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Variational image prior: J(f) depends on Vf.

Sparsity in ortho-basis {¥m, }m: J(f) = Z (f, Ym)].
Uniformly smooth C% image.

J(f)= [ |Vf]?, B =Fourier.
Discontinuous image with bounded variation.

J(f)= | |Vfl, B =wavelets.

Adaptive prior: J(f) = Ju(f), w =geometry.
— denoising: w estimated from noisy image.
— Inverse pbm: adapt w to the image to recover

Cartoon image with C™ edges.
— Adaptivity to the edge direction w.

Locally parallel, turbulent textures.

— Adaptivity to the texture orientation w.
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Variational image prior: J(f) depends on Vf.
Sparsity in ortho-basis {¥m, }m: J(f) = Z (f, Ym)].
Uniformly smooth C% image.

J(f)= [ |Vf]?, B =Fourier.
Discontinuous image with bounded variation.

J(f)= | |Vfl, B =wavelets.

Adaptive prior: J(f) = Ju(f), w =geometry.
— denoising: w estimated from noisy image.
— Inverse pbm: adapt w to the image to recover

Cartoon image with C™ edges.
— Adaptivity to the edge direction w.

Locally parallel, turbulent textures.
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Complex natural tmages: open question ...




T he Local Geometry of Images
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Model C? uniformly regular image.
Patches: linear gradient of intensity:.
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Model: cartoon image.

Patches: binary straight edge.

Model: bounded variation image.
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Model: locally parallel texture.
Patches: directional oscillations.




M odel C uniformly regular i 1mage M odel bounded variation image.
Patches: linear gradient of intensity:. Patches: finite length level sets.
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Model: cartoon image. Model: locally parallel texture.
Patches: binary straight edge. Patches: directional oscillations.

— represent patches with a small number of parameters.
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e Manifolds: Image Libraries vs. Patches
e Examples of Patch Manifolds
e Manifold Energies for Inverse Problems

« Non-adaptive Manifold Models

Joint work with

e Adaptive Manifold Models «—— Sebastien Bougleux
& Laurent Cohen




Library of images of n pixels: {fi}x C R".
Parameterized by a small number m < n of parameters
Ezample: V/H rotation 0,0, — fi(x)= fo(Re, 0,7).

Hypothesis: {fr} C M C R"™ smooth manifold of dimension m.




Patch extracted from f at location x € [0, 1]

VIt <7/2, pe(f)(t) = flz+1)
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Patch extracted from f at location x € [0, 1]

VIt <7/2, pe(f)(t) = flz+1)

[mage model: exploit an image ensemble © C L*(]0, 1]¢

T 3 &

© =smooth images © =cartoon images

M= {p,(g9)\z€[0,1]* and ge€ O} CL*(-7/2,7/2)).

What is the topology / geometry of M 7

Use it for synthesis of geometrical images.

Non-adaptive setting: M is fixed.



mage Models and Patch Manifolds

Non-adaptive pmcesszng exploit a signal ensemble © C L? ([0, 1]¢

o 2 <6

© =smooth images © =cartoon images ©, —oscﬂatmg textures

M ={p,(g) \z€[0,1]" and geO}C L*([—7/2,7/2]).
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© =smooth images © =cartoon images ©, oscﬂatmg textures

M= {p.(g)\z€[0,1)" and geO}cL*([-7/2,7/2)).

Adaptive processing: M = M is estimated from some f € L*([0, 1]%)
Estimating M ; — estimating connexions between the points {p,(f)}..

doo M

N\ |

/////

il )Hll K\\\

— use M or M to regularize image processing problems.
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.Manifold of Smooth Images

O =1{feC\|flew < Cp|Vflw < Co}
Patch =~ linear gradient of intensity.

P (f)(t) = a(z) + (b(z), )
where a(x)= f(x) and b(x)=V,f
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Manifold of Smooth Images

2 -
O={feC\|flo <C1[Vfle<C
Patch =~ linear gradient of intensity.
P (f)(t) = alz) + (b(x), 1) f H
where a(x)= f(x) and b(x)=V,f

Manifold of affine patches: M ={t+—a+ (b, t)\ |a| < C1,|b] < Cy}
M ~ [—Cl, 01] X [_CQ, CQ] [—CQ, C2} “3D cube”

M is a flat (Euclidean) manifold.

z — (z, f(z))



\anifold of Cartoon Images

Ocartoon = {f \ [ is C® outside C% curves}.

