Image Processing

with Manifold Models

Gabriel Peyré

Natimages Project http://www.ceremade.dauphine.fr/~peyre/natimages/

Variational image prior: J(f) depends on ∇f .

Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

$$J(f) = \int |\nabla f|^2$$
, \mathcal{B} =Fourier.

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

 $J(f) = \int |\nabla f|^2$, \mathcal{B} =Fourier.

Discontinuous image with bounded variation. $J(f) = \int |\nabla f|, \quad \mathcal{B} =$ wavelets.

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

 $J(f) = \int |\nabla f|^2$, \mathcal{B} =Fourier.

Discontinuous image with bounded variation. $J(f) = \int |\nabla f|, \quad \mathcal{B} = \text{wavelets.}$

Adaptive prior: $J(f) = J_w(f)$, w =geometry.

denoising: w estimated from noisy image.
inverse pbm: adapt w to the image to recover

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

 $J(f) = \int |\nabla f|^2$, \mathcal{B} =Fourier.

Discontinuous image with bounded variation. $J(f) = \int |\nabla f|, \quad \mathcal{B} =$ wavelets.

Adaptive prior: $J(f) = J_w(f)$, w = geometry. - denoising: w estimated from noisy image.

– inverse pbm: adapt w to the image to recover

Cartoon image with C^{α} edges.

 \longrightarrow Adaptivity to the edge **direction** w.

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

 $J(f) = \int |\nabla f|^2$, \mathcal{B} =Fourier.

Discontinuous image with bounded variation. $J(f) = \int |\nabla f|, \quad \mathcal{B} =$ wavelets.

Adaptive prior: $J(f) = J_w(f)$, w =geometry. – denoising: w estimated from noisy image. – inverse pbm: adapt w to the image to recover

Cartoon image with C^{α} edges.

 \longrightarrow Adaptivity to the edge **direction** w.

Locally parallel, turbulent textures.

 \longrightarrow Adaptivity to the texture **orientation** w.

Variational image prior: J(f) depends on ∇f . Sparsity in ortho-basis $\{\psi_m\}_m$: $J(f) = \sum_m |\langle f, \psi_m \rangle|$.

Uniformly smooth C^{α} image.

 $J(f) = \int |\nabla f|^2$, \mathcal{B} =Fourier.

Discontinuous image with bounded variation. $J(f) = \int |\nabla f|, \quad \mathcal{B} =$ wavelets.

Adaptive prior: $J(f) = J_w(f)$, w =geometry. – denoising: w estimated from noisy image. – inverse pbm: adapt w to the image to recover

Cartoon image with C^{α} edges.

 \longrightarrow Adaptivity to the edge **direction** w.

Locally parallel, turbulent textures.

 \longrightarrow Adaptivity to the texture **orientation** w.

Complex natural images: open question ...

Model: C^2 uniformly regular image. Patches: linear gradient of intensity.

Model: C^2 uniformly regular image. Patches: linear gradient of intensity.

Model: bounded variation image. Patches: finite length level sets.

Model: C^2 uniformly regular image. Patches: linear gradient of intensity.

Model: cartoon image. Patches: binary straight edge.

Model: bounded variation image. Patches: finite length level sets.

Model: C^2 uniformly regular image. Patches: linear gradient of intensity.

Model: cartoon image. Patches: binary straight edge.

Model: bounded variation image. Patches: finite length level sets.

Model: locally parallel texture. *Patches:* directional oscillations.

Model: C^2 uniformly regular image. Patches: linear gradient of intensity.

Model: cartoon image. Patches: binary straight edge.

Model: bounded variation image. Patches: finite length level sets.

Model: locally parallel texture. Patches: directional oscillations.

 \longrightarrow represent patches with a small number of parameters.

- Manifolds: Image Libraries vs. Patches
- Examples of Patch Manifolds
- Manifold Energies for Inverse Problems
- Non-adaptive Manifold Models
- Adaptive Manifold Models

Joint work with Sebastien Bougleux & Laurent Cohen

Manifold of Images Ensembles

Library of images of n pixels: $\{f_k\}_k \subset \mathbb{R}^n$.

