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Manifold of Cartoon Images

NON-LOCAL SPECTRAL BASES 5

Fig. 1.2. Left: a cartoon image. Right: 3D representation of the set M as samples of the edge manifold
M̃ (depicted in 3D as a cylinder). The two curves on the manifold corresponds to patches extracted along the two
lines in the image.

2. Diffusions and Laplacians on a Manifold. In order to process an image f ∈ !2(Λ), this
paper uses tools from graph theory and calculus on manifolds in order to modify the associated
mapping f̃ ∈ !2(M) defined over the discretized manifold M. This section reviews several linear
operators that can be applied to elements of !2(M).

2.1. Discrete Diffusion Operators on Graphs. In the three processing modes, the set M
is embedded in the Euclidean space Rd with d = 2 for local computations, d = 3 for semi-local
computations and d = τ2 for non-local computations. As shown in section 1.3, in some special
case, the set M is close to a low dimensional smooth manifold M̃. It thus makes sense, for close
enough features p, q ∈ M to consider their extrinsic distance ||p − q|| computed over Rd as an
approximation for the geodesic distance dM̃(p, q) over M̃ which is usually not available.

Diffusion kernel. In order to process a manifold mapping g ∈ !2(M) (such as for instance f̃
itself or other mappings), one defines a symmetric isotropic kernel on pairs of points of the discrete
manifold

∀ p, q ∈M, W0(p, q) def.= exp
(
− ||p− q||2

2σ2

)
. (2.1)

The parameter σ is supposed to be small enough so that the extrinsic computation of ||p − q||
approximates the geodesic distance dM̃(p, q) for close pair of points (p, q) ∈ M2. In practice, σ
should be adapted for specific image processing applications.

The normalized filtering kernel is defined as

W (p, q) def.=
1

D(p)
W0(p, q) where D(p) def.=

∑

q∈Λ

W0(p, q). (2.2)

The kernel W defines an operator on mappings g ∈ !2(M)

∀ p ∈ Λ, Wg(p) def.=
∑

p∈M
W (p, q)g(q). (2.3)

This can be thought as a low-pass filtering of g since this operator does not modify constant
functions: W1 = 1. This filtering can be very different with respect to traditional isotropic
filterings when one considers semi-local or non-local embeddings. The left images of figure 2.1
show the diffusion of a Dirac W δ located in the center of the image. This diffusion is performed
using the operator W corresponding to the three computation modes (local, semi-local and non-
local). One should note that although W δ ∈ !2(M) is defined on the set M, it can be equivalently
displayed as a standard 2D image.

Linear operators such as W acts on elements of !2(M) which can be represented as discrete
vectors in Rn where n = |M| is the number of pixels in the input image f . These operators can
thus be considered as n× n matrices.

Laplacian operators. The Laplacian operator L and its symmetrized version L0 are defined as

L
def.= Id−W and L0

def.= D1/2LD−1/2 = Id−D−1/2W0D
−1/2, (2.4)



transform of p

p̂(ω) def.=
∫

h(t)p(t) exp(−iωt)dt.

Following Delprat et al. [44] (see also [38]), the projection of p is then given
as

ProjM(p) ≈ P(A,ρ,δ) where






ρ def.= argmax
ω!0

|p̂(ω)|

p̂(ρ) = A exp(iδ).
(21)

A 1D signal f defines a 1D curve c̃f ⊂M traced on the manifold and a 1D
curve C̃f in 3D parameter space

C̃f = ((A(x), ρ(x), δ(x)))x∈[0,1] where P(A(x),ρ(x),δ(x)) = ProjM(px(f)).

Figure 13 shows examples of a locally stationary oscillating signal together
with its spectrogram and the corresponding curve C̃f over the parametric
space.

Fig. 13. Upper-left: 1D signal of a bird singing, bottom left: the corresponding
log-spectrogram log(|p̂x(f)(ω)|) (the blue curve is the maxima curve (x, ρ(x))), right:
the 2D curve (A(x), ρ(x)). For the display, the curve has been disconnected in areas
where the bird stop singing (characterized by a low value of A(x)).

6.2 Manifold of Locally Parallel Textures

Some natural textures are composed of nearly parallel stripes that can be
modeled as local oscillations. This model of locally parallel textures is the
extension to images of the model of locally stationary sounds presented in
section 6.1. This model is studied Ben-Shahar and Zucker [45] who emphasis
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Original f Wavelets, PSNR=25.7dB Manifold, PSNR=31.3dB

Fig. 12. Compressive sampling reconstruction results on a geometrical image with
sparsity prior in wavelets and with the manifold model of affine edges. The number
of sensed vectors is n0 = n/8 where n is the number of pixels.

