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Goal and Outline

• Introduce and Extend  “Learning Sparse Representations”
– Mairal, Elad, Sapiro, IEEE-TIP and SIAM-MMS, 2008
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• Learning to classify
– Mairal, Bach, Ponce, Sapiro, Zisserman, CVPR 2008
– Rodriguez and Sapiro, IMA pre-print, 2008.



Introduction: 
Sparse and Redundant 

Representations
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Representations

Webster Dictionary: Of few and scattered elements



Restoration by Energy Minimization 
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Restoration/representation algorithms are often related to the minimization 
of an energy function of the form
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Relation to 
measurements

Thomas Bayes        

1702 - 1761

Prior or regularization
y : Given measurements  

x : Unknown to be recovered

Bayesian type of approach

What is the prior? What is the image model?



A Sparse Prior Pr(x)
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Sparse & 
Redundant



The Sparseland Model for Images 
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Every column in    
D (dictionary) is    
a prototype signal 
(Atom).

The vector α
contains very few

= N
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D
A fixed Dictionary

contains very few 
(say L) non-zeros.

A sparse 
& random 
vector
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The Initial Energy Function 

L
o
“pseudo-norm” is                                                                  

counting the number of                                                                  

non-zeros in α. 

The vector α is the                                                            
representation (sparse/redundant).
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Dα-y=            -
The above is solved (approximated!) using a greedy algorithm                                 
- The Matching Pursuit [Classical Statistics, Mallat & Zhang (`93), Tropp et al].

L1 optimization can be used as well (Lasso, LARS, etc)



What Should D Be? 

Assumption: Good-behaved Images                                  
have a sparse representation
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D should be chosen such that it sparsifies the representations 
(for a given task!)

Learn D :

Multiscale Learning

Color Image Examples 

Task adapted

One approach to choose D is from a 
known set of transforms (Steerable 
wavelet, Curvelet, Contourlets, 

Bandlets, …)



Learning D

D≈X A

P
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Each example is                    
a linear combination                   
of atoms from D

Each example has a 
sparse representation with 
no more than L atoms
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Gribonval et. al. (‘04)

Aharon, Elad, & Bruckstein (‘04) 

Aharon, Elad, & Bruckstein (‘05)

Ng et al. (2007)



Algorithm are reasonable for low-dimension 
signals (N in the range 10-400). As N grows, 
the complexity and the memory 
requirements become prohibitive. 

So, how should large images be handled?

From Local to Global Treatment
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The prior

Extracts a patch 
in the ij location
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The solution: Force shift-invariant sparsity  - on each patch of size         
N-by-N (N=8) in the image, including overlaps [Buades et al., Seroussi et al., 
Roth & Black]. 



Show me the pictures
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Change the Metric in the OMP
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Example: Non-uniform noise
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Example: Inpainting
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Example: Inpainting
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Learning to Classify



Global Dictionary
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Barbara
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Boat
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Digits
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Which dictionary? How to learn them?

• Multiple reconstructive dictionary? (Payre)

• Single reconstructive dictionary? (Ng et al, • Single reconstructive dictionary? (Ng et al, 
LeCunn et al.)

• Dictionaries for classification!

• See also  Winn et al., Holub et al., Lasserre et al.,  Hinton et al. for joint 
discriminative/generative probabilistic approaches
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Learning multiple reconstructive and 
discriminative dictionaries

• Learn dictionaries with a task in mind

• Move beyond ad-hoc features for recognition
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• Learn one dictionary per-class
– Good for the appropriate class

– Bad for the other classes

With J. Mairal, F. Bach, J. Ponce, and A. Zisserman, CVPR 2008



Learning multiple reconstructive and 
discriminative dictionaries
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Texture classification
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Natural images classification
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Some dictionaries

Reconstructive

Learning Sparsity 27

Discriminative

Figure Background



Semi-supervised detection learning
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Learning a Single Discriminative and 
Reconstructive Dictionary

• Learn dictionaries with a task in mind

• Move beyond ad-hoc features for recognition
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• Exploit the representation coefficients for 
classification
– Include this in the optimization

– Class supervised simultaneous OMP

With F. Rodriguez, IMA Pre-print



Learning a Single Discriminative and 
Reconstructive Dictionary
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Digits images: 
Some dictionaries
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Digits images: 
Robust to noise and occlusions
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Natural mages (preliminary)
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94% recognition for 3 classes



Conclusions

• Learn for the Task :Classification

• Sensing…
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