Parameterized by a small number $m \ll n$ of parameters

Example: V/H rotation $\theta_v, \theta_h \implies f_k(x) = f_0(R_{\theta_h, \theta_v}x).$

Hypothesis: $\{f_k\} \subset \mathcal{M} \subset \mathbb{R}^n$ smooth manifold of dimension m.

Patch extracted from f at location $x \in [0, 1]^2$:

 $\forall |t| \leq \tau/2, \quad p_x(f)(t) = f(x+t)$

Patch extracted from f at location $x \in [0, 1]^2$:

- $\forall |t| \leq \tau/2, \quad p_x(f)(t) = f(x+t)$
- Image model: exploit an image ensemble $\Theta \subset L^2([0,1]^d)$,

Patch extracted from f at location $x \in [0, 1]^2$:

 $\forall |t| \leq \tau/2, \quad p_x(f)(t) = f(x+t)$

 \mathcal{N}

 $\Theta = \text{smooth images}$ $\Theta =$ oscilating textures $\Theta = \text{cartoon images}$ $\mathcal{M} = \{ p_x(g) \setminus x \in [0,1]^d \text{ and } g \in \Theta \} \subset \mathrm{L}^2([-\tau/2,\tau/2]).$ What is the topology / geometry of \mathcal{M} ? Use it for synthesis of geometrical images. Non-adaptive setting: \mathcal{M} is fixed.

Non-adaptive processing: exploit a signal ensemble $\Theta \subset L^2([0,1]^d)$,

 $\Theta = \text{smooth images}$

 $\Theta = \text{cartoon images}$

 $\mathcal{M} = \left\{ p_x(g) \setminus x \in [0,1]^d \text{ and } g \in \Theta \right\} \subset \mathrm{L}^2([-\tau/2,\tau/2]).$

Non-adaptive processing: exploit a signal ensemble $\Theta \subset L^2([0,1]^d)$,

 $\Theta = \text{smooth images}$

 $\Theta = \text{cartoon images}$

 $\mathcal{M} = \left\{ p_x(g) \setminus x \in [0,1]^d \text{ and } g \in \Theta \right\} \subset \mathrm{L}^2([-\tau/2,\tau/2]).$

Adaptive processing: $\mathcal{M} = \mathcal{M}_f$ is estimated from some $f \in L^2([0,1]^d)$ Estimating $\mathcal{M}_f \iff$ estimating connexions between the points $\{p_x(f)\}_x$.

 \longrightarrow use \mathcal{M} or \mathcal{M}_f to regularize image processing problems.

- Manifolds: Image Libraries vs. Patches
- Examples of Patch Manifolds
- Manifold Energies for Inverse Problems
- Non-adaptive Manifold Models
- Adaptive Manifold Models

Manifold of Smooth Images

$$\Theta = \left\{ f \in \mathbf{C}^2 \setminus \|f\|_{\infty} \leqslant C_1, \|\nabla f\|_{\infty} \leqslant C_2 \right\}$$

Patch \approx linear gradient of intensity.

 $p_x(f)(t) \approx a(x) + \langle b(x), t \rangle$ where a(x) = f(x) and $b(x) = \nabla_x f$

Manifold of Smooth Images

$$\Theta = \left\{ f \in \mathbf{C}^2 \setminus \|f\|_{\infty} \leqslant C_1, \|\nabla f\|_{\infty} \leqslant C_2 \right\}$$

Patch \approx linear gradient of intensity.

 $p_x(f)(t) \approx a(x) + \langle b(x), t \rangle$ where a(x) = f(x) and $b(x) = \nabla_x f$

Manifold of affine patches: $\mathcal{M} = \{t \mapsto a + \langle b, t \rangle \setminus |a| \leq C_1, |b| \leq C_2\}$ $\mathcal{M} \simeq [-C_1, C_1] \times [-C_2, C_2] \times [-C_2, C_2]$ "3D cube"

 ${\mathcal M}$ is a flat (Euclidean) manifold.