6 Manifold of Oscillating Patterns

6.1 Manifold of Locally Stationary Sounds

Natural sounds are usually modeled as highly oscillating signals with a phase
that is slowly varying. Such a signal can be written as

f(x) = A(x) cos(Ψ(x)),

where A(x) ! 0 is the local amplitude, and Ψ′(x) ! 0 the local phase of the
oscillations. Such a decomposition is however non uniquely defined and one
usually assumes that A and Ψ′(x) are slowly varying with respect to the signal
sampling so that they can be reliably estimated. This leads to the following
signals ensemble

Θ def.= {x !→ f(x) = A(x) cos(Ψ(x)) \ ||A′||∞ " Amax and ||Ψ′′||∞ " Ψmax.}

This model of locally stationary signals leads to the manifold of constant
oscillations

M =
{
P(A,ρ,δ) \ A ! 0 and ρ ! 0 and δ ∈ S1

}

where P(A,ρ,δ)(x) def.= A cos(ρx + δ).

The parameterization (A, ρ, δ) !→ P(A,ρ,δ) shows that M is equivalent to Ω =
R+ × R+ × S1.

The projection of a patch p ∈ L2([−τ/2, τ/2]) on M can be carried over
approximately using a windowed Fourier transform. One uses a smooth win-
dow function h supported on [−τ/2, τ/2] and defines the windowed Fourier
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Non-adaptive Manifold Energy Minimizationsince x ∈ [0, 1]2. This distance corresponds to the Euclidean distance over the
cube ϕ−1(M), but since c̃f has a complex convoluted geometry, this distance
is not Euclidean when displayed as a 2D image.

Image f Surface c̃f Distance dM
Fig. 2. Manifold of smooth images.

4.3 Numerical Experiments

Figure 3 shows iterations of the algorithm 1 to solve the inpainting problem
on a smooth image using a manifold prior with 2D linear patches, as defined in
16. This manifold together with the overlapping of the patches allow a smooth
interpolation of the missing pixels.

Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 3. Iterations of the inpainting algorithm on an uniformly regular image.

5 Manifold of Step Discontinuities

In order to introduce some non-linearity in the manifoldM, one needs to go
beyond the Fourier world of uniformly regular functions and consider signals
and images with discontinuities.

13



Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 9. Iterations of the inpainting algorithm on a piecewise smooth 1D signal.

discontinuity. In this case, the reconstruction with the manifold model gives
results similar to a sparsity prior (10) in a 1D wavelet basis. This is because
in 1D, piecewise smooth signals are highly sparse in a wavelet basis, see [38].

Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 10. Iterations of the inpainting algorithm on a geometrical image with the
binary edge model.

Figures 10 and 11 show iterations of the projection algorithm 1 with a manifold
model of binary edges, as defined in equation (19). For this numerical opti-
mization, the manifold of edges is discretized as already done for the display
of figure 7 and the projection ProjM is computed with a fast nearest-neighbor
search. For both inpainting and compressive sampling, the manifold of edges
allows to reconstruct with good precision the boundary of a single smooth
object (here a disk).

Iter. #1 Iter. #2 Iter. #3 Iter. #50

Fig. 11. Iterations of the compressive sampling reconstruction algorithm on a
geometrical image with the binary edge model. The number of sensed vectors is
n0 = n/10 where n is the number of pixels.

Figure 12 shows a more challenging compressive sampling problem where the
image is composed of layers of occluding objects with smooth boundaries and

18

Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 9. Iterations of the inpainting algorithm on a piecewise smooth 1D signal.

discontinuity. In this case, the reconstruction with the manifold model gives
results similar to a sparsity prior (10) in a 1D wavelet basis. This is because
in 1D, piecewise smooth signals are highly sparse in a wavelet basis, see [38].

Measurements y Iter. #1 Iter. #3 Iter. #50

Fig. 10. Iterations of the inpainting algorithm on a geometrical image with the
binary edge model.

Figures 10 and 11 show iterations of the projection algorithm 1 with a manifold
model of binary edges, as defined in equation (19). For this numerical opti-
mization, the manifold of edges is discretized as already done for the display
of figure 7 and the projection ProjM is computed with a fast nearest-neighbor
search. For both inpainting and compressive sampling, the manifold of edges
allows to reconstruct with good precision the boundary of a single smooth
object (here a disk).

Iter. #1 Iter. #2 Iter. #3 Iter. #50

Fig. 11. Iterations of the compressive sampling reconstruction algorithm on a
geometrical image with the binary edge model. The number of sensed vectors is
n0 = n/10 where n is the number of pixels.

