#### Learning to classify

#### **Guillermo Sapiro**

University of Minnesota

Supported by NSF, NGA, NIH, ONR, DARPA, ARO, McKnight Foundation



(Some slides adapted from M. Elad)





#### **Goal and Outline**

• Introduce and Extend "Learning Sparse Representations" – *Mairal, Elad, Sapiro, IEEE-TIP and SIAM-MMS, 2008* 



- Learning to classify
  - Mairal, Bach, Ponce, Sapiro, Zisserman, CVPR 2008
  - Rodriguez and Sapiro, IMA pre-print, 2008.





# Introduction: Sparse and Redundant Representations

Webster Dictionary: Of few and scattered elements



### **Restoration** by Energy Minimization

Restoration/representation algorithms are often related to the minimization of an energy function of the form

$$f(\underline{x}) = \begin{bmatrix} \frac{1}{2} \| \underline{x} - \underline{y} \|_{2}^{2} \\ \frac{1}{2} \| \underline{x} - \underline{y} \|_{2}^{2} \\ \frac{1}{2} \| \underline{x} - \underline{y} \|_{2}^{2} \end{bmatrix} + \Pr(\underline{x})$$
For the second seco

□ Bayesian type of approach



□ What is the prior? What is the image model?

Thomas Bayes 1702 - 1761



#### A *Sparse* Prior Pr(<u>x</u>)



Sparse & Redundant



## The Sparseland Model for Images



## **The Initial Energy Function**

 $\Box$  L<sub>o</sub> "pseudo-norm" is counting the number of non-zeros in  $\underline{\alpha}$ . The vector  $\underline{\alpha}$  is the representation (sparse/redundant).  $D\alpha$ -The above is solved (approximated!) using a greedy algorithm - The Matching Pursuit [Classical Statistics, Mallat & Zhang (`93), Tropp et al]. L1 optimization can be used as well (Lasso, LARS, etc) 



#### What Should D Be?





#### Learning D



#### From Local to Global Treatment

- Algorithm are reasonable for low-dimension signals (N in the range 10-400). As N grows, the complexity and the memory requirements become prohibitive.
- □ So, how should large images be handled?



□ The solution: Force shift-invariant sparsity - on each patch of size N-by-N (N=8) in the image, including overlaps [Buades et al., Seroussi et al., Roth & Black].

$$\hat{\underline{x}} = \underset{\underline{x}, \{\underline{\alpha}_{ij}\}_{ij}, D}{\operatorname{ArgMin}} \quad \frac{1}{2} \left\| \underline{x} - \underline{y} \right\|_{2}^{2} + \mu \underset{ij}{\sum} \left\| \mathbf{R}_{ij} \underline{x} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \quad \text{Extracts a patch in the ij location}$$

$$s.t. \quad \left\| \underline{\alpha}_{ij} \right\|_{0}^{0} \leq L \quad \text{The prior}$$



## Show me the pictures



#### Change the Metric in the OMP





#### **Example: Non-uniform noise**





Learr

#### **Example: Inpainting**







#### **Example: Inpainting**





#### Learning to Classify



## **Global Dictionary**















#### Barbara







#### Boat









## Digits







#### Which dictionary? How to learn them?

- Multiple reconstructive dictionary? (Payre)
- Single reconstructive dictionary? (Ng et al, LeCunn et al.)
- Dictionaries for classification!
- See also Winn et al., Holub et al., Lasserre et al., Hinton et al. for joint discriminative/generative probabilistic approaches



#### Learning *multiple* reconstructive and *discriminative* dictionaries

- Learn dictionaries with a task in mind
- Move beyond ad-hoc features for recognition
- Learn one dictionary per-class
  - Good for the appropriate class
  - Bad for the other classes

With J. Mairal, F. Bach, J. Ponce, and A. Zisserman, CVPR 2008



#### Learning *multiple* reconstructive and *discriminative* dictionaries

$$\begin{array}{ll} \alpha^{\star}(\mathbf{x},\mathbf{D}) & \equiv \mathop{\arg\min}_{\alpha \in \mathbb{R}^{k}} ||\mathbf{x} - \mathbf{D}\alpha||_{2}^{2}, \text{ s.t. } ||\alpha||_{0} \leq L, \\ \mathcal{R}(\mathbf{x},\mathbf{D},\alpha) & \equiv ||\mathbf{x} - \mathbf{D}\alpha||_{2}^{2}, \\ \mathcal{R}^{\star}(\mathbf{x},\mathbf{D}) & \equiv ||\mathbf{x} - \mathbf{D}\alpha^{\star}(\mathbf{x},\mathbf{D})||_{2}^{2}. \end{array}$$

$$C_i^{\lambda}(y_1, y_2, ..., y_N) := \log \left( \sum_{j=1}^N e^{-\lambda(y_j - y_i)} \right)$$

$$\min_{\{D_j\}_{j=1}^N} \sum_{i=1...N, l \in S_i} \mathcal{C}_i^{\lambda}(\{\mathcal{R}^{\star}(x_l, D_j)\}_{j=1}^N) + \lambda \gamma \mathcal{R}^{\star}(x_l, D_i)$$