Manifold of Cartoon Images

 $\Theta_{\text{cartoon}} = \{f \setminus f \text{ is } C^{\alpha} \text{ outside } C^{\alpha} \text{ curves}\}.$ $\Theta = \{f = 1_{\Omega} \setminus \partial\Omega \text{ a } C^{\alpha} \text{ curve }\}.$ $p_x(f)(t) = P_{\theta(x),\delta(x)}(t)$ where $\begin{cases} P_{\theta,\delta}(t) = P_{0,0}(R_{\theta}(t-\delta))\\ P_{0,0}(x) = 1_{x_1 \ge 0}(x) \end{cases}$

Manifold of Cartoon Images

 $\Theta_{\text{cartoon}} = \{f \setminus f \text{ is } C^{\alpha} \text{ outside } C^{\alpha} \text{ curves}\}.$ $\Theta = \{f = 1_{\Omega} \setminus \partial\Omega \text{ a } C^{\alpha} \text{ curve }\}.$ $p_x(f)(t) = P_{\theta(x),\delta(x)}(t)$ where $\begin{cases} P_{\theta,\delta}(t) = P_{0,0}(R_{\theta}(t-\delta))\\ P_{0,0}(x) = 1_{x_1 \ge 0}(x) \end{cases}$

Manifold of binary edges:

 $\mathcal{M} = \{ P_{\theta, \delta} \setminus \theta \in [0, 2\pi), \delta \in \mathbb{R} \}$ $\mathcal{M} \simeq S^1 \times \mathbb{R} \qquad \text{(cylinder)}$

Manifold of Locally Stationary Sounds

$$\Theta \stackrel{\text{def.}}{=} \{ x \mapsto f(x) = A(x) \cos(\Psi(x)) \setminus \|A'\|_{\infty} \leqslant A_{\max} \text{ and } \|\Psi''\|_{\infty} \leqslant \Psi_{\max}. \}$$
$$\mathcal{M} = \left\{ P_{(A,\rho,\delta)} \setminus A \geqslant 0 \text{ and } \rho \geqslant 0 \text{ and } \delta \in \mathrm{S}^{1} \right\}$$
where $P_{(A,\rho,\delta)}(x) \stackrel{\text{def.}}{=} A \cos(\rho x + \delta).$

Manifold of Locally Parallel Textures

 $f(x) = A(x)\cos(\Phi(x))$

Phase Φ slowly varying.

Orientation: $\nabla_x \Phi$

Amplitude: A(x)

Manifold of Locally Parallel Textures

 $f(x) = A(x)\cos(\Phi(x))$

Phase Φ slowly varying. Orientation: $\nabla_x \Phi$ Amplitude: A(x)

 $p_x(f) \approx A(x) P_{\rho(x), \theta(x), \delta(x)} \quad \text{where} \quad P_{\rho, \theta, \delta}(t) = \cos(\rho \langle t, \theta \rangle + \delta)$ $\mathcal{M} = \{AP_{\rho, \theta, \delta} \setminus A \leqslant C_1, \ \rho \leqslant C_2\}$ $\mathcal{M} \simeq [0, C_1] \times [0, C_2] \times \tilde{S}^1 \times S^1 \qquad \theta \in \tilde{S}^1 \quad \text{(orientation but no direction)}$

 $(A(x), \rho(x), \theta(x), \delta(x))$ can be estimated with a local Fourier transform.

- Manifolds: Image Libraries vs. Patches
- Examples of Patch Manifolds
- Manifold Energies for Inverse Problems
- Non-adaptive Manifold Models
- Adaptive Manifold Models

Recovering f from q noisy measurements $y = \Phi f + \text{noise}$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^q$ with $q \ll N$ (missing information)

Recovering f from q noisy measurements $y = \Phi f + \text{noise}$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^q$ with $q \ll N$ (missing information)

Denoising: Φ =identity, q = N.

Recovering f from q noisy measurements $y = \Phi f + \text{noise}$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^q$ with $q \ll N$ (missing information)

Denoising: $\Phi = \text{identity}, q = N$.

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $q = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Recovering f from q noisy measurements $y = \Phi f + \text{noise}$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^q$ with $q \ll N$ (missing information)

Denoising: $\Phi = \text{identity}, q = N$.