Figure 12 shows a more challenging compressive sampling problem where the
image is composed of layers of occluding objects with smooth boundaries and

18
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Fig. 12. Compressive sampling reconstruction results on a geometrical image with
sparsity prior in wavelets and with the manifold model of affine edges. The number
of sensed vectors is n0 = n/8 where n is the number of pixels.
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Image f Euclidean distance Geodesic distance

Fig. 16. Geodesic computation on manifolds of locally parallel textures.

Iter. #1 Iter. #2 Iter. #3 Iter. #50

Fig. 17. Iterations of the inpainting reconstruction algorithm on a locally parallel
texture.

6.3 Numerical Experiments

Figure 17 shows an example of inpainting of a fingerprint image using the
manifold of 2D oscillations (22). Figure 18 shows the compressive sampling
reconstruction from the same image, where the manifold prior is compared
to a sparsity prior (10) in a local discrete cosine redundant frame. Such local
oscillating atoms have been introduced with success for texture decomposition
and inpainting in [28,29]. Both reconstructions shows similar distortion as
measured using PSNR (L2 norm), but the manifold prior tends to give a
smoother result, because of the overlapping of the patches.

24

Original f Local DCT, PSNR=21.9dB Manifold, PSNR=22.1dB

Fig. 18. Compressive sampling reconstruction results on a locally parallel texture
with sparsity prior in local DCT and with the manifold model. The number of sensed
vectors is n0 = n/5 where n is the number of pixels.

7 Manifold of Isolated and Periodic Patterns

7.1 Isolated patterns.

Natural textures are often composed of similar patterns distributed over the
image plane. Such a texture can be decomposed as

f(x) =
k∑

i=1

h(x− ci)

where h is the elementary pattern, which is supposed to have a compact sup-
port over [−s/2, s/2]2, where s should be comparable to τ in order for the patch
manifold to capture the geometry of the texture. We further impose that the
patterns are well separated which leads to the following texture ensemble

Θ =

{
k∑

i=1

h(x− ci) \ k > 0 and ∀ i #= j, ||ci − cj|| > s + τ

}

All the patches extracted from f can thus be written as

px(f)(t) = h(t− c(x)) where c(x) = argmin
1!i!k

||x− ci||.

The function c is thus piecewise constant with c(x) = ci for every point x in
the Voronoi region

Vi = {x \ ∀ j #= i, ||x− ci|| ! ||x− cj||} .

The patch manifold is thus composed of translation of the pattern h and can

25
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(a)

(b)

(c)

Fig. 2.1. Left: original image f . Right: heat diffusions with an increasing time for: (a) local embedding
x !→ x, (b) semi-local embedding x !→ (x, λf(x)), (c) non-local embedding x !→ px(f).

where D is the diagonal operator D = diagp∈M(D(p)).
The normalized Laplacian L0 corresponds to a discrete graph Laplacian as defined for example

by Chung [15]. For computer graphics purposes, other discretizations of the Laplacian are available
[44, 56] that make use of a triangulation data-structure. On real image data-sets, finding such a
triangulation is however non-trivial although some methods are emerging [11].

Gradient operators. The gradient operator maps g ∈ !2(M) defined on the discrete setM to
a measure of similarity on each couple of points ofM×M

∀ (p, q) ∈M×M, (Gg)(p, q) =
√

W0(p, q)

(
g(p)√
D(p)

− g(q)√
D(q)

)
. (2.5)

This gradient is thus a linear mapping G : !2(M) %→ !2(M ×M), which corresponds to a matrix
of n× n2 elements. One can also consider point-wise gradient vectors

∀ p ∈M, Gpg = ((Gg)(p, q))q∈M, (2.6)

which corresponds to vectors in Rn.
This normalized gradient is different from the more classical un-normalized gradient, as intro-

duced for instance in [30, 29]

∀ (p, q) ∈M×M, (G̃g)(p, q) =
√

W0(p, q) (g(p)− g(q)) . (2.7)

Section 7.1 and in particular figure 7.4 studies the advantages of using the normalized formulation.
The Laplacian L0 and its un-normalized version D−W0 are symmetric operators than can be

decomposed as

L0 = GTG and D −W0 = G̃TG̃ (2.8)

where GT is the transposed matrix.
Approximate Operators. The diffusion and Laplacian kernels W0 and L0 are linear operators on

!2(M) ' Rn and are computed as matrices of size n× n acting on Rn. These matrices are defined
using the gaussian weights (2.1) and are thus full and difficult to use for intensive computations. In
order to speed up both filtering computations and eigenvectors extraction, one typically uses either
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This equation allows one to solve exactly for fh
t and offers a non-iterative alternative to (4.4)

to compute the solution of the heat equation at a fixed time t. The diffused function fh
t at a

time t has its spectral coefficients reduced by the factor e−λωt which is small for large t and for
high-frequencies ω.