## **Texture classification**



| #   | Prior 1 | Prior 2 | Prior 3 | Prior 4 | R1    | R2    | D1    | D2    |
|-----|---------|---------|---------|---------|-------|-------|-------|-------|
| 1   | 7.2     | 6.7     | 5.5     | 3.37    | 2.22  | 1.69  | 1.89  | 1.61  |
| 2   | 18.9    | 14.3    | 7.3     | 16.05   | 24.66 | 36.5  | 16.38 | 16.42 |
| 3   | 20.6    | 10.2    | 13.2    | 13.03   | 10.20 | 5.49  | 9.11  | 4.15  |
| 4   | 16.8    | 9.1     | 5.6     | 6.62    | 6.66  | 4.60  | 3.79  | 3.67  |
| 5   | 17.2    | 8.0     | 10.5    | 8.15    | 5.26  | 4.32  | 5.10  | 4.58  |
| 6   | 34.7    | 15.3    | 17.1    | 18.66   | 16.88 | 15.50 | 12.91 | 9.04  |
| 7   | 41.7    | 20.7    | 17.2    | 21.67   | 19.32 | 21.89 | 11.44 | 8.80  |
| 8   | 32.3    | 18.1    | 18.9    | 21.96   | 13.27 | 11.80 | 14.77 | 2.24  |
| 9   | 27.8    | 21.4    | 21.4    | 9.61    | 18.85 | 21.88 | 10.12 | 2.04  |
| 10  | 0.7     | 0.4     | NA      | 0.36    | 0.35  | 0.17  | 0.20  | 0.17  |
| 11  | 0.2     | 0.8     | NA      | 1.33    | 0.58  | 0.73  | 0.41  | 0.60  |
| 12  | 2.5     | 5.3     | NA      | 1.14    | 1.36  | 0.37  | 1.97  | 0.78  |
| Av. | 18.4    | 10.9    | NA      | 10.16   | 9.97  | 10.41 | 7.34  | 4.50  |



## Natural images classification



## **Some dictionaries**

Reconstructive

| 1  | X  | 1   | 4   | 13  |    | 1  | 1       | 0  | 1  | 2  | 11 |
|----|----|-----|-----|-----|----|----|---------|----|----|----|----|
|    | 1  | 4   | 7   | 1   |    | 1  | ł.      | 1  | 19 | -  |    |
| -  | 1  |     | 1   | 19. | 10 | 喪  | 1       | 11 | 1  | 24 | 1  |
| 1  | 制  | 15  | 11: | i.  | 11 | 1  | 8       | 11 | K  | Ŧ  | 14 |
| 1  | 1  | p   | -   | *   | *  | A. | 1       | 51 | d  | 8  | -  |
| 2  | 1  |     | 1   | 1   | 1  | 2  | tion in | 34 |    | 11 | 1  |
| 1. | 11 | No. | 11  | ii) |    | N  | 1       | 1  | *  | 1  | 1  |

| i.  | 12 | 3  | 11  | Đ   | 4   | N | 3  | 19 | h  | 1  | 8  |
|-----|----|----|-----|-----|-----|---|----|----|----|----|----|
| 4   | N  | 3  | -11 | F.  | X   | ÷ | 11 | 10 | 4  | 11 | 1  |
|     | ж, | 4  | \$  | Æ   | 14  | 2 | -  | 81 | 1  | 10 | ý. |
| 5   | 10 | 8  |     | ->  | \$¢ | 5 | 6  | 3  | ñ. | \$ | ě. |
| 10  | 1  | \$ | 10  |     | 1   | - | 4  | *  | R. |    | 30 |
| 4   |    | 13 | 181 | 111 | *   |   | V  | 1  |    | Å1 | 1  |
| ŝć. | *  |    | 5   | 9   | 10  | * | 1  | 1  | 4  | 1  | H  |

Discriminative



Figure

Background



#### Semi-supervised detection learning



# Learning a *Single* Discriminative and Reconstructive Dictionary

- Learn dictionaries with a task in mind
- Move beyond ad-hoc features for recognition
- Exploit the representation coefficients for classification
  - Include this in the optimization
  - Class supervised simultaneous OMP

With F. Rodriguez, IMA Pre-print



# Learning a *Single* Discriminative and Reconstructive Dictionary

$$\max_{\mathbf{D},\alpha} \left\{ \theta \cdot J(\{\{\alpha_i^j\}_{i=1}^{n_j}\}_{j=1}^c) - \sum_{j=1}^c \sum_{i=1}^{n_j} \|\mathbf{x}_i^j - \mathbf{D}\alpha_i^j\|_2^2 \right\}$$



#### **Digits images: Some dictionaries**



#### Digits images: Robust to noise and occlusions





#### **Natural mages (preliminary)**



#### 94% recognition for 3 classes



## Conclusions

- Learn for the Task : Classification
- Sensing...