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $q = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Super-resolution: $\Phi f = (f * h) \downarrow_k, q = N/k.$

Recovering f from q noisy measurements $y = \Phi f + \text{noise}$. $\Phi : \mathbb{R}^N \mapsto \mathbb{R}^q$ with $q \ll N$ (missing information)

Denoising: $\Phi = \text{identity}, q = N.$

Inpainting: set $\Omega \subset \{0, \ldots, N-1\}$ of missing pixels, $q = N - |\Omega|$.

$$(\Phi f)(x) = \begin{cases} 0 & \text{if } x \in \Omega, \\ f(x) & \text{if } x \notin \Omega. \end{cases}$$

Super-resolution: $\Phi f = (f * h) \downarrow_k, q = N/k.$

Compressed sampling: $(\Phi f)_i = \langle f, \varphi_i \rangle, \varphi_i$ random vector.

 $\Phi f \in \mathbb{R}^q$ is a "compressed" version of f.

CS theory [Candès, Tao, Donoho, 2004]:

f can be well recovered if f is sparse in an ortho-basis.

Inverse Problems Regularization

Prior model: energy J(f) low for images of the model $f \in \Theta$.

Penalized inversion: $f^* = \underset{g}{\operatorname{argmin}} \frac{1}{2} \|\Phi g - y\|^2 + \lambda J(g)$

 λ should be adapted to the measurement noise $\|\Phi f - y\|$ and the prior J(f) \implies difficult in practice ... **Inverse Problems Regularization**

Prior model: energy J(f) low for images of the model $f \in \Theta$.

Penalized inversion: $f^* = \underset{g}{\operatorname{argmin}} \frac{1}{2} \|\Phi g - y\|^2 + \lambda J(g)$

 λ should be adapted to the measurement noise $\|\Phi f - y\|$ and the prior J(f) \implies difficult in practice ...

Sobolev regularization:

 $Total\ variation\ regularization:$

Sparse wavelets regularization:

$$\begin{split} J(f) &= \int \|\nabla_x f\|^2 \mathrm{d}x \\ J(f) &= \int \|\nabla_x f\| \mathrm{d}x \\ J(f) &= \sum_i |\langle f, \psi_i \rangle| \quad \text{where} \quad \{\psi_i\}_i \quad \text{wavelet basis.} \end{split}$$

Inverse Problems Regularization

Prior model: energy J(f) low for images of the model $f \in \Theta$.

Penalized inversion: $f^* = \underset{g}{\operatorname{argmin}} \frac{1}{2} \|\Phi g - y\|^2 + \lambda J(g)$

 λ should be adapted to the measurement noise $\|\Phi f - y\|$ and the prior J(f) \implies difficult in practice ...

ſ

Sobolev regularization:

 $Total\ variation\ regularization:$

 $Sparse\ wavelets\ regularization:$

$$J(f) = \int \|\nabla_x f\|^2 dx$$

$$J(f) = \int \|\nabla_x f\| dx$$

$$J(f) = \sum_i |\langle f, \psi_i \rangle| \quad \text{where} \quad \{\psi_i\}_i \quad \text{wavelet basis.}$$

Manifold regularization:

Non-adaptive regularization: \mathcal{M} fixed from a image model $f \in \Theta$. $J_{\mathcal{M}}(g)$ measures how much patches $\mathcal{C}_f = (p_x(f))_x$ are close to \mathcal{M} . Adaptive regularization: $\mathcal{M} = \mathcal{M}_f = (p_x(f))_x$ estimated from some f. $J_w(g)$ measures the smoothness of g with respect to the geometry of \mathcal{M}_f . w is a graph that represent the geometry of \mathcal{M}_f .

- Manifolds: Image Libraries vs. Patches
- Examples of Patch Manifolds
- Manifold Energies for Inverse Problems
- Non-adaptive Manifold Models
- Adaptive Manifold Models

Non-adaptive Manifold Energies

Setting #1: manifold \mathcal{M} defined by an a priori model $f \in \Theta$. $\mathcal{M} = \{ p_x(g) \setminus x \in [0,1]^d \text{ and } g \in \Theta \} \subset \mathrm{L}^2([-\tau/2,\tau/2]).$

Non-adaptive Manifold Energies

Setting #1: manifold \mathcal{M} defined by an a priori model $f \in \Theta$. $\mathcal{M} = \{ p_x(g) \setminus x \in [0,1]^d \text{ and } g \in \Theta \} \subset \mathrm{L}^2([-\tau/2,\tau/2]).$

