. In all our experiments, we simply set
# = 1. Given the optimal solutiomx* to (8), the high-
resolution patch can be reconstructeceas Dy a*.

The solution to this optimization problem can be efficiently
min ||, st. [[FDia - Fyll; <e. (5) computed using the back-projection method, originally de-
veloped in computer tomography and applied to super-
resolution in [L5, 4]. The update equation for this iterative

min Alal + }[FDa~ Fyl3,  (6)  Mmethodis
Xi1=X:+ (Y —DHX¢) 1 s)x*p, (10)

Lagrange multipliers offer an equivalent formulation

where the parameterbalances sparsity of the solution and

fidelity of the approximation tq;. Notice that this is es- where X is the estimate of the high-resolution image af-
sentially a linear regression regularized withnorm onthe  ter thet-th iteration,p is a “backprojection” filter, and s
coefficients, known in statistical literature as the Lassd.[ denotes upsampling by a factorof

2Traditionally, one would seek the sparsest.t. || Dyo — yl|2 < e. 3There are different ways to enforce compatibility. #, the values in
For super-resolution, it is more appropriate to replace 2kmorm with a the overlapped regions are simply averaged, which willltésiblurring
quadratic norm| - || pr 5 that penalizes visually salient high-frequency effects. The one-pass algorithm3 is shown to work almost as well as
errors. the use of a full MRF modell[?].



Algorithm 1 (Super-resolution via Sparse Representation).
1: Input: training dictionariesD; and Dy, a low-

resolution imagé&’”.

for each3 x 3 patchy of Y, taken starting from the

upper-left corner with pixel overlap in each direction,

e Solve the optimization problem with andgj de-
fined in @): min A||a|/; + 1| Da — g3

2:

e Generate the high-resolution pateh= Dja*.
Put the patche into a high-resolution imag& .
: end
: Using back-projection, find the closest image Xg,
which satisfies the reconstruction constraint:

X" = argrr}}nHX — Xyl st. DHX =Y.
: Output: super-resolution imag& ™.

We take resultX ™ from backprojection as our final es-

may take the form of a generic regularization term (e.g.,
Huber MRF, Total Variation, Bilateral Total Variation).

Algorithm 1 can be interpreted as a computationally effi-
cient approximation tol(1). The sparse representation step
recovers the coefficienta by approximately minimizing
the sum of the second and third terms df)( The sparsity
term||a; o is relaxed td| ;|| 1, while the high-resolution
fidelity term|| Dy a;; — P;; X || is approximated by its low-
resolution versio FDyav;j — Fy,;||2.

Notice, that if the sparse coefficients are fixed, the
third term of (L1) essentially penalizes the difference be-
tween the super-resolution imag€ and the reconstruc-
tion given by the coefficientsy_, ; || Drovij — P X|3 ~
| Xo — X 3. Hence, for smally, the back-projection step
of Algorithm 1 approximately minimizes the sum of the first
and third terms of11).

Algorithm 1 does not, however, incorporate any prior be-
sides sparsity of the representation coefficients — the term

timate of the high-resolution image. This image is as close ?(X) is absent in our approximation. In Sectiénwve will

as possible to the initial super-resoluti&h, given by spar-
sity, while satisfying the reconstruction constraint. Hme
tire super-resolution process is summarized as Algorithm

2.3. Global Optimization Interpretation

The simple SR algorithm outlined above can be viewed

see that sparsity in a relevant dictionary is a strong enough
prior that we can already achieve good super-resolution per
formance. Nevertheless, in settings where further assump-
tions on the high-resolution signal are available, these pr
ors can be incorperated into the global reconstruction step
of our algorithm.

as a special case of a general sparse representation frame- _
work for inverse problems in image processing. Related 3. Dictionary Preparation

ideas have been profitably applied in image compression

denoising [(], and restoration7]. These connections

provide context for understanding our work, and also sug-

'3.1. Random Raw Patches from Training | mages

Learning an over-complete dictionary capable of opti-

gest means of furtherimproving the performance, at the costmally representing broad classes of image patches is a dif-

of increased computational complexity.

