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3Block-Matching and 3D Þltering (BM3D)
denoising algorithm

Generalizes NL-means and overcomplete transform methods.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �Image denoising with block-matching
and 3D Þltering�, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, Jan. 2006.

� , �Image denoising by sparse 3D transform-domain collaborative Þltering�, IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.



4Block-Matching and 3D Þltering (BM3D) denoising algorithm

Represents the state-of-the-art in image denoising.

�Probably the most impressive results for a block matching based denoising have been
just reported by Dabov et al.� � Buades-Coll-Morel, July 2007.

�[...] the current state-of-the-art denoising method, BM3D.� � Lyu-Simoncelli, 2008.

A. Buades, B. Coll, and J. M. Morel, �Nonlocal image and movie denoising�, Int. J.
Computer Vision, July 2007.
S. Lyu, and E. Simoncelli, �Modeling multiscale subbands of photographic images with
Þelds of Gaussian scale mixtures�, IEEE TPAMI, to appear.
E. Vansteenkiste, D. Van der Weken, W. Philips, and E. Kerre, �Perceived image quality
measurement of state-of-the-art noise reduction schemes�, LNCS 4179 - ACIVS 2006, pp.
114-124, Springer, Sept. 2006.
S. Lansel, D. Donoho, and T. Weissman, �DenoiseLab: a stan-
dard test set and evaluation method to compare denoising algorithms�,
http://www.stanford.edu/~slansel/DenoiseLab/.



5Observation model for the image denoising problem

z (x) = y (x) + η (x) , x ∈ X ⊂ Z2,

z : X → R observed noisy image

y : X → R unknown original image (grayscale)

η : X → R i.i.d. Gaussian white noise, η (·) ∼ N
¡
0, σ2

¢
Notation

Given a function f : X → R, a subset U ⊂ X, and a function g : U → R, we denote by:

f|U : U → R the restriction of f on U , f|U (x) = f (x) ∀x ∈ U ;

g|X : X → R the zero-extension of g to X,
¡
g|X

¢
|U = g and g

|X (x) = 0 ∀x ∈ X \ U ;

χU = 1|U|X the characteristic function (indicator) of U ;

|U | the cardinality of U (i.e. the number of its elements of U);

~ the convolution operation.



6Block-matching

Let x ∈ X and denote by �Bx ⊂ Z2 be the square block of size l × l �cen-
tered� at x. Let B be the collection of all such blocks which are entirely contained

in X, B =
n
�Bx : x ∈ X, �Bx ⊂ X

o
. Equivalently, deÞne XB =

n
x ∈ X : �Bx ∈ B

o
=n

x ∈ X : �Bx ⊂ X
o
⊂ X.

For each block �Bx ∈ B, (i.e. for each point x ∈ XB), we look for �similar� blocks �Bx0 whose
range distance dz (x, x0) with respect to �Bx,

dz (x, x
0) =

°°°z| �Bx − z| �Bx0

°°°
2
,

is smaller than a Þxed threshold τmatch ≥ 0.

Thus, we construct the set Sx that contains the central points of the found blocks:
Sx = {x0 ∈ XB : dz (x, x0) ≤ τmatch} .

The threshold τmatch is the maximum dz-distance for which two blocks are considered
similar.

In case of heavy noise, we embed a coarse preÞltering within dz (e.g., 12-distance of thresh-
olded spectra). Otherwise, we need to increase l.



7Block-matching

To a Þxed �reference� block �BxR ∈ B associate a collection (disjoint union) eBxR of neigh-
borhoods: eBxR =

a
x∈SxR

�Bx =

=
n³
�Bx, x

´
: x ∈ SxR

o
⊂ X × SxR ⊂ X ×X.



8Group

collection of the noisy patches z| �Bx ,
�Bx ∈ eBxR

(Compact notation) ZxR :
eBxR → R.

The patches can be stacked together into a 3-D data array
deÞned on the square prism B × {1, . . . , |SxR |}.



9Why groups are good and why do we need to be careful

Groups are characterized by both:
¦ intra-block correlation between the pixels of each grouped block (natural images);
◦ inter -block correlation between the corresponding pixels of different blocks (grouped
block are similar);

Warnings:
¦ blocks are not necessary ßat or smooth but can be anything;
◦ �similar� does not mean �identical�.

Goals:
¦ exploit intra-block correlation whenever possible, without smoothing away the unex-
pected;

◦ exploit similarity in the forms in which it exists, without forcing dissimilar blocks to
become identical.



10Collaborative Þltering

� each grouped block collaborates for the Þltering of all others, and vice versa.
� provides individual estimates for all grouped blocks (not necessarily equal).

Realized as shrinkage in a 3-D transform domain.

Typically separable transform: T 3D = T 2D ◦ T 1D .