Non-adaptive Manifold Energy Minimization

Manifold energy: $J_{\mathcal{M}}(g) = \sum_{x} \operatorname{dist}_{\mathcal{M}}(p_{x}(g))$

Non-adaptive Manifold Energy Minimization

Manifold energy: $J_{\mathcal{M}}(g) = \sum_x \operatorname{dist}_{\mathcal{M}}(p_x(g))$

Regularized inversion:
$$f^{\star} = \underset{g}{\operatorname{argmin}} \|y - \Phi g\|^{2} + \lambda J_{\mathcal{M}}(g)$$

$$\{f^{\star}, (p_{x}^{\star})\} = \underset{g, (p_{x})_{x}}{\operatorname{argmin}} \|y - \Phi g\|^{2} + \lambda \sum_{x} \|p_{x}(g) - p_{x}\|^{2} \checkmark$$
Include patches $(p_{x})_{x}$

Step #1: the image f^* is fixed, $p_x^* \leftarrow \operatorname{Proj}_{\mathcal{M}}(p_x(f^*))$.

Step #2: $(p_x^{\star})_x$ fixed, f^{\star} computed by linear best fit

 $(\Phi^*\Phi + \lambda \mathrm{Id}) f^* = \Phi^* y + \lambda \bar{p}^*$

where
$$\bar{p}^{\star}(x) = \frac{1}{\tau^2} \sum_{|x-y| \leq \tau/2} p_y^{\star}(x-y)$$

Non-adaptive Manifold Energy Minimization

Manifold energy: $J_{\mathcal{M}}(g) = \sum_{x} \operatorname{dist}_{\mathcal{M}}(p_{x}(g))$

Regularized inversion:
$$f^{\star} = \underset{g}{\operatorname{argmin}} \|y - \Phi g\|^{2} + \lambda J_{\mathcal{M}}(g)$$

$$\{f^{\star}, (p_{x}^{\star})\} = \underset{g, (p_{x})_{x}}{\operatorname{argmin}} \|y - \Phi g\|^{2} + \lambda \sum_{x} \|p_{x}(g) - p_{x}\|^{2} \longleftarrow \underset{p \text{atches } (p_{x})_{x}}{\operatorname{Include}}$$

Step #1: the image f^* is fixed, $p_x^* \leftarrow \operatorname{Proj}_{\mathcal{M}}(p_x(f^*))$.

Step #2: $(p_x^{\star})_x$ fixed, f^{\star} computed by linear best fit $(\Phi^*\Phi + \lambda \operatorname{Id}) f^* = \Phi^* y + \lambda \overline{p}^*$ where $\bar{p}^{\star}(x) = \frac{1}{\tau^2} \sum_{|x-y| \leq \tau/2} p_y^{\star}(x-y)$

Manifold \mathcal{M} of smooth patches.

Measurements y

Iter. #1

Iter. #3

Cartoon Manifold Model

Inpainting of a 1D curve with manifold of piecewise linear patches:

Measurements y

Iter. #1

Iter. #3 Iter. #50

Compressed Sensing recovery:

Original f

Original f

Local DCT, PSNR=21.9dB Manifold, PSNR=22.1dB

Wavelets, PSNR=25.7dB Manifold, PSNR=31.3dB

Iter. #1

Iter. #50

- Manifolds: Image Libraries vs. Patches
- Examples of Patch Manifolds
- Manifold Energies for Inverse Problems
- Non-adaptive Manifold Models
- Adaptive Manifold Models

Weights for Image Patches

Weights for a patch manifolds estimated from an image f:

$$w_f(x,y) = w(p_x(f), p_y(f)) = \exp\left(-\frac{\|p_x(f) - p_y(f)\|^2}{2\varepsilon^2}\right)$$

Non-local means [Buades, Coll, Morel, 2005]

Image filtering W_f associated to $w_f(x, y)$

$$W_f g(x) = \frac{1}{Z_x} \sum_{y} w_f(x, y) g(x) \quad \text{where} \quad Z_x = \sum_{y} w_f(x, y) g(x)$$