Given sufficient computational resources, one could
in principle solve for the coefficients associated with
all patchessimultaneously. Moreover, the entire high-
resolution imageX itself can be treated as a variable.
Rather than demanding thaf be perfectly reproduced by
the sparse coefficients, we can penalize the difference be-
tweenX and the high-resolution image given by these co-
efficients, allowing solutions that are not perfectly spars
but better satisfy the reconstruction constraints. Thaslise
to a large optimization problem:

X =argmin {IDHX = Y[3+03 el
, " (11)
+9) | Dnevij — P X |3+ 7p(X)}.
ij
Here, a;; denotes the representation coefficients for the
(4,7) patch of X, and P;; is a projection matrix that se-
lects the(i, 7)., patch fromX. p(X) is a penalty function

that encodes prior knowledge about the high-resolution im-

ficult problem. Rather than trying to learn such a dictionary
[19, 1] or using a generic set of basis vectotd] (e.g.,
Fourier, Haar, curvelets etc.), we generate dictionanes b
simply randomly sampling raw patches from training im-
ages of similar statistical nature. We will demonstrate tha
so simply prepared dictionaries are already capable of gen-
erating high-quality reconstructiofisyhen used together
with the sparse representation prior.

Figure2 shows several training images and the patches
sampled from them. For our experiments, we prepared
two dictionaries: one sampled from flowers (Figarep),
which will be applied to generic images with relative sim-
ple textures, and one sampled from animal images (Figure
2 bottom), with fine furry or fractal textures. For each high-
resolution training imageX, we generate the correspond-
ing low-resolutionimag&” by blurring and downsampling.
For each category of images, we sample only about 100,000
patches from about 30 training images to form each dic-
tionary, which is considerably smaller than that needed by

4The competitiveness of such random patches has also beieachot

age. This function may depend on the image category, orempirically in the context of content-based image classifio [1€].
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Figure 2. Left: three out of the 30 training images we use in ) o )
experiments. Right: the training patches extracted froemth Figure 3. Number of nonzero coefficients in the sparse reptas
tion computed for 300 typical patches in a test image.

other learning-based methods?] 23]. Empirically, we find

such a small dictionary is more than sufficient. component only, since humans are more sensitive to illumi-
nance changes. Our algorithm has only one free parameter
3.2. Derivative Features ), which balances sparsity of the solution with fidelity to

the reconstruction constraint. In our experience, themeco

h In (4), we gse af‘;?‘f’““re ;_rar;sformatnﬁhlto ensure th?t h struction quality is stable over a large range\ofThe rule
r € comrIJu'Fe coe |I<:|E_.;_nts_ 't”t e_mor?t relevant partli)_ (tj € of thumb,\ = 50 x dim(patch featurg gives good results
ow-resolution signal. Typicallyf” is chosen as some kind = ¢/ -1/ 4ha test cases in this paper.

O.f high.-pass_ filter. This is reasonable ff‘?m a percep.tual One advantage of our approach over methods such as
;newpomt, since pefopr:e are mofl?h sips;]tnf/e to the high- neighbor embeddingy] is that it selects the number of rel-
requency content of the 'mage. 1he high-irequency com- evant dictionary elementslaptively for each patch. Figure
poner_1ts of the Iow—reso_lut_lon Image are also arguably the3 demonstrates this for 300 typical patches in one test im-
{no;sfc |r:1hpotrtant I(;]r. phredlctlln% the_ lost high-frequency con- age. Notice that the recovered coefficients are alwaysespars
entin the target nigh-resoiution image. (< 35 nonzero entries), but the level of sparsity varies de-

dFre_e;nan ett aI.:{Z] ustﬁ al hlgh-palsst-ﬁlte.r to textrta(;]t the pending on the complexity of each test patch. However, em-
edge information irom Ihe low-resofution input patches as pirically, we find the support of the recovered coefficients

the feature. Sun et al2f] use a set of Gaussian derivative typically is neither a superset nor subset of the K nearest

filters to extract the contours in the low-resolution pa&he neighbors §]. The chosen patches are more informative for

Chtan%ter;[ al. EEE l;]se thetzrst-order ar:dt_secand-orderl gr?f'; recovering the high-resolution patch, leading to morenfait
ents ot the patches as the representation. orour ailgQrithme, , o6 reconstruction in the experiments below.
we also use the first-order and second-order derivatives as

the feature for the low-resolution patch. While simple sitne _ _ _
features turn out to work very well. To be precise, the four Experimental results: We first apply our algorithm to

1-D filters used to extract the derivatives are: generic images including flower, human face, and architec-
" ture, all using the same dictionary sampled from training
fi=1-1,0,1], fa=11, images of flowers (first row of Figurg). We will further

(12) demonstrate our algorithm’s ability to handle complicated

f3:[1707_27071]7 f4:f§7 . . . . .
textures in animal images, with the second dictionary sam-
where the superscripf™ means transpose. Applying these pled from training animal images (second row of Figye
four filters, we get four description feature vectors forteac Figure 4 compares our results with neighbor embed-
patch, which are concatenated as one vector as the final repding [5]° on two test images of a flower and a girl. In

resentation of the low-resolution patch. both cases, our method gives sharper edges and reconstructs
more clearly the details of the scene. There are noticeable
4. Experiments differences in the texture of the leaves, the fuzz on the leaf

stalk, and also the freckles on the face of the girl.