On figure 4.1, one can see the magnitude of noisy coefficients 〈f̃ , uω〉 for the local and non-
local expansions. The energy of the image is more concentrated on the low frequency part of the
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Fig. 2.2. Some eigenvectors uω of Laplacians for (a) the local Laplacian (Fourier basis), (b) the semi-local
Laplacian, (c) the non-local Laplacian. The image f used to compute the discrete manifold is shown on figure 1.1,
left.

3. Denoising: PDE Flows, Variational Minimization and Thresholding. Denoising
is modeled in a probabilistic way as an inverse problem where one wishes to recover an image f
from a noisy observation f = f0 +ε where ε is a white noise of variance |ε|2. A denoising algorithm
builds an estimator f̄ ∈ Rn of the true data f0 that depends only on the observed f . This estimator
is a random vector that depends on the gaussian noise ε and its efficiency is measured using the
expectation of the error E(||f0 − f̄ ||2).

This section reviews three important classes of estimators, which are all based on taking
advantage of a well chosen energy Ef (g) that should be small for typical images one wishes to
recover. It is important to note that the energy Ef might depend on the noisy input f itself, which
makes some of the proposed methods adaptive to the content of the image.

Sections 4, 5 and 6 specialize these three kinds of estimators to computations on a discrete
manifold M. They use either operators such as the gradient and the Laplacian on M (defined in
section 2.1) or the manifold spectral basis (introduced in section 2.3) to define the energy Ef .

Two approaches are usually considered in the literature. The first one uses tools from vari-
ational calculus and partial differential equations, while the other one exploits decompositions of
harmonic analysis with thresholdings in orthogonal bases. All the proposed estimators f̄ = ft

depend on some scale t > 0 that controls the degree of regularization one imposes on the solution.
This scale is adapted to the noise level more or less automatically.

3.1. PDE Flows. A PDE-flow regularizes the original noisy input f by a gradient descent
of the energy

∀ t > 0,
∂ft

∂t
= −gradft

(Ef ) with f0 = f. (3.1)

If the original energy Ef is quadratic, this leads to a linear differential equation, otherwise it can
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[39] also progressively builds an adapted operator (parameterized by a tensor
field) but they solve a PDE and not a regularization as we do.

Figure 1 shows some numerical examples of inpainting on images where 80%
of the pixels have been damaged. The wavelets method performs better than
total variation in term of PSNR but tends to introduce some ringing artifact.
The non-local total variation perform better in term of PSNR and is visually
more pleasing since edge are better reconstructed.

Input y Wavelets TV Non local

25.70dB 24.10dB psnr=25.91dB

24.52dB 23.24dB 24.79dB

29.65dB 28.68dB 30.14dB
Fig. 1. Examples of inpainting where Ω occupates 80% of pixels. The original images
f are displayed on the left of figure 3.

3.2 Super-resolution

Super-resolution corresponds to the recovery of a high-definition image from
a filtered and sub-sampled image. It is usually applied to a sequence of images
in video, see the review papers [41, 42]. We consider here a simpler problem
of increasing the resolution of a single still image, which corresponds to the

Inpainting Results



Non-local Regularization of Inverse Problems 9

inversion of the operator

∀ f ∈ Rn, Φf = (f ∗ h) ↓k and ∀ g ∈ Rp, ΦTg = (g ↑k) ∗ h

where p = n/k2, h ∈ Rn is a low-pass filter, ↓k: Rn → Rp is the sub-sampling
operator by a factor k along each axis and ↑k: Rp → Rn corresponds to the
insertion of k − 1 zeros along horizontal and vertical directions.

Input y Wavelets TV Non local

21.16dB 20.28dB 21.33dB

20.23dB 19.51dB 20.53dB

25.43dB 24.53dB 25.67dB
Fig. 2. Examples of image super-resolution with a down-sampling k = 8. The original
images f are displayed on the left of figure 3.

Figure 2 shows some graphical results of the three tested super-resolution
methods. The results are similar to those of inpainting, since our method im-
proves over both wavelets and total variation.

3.3 Compressive-sampling

Compressive sensing is a new sampling theory that uses a fixed set of linear
measurements together with a non-linear reconstruction [43, 44]. The sensing

Super-resolution Results
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Original f Wavelets TV Non local

24.91dB 26.06dB 26.13dB

25.33dB 24.12dB 25.55dB

32.21dB 30.47dB 32.20dB
Fig. 3. Examples of compressed sensing reconstruction with p = n/8.
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