Weights for Image Patches

Weights for a patch manifolds estimated from an image f:

$$w_f(x,y) = w(p_x(f), p_y(f)) = \exp\left(-\frac{\|p_x(f) - p_y(f)\|^2}{2\varepsilon^2}\right)$$

Non-local means [Buades, Coll, Morel, 2005]

Image filtering W_f associated to $w_f(x,y)$ $W_f g(x) = \frac{1}{Z_x} \sum_{i=1}^{n} w_f(x, y) g(x) \quad \text{where} \quad Z_x = \sum_{i=1}^{n} w_f(x, y)$

Image fWeights $w(x, \cdot)$

Non-local means: apply W_f to f itself!

$$\tilde{f} = W_f f$$

 \longrightarrow adaptive filtering

Gaussian blurring

Adaptive Manifold Energies

Setting #2: $\mathcal{M} = \mathcal{M}_f = (p_x(f))_x$ is computed from some image f.

Weighted graph $w_f(p_x, p_y) = \exp\left(-\frac{\|p_x - p_y\|^2}{2\varepsilon^2}\right)$

Weight $w_f(x, y)$ on image.

Adaptive Manifold Energies

Setting #2: $\mathcal{M} = \mathcal{M}_f = (p_x(f))_x$ is computed from some image f.

Weighted graph $w_f(p_x, p_y) = \exp\left(-\frac{\|p_x - p_y\|^2}{2\varepsilon^2}\right)$

Weight $w_f(x, y)$ on image.

Manifold Sobolev energy: $J_w^{\text{sob}}(g) = \sum_{x,y} w_f(x,y) |g(x) - g(y)|^2$. Manifold TV energy: $J_w^{\text{tv}}(g) = \sum_{x,y} w_f(x,y) |g(x) - g(y)|$.

 $\forall (x,y), g(x) \approx g(y) \text{ for points } (p_x(f), p_y(f)) \text{ close on the manifold } \mathcal{M}_f.$

Adaptive Manifold Energies

Setting #2: $\mathcal{M} = \mathcal{M}_f = (p_x(f))_x$ is computed from some image f.

Weighted graph $w_f(p_x, p_y) = \exp\left(-\frac{\|p_x - p_y\|^2}{2\varepsilon^2}\right)$

Weight $w_f(x, y)$ on image.

Manifold Sobolev energy: $J_w^{\text{sob}}(g) = \sum_{x,y} w_f(x,y) |g(x) - g(y)|^2$. Manifold TV energy: $J_w^{\text{tv}}(g) = \sum_{x,y} w_f(x,y) |g(x) - g(y)|$.

 $\forall (x, y), g(x) \approx g(y) \text{ for points } (p_x(f), p_y(f)) \text{ close on the manifold } \mathcal{M}_f.$

Optimize w to the geometry of the solution.

 \longrightarrow denoising: easy, adapt w to the noisy observation f+noise. [Coifman, Lafon et al. 2005] [Gilboa et al. 2007] \cdots

 \longrightarrow inverse problems: difficult, needs to find both w and f^{\star} .

Differential Operators and Energies

Manifold Sobolev energy: $J_w^{\text{sob}}(g) = \sum_{x,y} w_f(x,y) |g(x) - g(y)|^2 = \langle g, \Delta^w g \rangle.$ Laplacian: $\Delta^w g(x) = \left(\sum_y w_f(x,y)\right) g(x) - \left(\sum_y w_f(x,y)g(y)\right)$ Gradient descent: non-local heat equation $\frac{\partial^2 g_t}{\partial t^2} = -\Delta^{w_f} g_t$ and $g_0 = g$

Denoise by heat diffusion $t \mapsto f_t$ with weights w_f and $f_0 = f$.

Non-local manifold $p_x = p_x(f)$

Manifold Spectral Basis

Eigenvectors of the Laplacian Δ^w : $\mathcal{B}(w) = \{\psi_j^w\}_j$ ortho-basis of \mathbb{R}^n .

 $\Delta^w \psi_j^w = \lambda_j \psi_k^w \qquad \lambda_j \simeq \text{frequency.}$

 $J_w^{\rm sob}(g) = \langle g, \, \Delta^w g \rangle = \sum_j \lambda_j |\langle f, \, \psi_j^w \rangle|^2$

$$J_w^{\text{spars}}(g) = \sum_j |\langle f, \psi_j^w \rangle|$$

Non-local manifold $p_x = p_x(f)$

Manifold Spectral Basis

Eigenvectors of the Laplacian Δ^w : $\mathcal{B}(w) = \{\psi_i^w\}_j$ ortho-basis of \mathbb{R}^n .