In Figure5, we compare our method with several other
methods on an image of the Parthenon used]inrjcluding
back projection, neighbor embeddiri,[and the recently

Experimental settings. In our experiments, we will
mostly magnify the input image by a factor of 3. In the
low-resolution images, we always u3ex 3 low-resolution
patches, with overlap of 1 pixel between adjacent patches,
corresponding t® x 9 patches with overlap of 3 pixels for 50ur implementation of the neighbor embedding methsjddjffers
the high-resolution patches. The features are not exttacte slightly from the original. The feature for the low-resatut patch is not

; _ ; extracted from the originad x 3 patch, which will give smoother results,
directly from the3 x 3 low-resolution patch, but rather from but on the upsampled low-resolution patch. We find thatrep — 15

an upsampled version produced by bicubic ir)terpplation. gives the best performance. This is approximately the geeramber of
For colorimages, we apply our algorithm to the illuminance coefficients recovered by sparse representation (seeeRyur




Figure 4. The flower and girl image magnified by a factor of 3ft ke right: input, bicubic interpolation, neighbor embéutyl [5], our
method, and the original. (Also see Fig@ér the same girl image magnified by a factor of 4).

Figure 5. Results on an image of the Parthenon with magnditdactor 3. Top row: low-resolution input, bicubic intelption, back
projection. Bottom row: neighbor embeddiag[soft edge prior §], and our method.

proposed method based on a learned soft edge [fioF e come more difficult than on images with simpler textures,
result from back projection has many jagged effects alongsuch as flowers or faces. In Figusgwe apply our method
the edges. Neighbor embedding generates sharp edges ito the same raccoon face image with magnification factor 3.
places, but blurs the texture on the temple’s facade. TheSince there are no explicit edges in most part of the image,
soft edge prior method gives a decent reconstruction, butmethods proposed ini f], [23], and [6] would have tremen-
introduces undesired smoothing that is not present in ourdous difficulty here. Compared to neighbor embeddifg [
result. Additional results on generic images using this dic our method gives clearer fur and sharper whiskers. Figure
tionary are shown in Figuréleft and center. Notice thatin  shows an additional image of a cat face reconstructed using
both cases, the algorithm significantly improves the image this dictionary. We compare several SR methods quantita-
resolution by sharpening edges and textures. tively in terms of their RMS errors for some of the images

We now conduct more challenging experiments on more SNown above. The results are shown in Teble
intricate textures found in animal images, using the ani-  Finally, we test our algorithm on the girlimage again, but
mal dictionary with merely 100,000 training patches (sec- with a more challenging magnification factor 4. The results
ond row of Figure?). As already shown in Figurg, our are shown in Figur&. Here, back-projection again yields
method performs quite well in magnifying the image of a jagged edges. Freeman et. al’'s methiod ntroduces many
raccoon face by a factor of 2. When complex textures suchartifacts and fails to capture the facial texture, despate-r
as this one are down-sampled further, the SR task will be-ing on a much larger database. Compared to the soft edge



Figure 7. More results on a few more generic (left and cersted) animal (right) images. Top: input images. Bottom: supsolution
images by our method, with magnification factor 3.

Figure 8. The girl image magnified by a factor of 4. From leftigght: low-resolution input, back projection, learningded method in
[17], soft edge prior §], and our method.



Images Bicubic | NE[5] | Our method
Flower 3.5052 | 4.1972 3.2276
Girl 5.9033 | 6.6588 5.6175
Parthenon| 12.7431 | 13.5562 12.2491
Raccoon | 9.7399 | 9.8490 9.1874

Table 1. The RMS errors of different methods for super-ngsmh
with magnification factor 3, respect to the original images.

(8]

9]

[10]

prior method f], our method generates shaper edges and is[11]
more faithful to the original facial texture.

5. Discussion

The experimental results of the previous section demon-

strate the effectiveness of sparsity as a prior for learning
based super-resolution. However, one of the most important[14]
guestions for future investigation is to determine, in term
of the within-category variation, the number of raw sam-
ple patches required to generate a dictionary satisfyiag th [15]
sparse representation prior. Tighter connections to tee th

ory of compressed sensing may also yield conditions on the

appropriate patch size or feature dimension.

From a more practical standpoint, it would be desirable

to have a way of effectively combining dictionaries to work
with images containing multiple types of textures or mul- [17]

tiple object categories. One approach to this would inte-
grate supervised image segmentation and super-resqlution

applying the appropriate dictionary within each segment.
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