O={f=1q \ 90 a C” curve }.

px(f)(t) — P@(:r;),é(a:) (t)

Py5(t) = Po.o(Ro(t —9))
where { Py.o(z) = 14,50(x)
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Ocartoon = {f \ [ is C® outside C% curves}.

O={f=1q \ 90 a C” curve }.

px(f)(t) — P@(:U),5(az) (t)

Py5(t) = Po.o(Ro(t —9))
where { Py.o(z) = 14,50(x)

Manifold of binary edges:

M = {Pg’(g \ 0 e [0,271'),5 S R}
M~ S" xR (cylinder)




0 = {z+— f(z) = A(z) cos(¥(2)) \ A loo < Amax  and  [¥"]oc < Uinax.}

M = {P(A7p’5) \A>0 and p>0 and 0 € Sl}
where P4 5 (z) = Acos(pz +0).

60 -




- = \‘ \V
f(x) = A(x) cos(P(x)) % “ \ ‘_\‘ o)

Orientation: V,® \ “\\\ ) /

Phase ® slowly varying.
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Orientation: V,® \ o

At (s l[

pa:(f) ~ A(x)Pp(a;),G(a?),(S(:B) where Pp,g,(s(t) — COS(,O<t, 9> + 5)
M={AP,9s \ A<, p<Ca}

/4
f(z) = A(x) cos(®()) %

Phase ® slowly varying.

M ~[0,C4] % [0,C5] x St x S* # € S' (orientation but no direction)

(A(z), p(x),0(x),d(x)) can be estimated with a local Fourier transform.
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nverse Problems

Recovering f from ¢ noisy measurements y = ® f+noise.
® : RY — RY with ¢ < N (missing information)

Denoising: ® =identity, ¢ = V.
Inpainting: set Q C {0,..., N — 1} of missing pixels, g = N — [Q].

(@f)(x):{ 0 if =z €,

flx) if = ¢&Q.

Supe'r-resolutzon Of=(fxh)lk, ¢g= N/k

Compressed sampling: ( = (f, v;), w; random vector.
Of cR7is a compressed” version of f.

CS theory |Candes, Tao, Donoho, 2004]:
f can be well recovered if f is sparse in an ortho-basis.



Prior model: energy J(f) low for images of the model f € ©.

1
Penalized inversion: f* = argmin 5”(1)9 — y||2 + AJ(g)
g

A should be adapted to the measurement noise |® f — y| and the prior J(f)
—>  difficult in practice ...
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g

A should be adapted to the measurement noise |®f — y| and the prior J(f)
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Prior model: energy J(f) low for images of the model f € ©.

1
Penalized inversion: f* = argmin 5”(1)9 — y||2 + AJ(g)
g

A should be adapted to the measurement noise |®f — y| and the prior J(f)

Sobolev reqularization:

Total variation reqularization:

J(f) =
I(F) =

—>  difficult in practice ...

/
/1

Vaf

V. f]

2dx

dx

Sparse wavelets reqularization: J(f) = Z (f, ¥;)| where {i;}; wavelet basis.

Manifold reqularization:

Non-adaptive regularization: M fixed from a image model f € O.
Jam(g) measures how much patches Cr = (p(f))» are close to M.
Adaptive regularization: M = M = (p,(f))s estimated from some f.

Jw(g) measures the smoothness of g with respect to the geometry of M.
w is a graph that represent the geometry of M.
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Setting #1: manifold M defined by an a priori model f € ©.
M= {p.(9) \z€[0,1]* and ge O} CL*([-7/2,7/2]).
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Setting #1: manifold M defined by an a priori model f € ©.
M={p,(g)\z€[0,1]" and ge O} C L2([—T/2,T/2]).