1 212

t

 $\Delta^w \psi_j^w = \lambda_j \psi_k^w \qquad \lambda_j \simeq \text{frequency.}$

$$J_w^{\text{sob}}(g) = \langle g, \, \Delta^w g \rangle = \sum_j \lambda_j |\langle f, \, \psi_j^w \rangle|^2$$

$$\underset{g}{\operatorname{argmin}} \|f - g\|^2 + \lambda J_w^{\operatorname{sob}}(g) = \sum_j \frac{\langle f, \psi_j^w \rangle}{1 + \lambda \lambda_j} \psi_j^w$$

$$\underset{g}{\operatorname{argmin}} \frac{1}{2} \|f - g\|^2 + \lambda J_w^{\operatorname{spars}}(g) = \sum_j S_\lambda(\langle f, \psi_j^w \rangle) \psi_j^w$$

 $S_{\lambda}(t)$ Soft thresholding operator $-\lambda$ λ

See [Peyré, SIAM MMS 2008]

$$J_w^{\text{spars}}(g) = \sum_j |\langle f, \psi_j^w \rangle|$$

Local manifold $p_x = x$

Semi-local manifold $p_x = (x, f(x))$

Non-local manifold $p_x = p_x(f)$

Adaptive Manifold Regularization

Find both solution f^* and adapted weights w^* :

$$(f^{\star}, w^{\star}) = \underset{(g,w)}{\operatorname{argmin}} \frac{1}{2} \|y - \Phi g\|^2 + \lambda J_w(g)$$

Iterative minimization algorithm for $J_w = J_w^{sob}$:

$$\int Step \ 1: \ w^* \text{ fixed, gradient descent with step } \tau$$

$$f^* \leftarrow f^* + \tau \Phi^* (\Phi f^* - y) - \tau \lambda \Delta^{w^*} f^*$$

$$\int Step \ 2: \ f^* \text{ fixed, estimate the graph } w^*$$

$$w^*(x, y) \leftarrow \exp\left(-\frac{\|p_x(f^*) - p_y(f^*)\|^2}{2\varepsilon^2}\right)$$

For non-smooth $J_w = J_w^{\text{tv}}$ replace gradient descent by proximal iterations. See [Peyré, Bougleux, Cohen, ECCV'08]

Inpainting Results

 $24.52 \mathrm{dB}$

23.24dB

24.79 dB

 $29.65 \mathrm{dB}$

 $28.68 \mathrm{dB}$ 30.14dB

Super-resolution Results

 TV

 $20.28 \mathrm{dB}$

21.33dB

 $20.23 \mathrm{dB}$

 $19.51 \mathrm{dB}$

 $20.53 \mathrm{dB}$

24.53 dB

 $25.67 \mathrm{dB}$

Compressed Sensing Results

24.91dB

26.06 dB

 $26.13 \mathrm{dB}$

 $25.33 \mathrm{dB}$

 $30.47 \mathrm{dB}$

24.12 dB

 $25.55 \mathrm{dB}$

 $32.20 \mathrm{dB}$

32.21 dB

Conclusion

The local geometry of images can sometimes be captured by a manifold \mathcal{M} . \longrightarrow low dimensional parameterization of the features.

Conclusion

The local geometry of images can sometimes be captured by a manifold \mathcal{M} . \longrightarrow low dimensional parameterization of the features.

For complex images, the manifold can be learned from the data. \longrightarrow computing non-local connexions between pixels.

Conclusion

The local geometry of images can sometimes be captured by a manifold \mathcal{M} . \longrightarrow low dimensional parameterization of the features.

For complex images, the manifold can be learned from the data. \longrightarrow computing non-local connexions between pixels.

Inverse problem resolution: energy design and minimization.

 \longrightarrow fixed manifold \mathcal{M} : iterative projection.

 \longrightarrow adaptive manifold \mathcal{M}_w : optimizing the connexions w.

iterations