© =smooth 1mages © =cartoon 1mages

Non-adaptive manifold energy:  Ja(g) = /distM (pz(g))dx

where  dista(p) = min |p — | = |p — Proju(p) Cy

LB N |
"""""
.
. ®
*

— Jam(g) is small if Va, p.(g) is close to M.

(paz(g))x and M.

— Average distance between the “surface” C, =



Manifold energy: Ja(g) = >, dist m(p2(9))

Regularized inversion: f* = argmin ly — @g[* + A\ (9)

{7 ()} = ar(gm)m ly — @g° +AZpr — paf? —
9,\Pzx )z

Include
patches (pg )z




Manifold energy: Ja(g) = >, dist m(p2(9))

Regularized inversion: f* = argmin ly — @g[* + A\ (9)

{f*, (p3)} = argmin |y — @g|* + AZ [p2(9) — pul® <—

g, (p:n)x

Step #1: the image f* is fixed, p, < Projy,(p=(f7)).

Step #2: (p)). fixed, f* computed by linear best fit

(P + AId) f* = "y + Ap”

—k 1 *
where p*(z) = — Z py(z —y)

lx—y|<T/2

Include
patches (pz )z



on-adaptive Manifold Energy Minimization

Manifold energy: Ja(g) = >, dist m(p=(g))

Regularized inversion: f* = argmin ly — <I>g||2 + AJa(9)

{f*, (p};)} = argmin |y — ®g|* + AZ 1p2(9) — pa|? <—

g, (pac):v

Include
patches (pz )z

Step #1: the image f* is fixed, p, < Projy,(p=(f7)).
Step #2: (p)). fixed, f* computed by linear best fit
(®*D + AId) f* = &*y + Ap~

~ 1
where p*(x) = ) Z py(r —y)
[z—y|<7/2

Manifold M of smooth patches.
:
M= 2)) \ |
-

Measurements y Iter. #1 Iter. #3 Iter. #50




Inpainting of a 1D curve with manifold of piecewise linear patches:

ﬂ\U J\ J\w

Measurements y Iter. #1 Iter. #3 Iter. #50
Inpainting with cartoon manifold: Compressed Sensing recovery:
A J w -
h r l
Measurements y Iter. #1 Iter. #3 Iter. #50 Original f Wavelets, PSNR=25.7dB  Manifold, PSNR=31.3dB

y parallel manifold: Compressed Sensing recovery:

T M T = L AR AR

i
—

L=

[ S = =
Iter. #50 Original f Local DCT, PSNR=21.9dB Manifold, PSNR=22.1dB
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Weights for a patch manifolds estimated from an image f:

(f) —py(f)l\2>

2e?

wr(z,y) = wps(f), py(f)) = exp (_ P2

Non-local means [Buades, Coll, Morel, 2005]

Image ﬁltering W associated to we(x,y)

Weg(x wa T,)g where 7, = Zw]v(x,y)

Yy

_ Irﬁagé f | Weights w(z, -)



Weights for a patch manifolds estimated from an image f:

(f) —py(f)|\2>

2e?

wr(z,y) = wps(f), py(f)) = exp (_ P2

Non-local means [Buades, Coll, Morel, 2005]

Image ﬁltermg W associated to we(x,y)

Weg(z wa T,Yy)g where Z, = wa T,y) %.

Image f Weights w(x

Non-local means: apply W, to f itself!
f=W;f

— adaptive filtering

Gaussian blurrmg NL-means f



Setting #2: M = My = (pz(f))= is computed from some image f.

Weighted graph wy(ps, py) = exp (_ ”px;;;y ||2>

/,‘ ////4.: u/‘;,” kk\\\\

Weight w 7z, y) on image.

Weight w(pz,p,) on manifold.



Setting #2: M = My = (pz(f))= is computed from some image f.
_pz—pyl® )

Weighted graph w¢(p.,py,) = exp ( 522

: 1 q" ; 7 ‘ .
N 2T
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Wéight wr(x,y) on image.
Manifold Sobolev energy: J5°P(g) = D ey We(T,y)|g(T) — g(y)|?.

Manifold TV energy: J,;'(9) = >_, , wr(z,y)|9(z) — g(y)|.

V(z,y), g(z)=~g(y) for points (pz(f),py(f)) close on the manifold M.

Weight w(pz,p,) on manifold.



Setting #2: M = My = (pz(f))= is computed from some image f.

Weighted graph wy(ps, py) = exp (_ ”px;;;y ||2>

Welght wy(z, y) on 1mage Weight w(pz,p,) on manifold.

Manifold Sobolev energy: J5°P(g) = D ey We(T,y)|g(T) — g(y)|?.

Manifold TV energy: J,;'(9) = >_, , wr(z,y)|9(z) — g(y)|.
V(z,y), g(z)=~g(y) for points (pz(f),py(f)) close on the manifold M.

Optimize w to the geometry of the solution.

—— denoising: easy, adapt w to the noisy observation f-noise.
[Coifman, Lafon et al. 2005] [Gilboa et al. 2007 * - -

— inverse problems: difficult, needs to find both w and f*.



Gradient descent: non-local heat equation 0”9t = —A"g, and gy=g

ot?
Denoise by heat diffusion ¢ — f; with weights w; and fo = f.
TR, T T — ——
it

Local manifold p, = x Local manifold p, = @

kfl . . . . iy m

i
Semi-local manifold p, =

Non-local manifold p, =

Semi-local manifold p, = (z, f(x

-*wrmm}r; wrfmuif QL] “Wﬂ'ﬂ'ﬂﬁ
i II i ) ¥ |

Non local manifold p, = p.(f




anifold Spectral Basis

Eigenvectors of the Laplacian A": B(w) = {9} }; ortho-basis of R".

AP = Ay A; =~ frequency.

TP (9) = (g, A%g) ZM f )17 T(g9) = Y If, o)

J

Local manifold p, =

Semi-local manifold p, = (a:,f (x))

Non-local manifold p, = p.(f)



anifold Spectral Basis

Eigenvectors of the Laplacian A": B(w) = {9} }; ortho-basis of R".

AP = Ay A; =~ frequency.

T (9) = (g, A"g) ZM f )17 T(g9) = Y If, o)

J

X
argmin | — gl + AT (g
! -y T Y

J

)\J
)1
. 1 S ars w w
rain gl — g ARI0) = 2 S (s HMﬁH
g .
J

Local manifold p, =

Soft thresholding
operator

¢ Semi-local manifold p, = (a:,f (x))

See [Peyré, SIAM MMS 2008]

Non—locl manifold p, = p.(f)



Find both solution f* and adapted weights w™:

1
(f*,w*) = argmin =y — Dg|* + A\ Jw(g)
(g,w) 2

Iterative minimization algorithm for .J,, = J5°P:
Q Step 1: w* fixed, gradient descent with step 7
[ AT (@ —y) - TAAY f

Step 2: f* fixed, estimate the graph w*

Y I (_ (/) —py(f*)||2>

2e?

For non-smooth J,, = J replace gradient descent by proximal iterations.

See [Peyré, Bougleux, Cohen, ECCV’08]



npainting Results

Wavelets

Non local
g . w»

L

29.65dB 28.68dB 30.14dB



Super-resolution Results

Input y Wavelets Non local

LA AL

21.16dB 20.28dB 21.33dB
I




26.06dB

. r\ $ I
1 ! oo 8

4 "’
|5y /£ %, WES

32.21dB 30.47dB 32.20dB



The local geometry of images can sometimes be captured by a manifold M.
— low dimensional parameterization of the features.

Eﬂﬂ:ﬂ!ﬂ ..m...




onclusion

The local geometry of images can sometimes be captured by a manifold M.
— low dimensional parameterization of the features.

Y = B llmll

For complex images, the manifold can be learned from the data.
— computing non- local connexions between pixels.




Eﬂﬂﬂﬁﬂ II III

For complex images, the manifold can be learned from the data.
— computing non-local connexions between pixels.

Inverse problem resolution: energy design and minimization.

— fixed manifold M: iterative projection.

— adaptive manifold M,,: optimizing the connexions w. iterations