E.g.: 2D-DCT ◦ DCT = 3D-DCT
or, restricting h and |SxR | to powers of two,

biorth. 2D-DWT ◦ Haar 1D-DWT
shrinkage: hard-thresholding

bYxR = T
3D−1 (shrink (T 3D (ZxR)))

The group estimate bYxR :
eBxR → R is composed of

slices with local block estimates �yx,xR :
�Bx → R for each �Bx ∈ eBxR .

Total variance of bYxR can be estimated as tsvar
nbYxR

o
≈ σ2Nhar

xR ,

Nhar
xR is number of coefficients of T 3D(ZxR) that survive thresholding

(so-called �number of harmonics�).



11Collaborative Þltering



12Aggregation

For each reference point xR ∈ X, grouping and collaborative Þltering generate a groupbYxR of |SxR | distinct local estimates of y.

Overall, we have a highly redundant and rich representation of the original image y com-
posed of the estimates a

xR∈X, x∈SxR
�yx,xR , where �yx,xR :

�Bx → R.

Note: different groups ZxR and Zx0R can lead to different estimates �yx,xR and �y
x,x0

R
even

when these estimates are deÞned on the same block �Bx !

In order to obtain a single global estimate �yht : X → R deÞned on the whole image
domain, all these local estimates are averaged together using adaptive weights wxR > 0 in
the following convex combination:

�yht =

X
xR∈X

X
x∈SxR

wxR �yx,xR
|XX

xR∈X

X
x∈SxR

wxRχ �Bx

wxR =
1

σ2Nhar
xR

.



13Wiener Þltering stage

Denoising can be improved by performing matching within this estimate and replacing
hard-thresholding by empirical Wiener Þltering in the collaborative shrinkage.

Block-Matching

Noise in �yht is signiÞcantly attenuated: more accurate matching by replacing the distance
dz by a distance d�yh t :

d�yh t (xR, x) =
°°°�yht | �BxR

− �yht | �Bx
°°°
2
,

The sets SxR are redeÞned as
SxR =

©
x ∈ XB : d�yh t (xR, x) ≤ τmatch

ª
.

These new sets SxR lead to new collections (disjoint unions) of blocks eBxR = `
x∈SxR

�Bx.

Grouping: two groups

ZxR :
eBxR → R, built by stacking together the noisy patches z| �Bx

, �Bx ∈ eBxRbYht
xR :

eBxR → R, built by stacking together the estimate patches byht| �Bx , �Bx ∈ eBxR



14Collaborative Wiener Þltering

Group Wiener estimate bYxR = T
3D−1 (WxRT

3D (ZxR))

Wiener attenuation factors WxR =
(T 3D (!Yh t

xR
))

2

(T 3D (!Yh t
xR
))

2
+σ2

Estimate of total variance tsvar
nbYxR

o
≈ σ2 kWxRk

2
2.

Aggregation

Global estimate �ywie =

P
xR∈X

P
x∈SxR wxR �yx,xR

|XP
xR∈X

P
x∈SxR wxRχ �Bx

, wxR =
1

σ2 kWxRk
2
2

.



15BM3D ßowchart

B Process overlapping blocks in a raster scan. For each such block, do the following:
(a) Use block-matching to Þnd the locations of the blocks that are similar to the cur-

rently processed one. Form a 3D array (group) by stacking the blocks located at
the obtained locations.

(b) Apply a 3D transform on the formed group.
(c) Attenuate the noise by shrinkage the 3D transform spectrum.
(d) invert the 3D transform to produce Þltered grouped blocks.

B Return the Þltered blocks to their original locations in the image domain and compute
the resultant Þltered image by a weighted average of these Þltered blocks (aggregation).



16Is BM3D slow?

Based on blockwise estimates, the algorithm allows for dramatic complexity reduction
and thus acceleration with negligible loss of denoising performance.

Complexity reduction:
� use predictive-search for block-matching;
� use separable wavelets for the 3D transform (Haar/biorthogonal);
� scalable (controlling the level of overcompleteness and predictive-search).

Eventually, BM3D is faster than other algorithms of comparable denoising performance.



17Shape-adaptive BM3D (BM3D-SADCT)

Associate to every x ∈ X an adaptive neighborhood �U+x where a low-order polynomial
model Þts to the data.

By demanding the local Þt of a polynomial model, we are able to avoid the presence of
singularities, discontinuities, or sharp transitions within the transform support. In this
way, we increase further the sparsity in the transform domain, improving the effectiveness
of shrinkage.

Main ingredients:

� Local Polynomial Approximation - Intersection of ConÞdence Intervals
(LPA-ICI) to adapt with respect to unknown smoothness of the image;

� Block-Matching to enable non-locality;
� Shape-Adaptive DCT low-complexity 2D transform on arbitrarily-shaped domains
enables efficient shape-adaptive collaborative Þltering.



18Directional varying-scale LPA estimates
�yh,θk = z ~ gh,θk

scales: h ∈ {h1, . . . , hJ} = H
directions: θk =

(k−1)
4 π, k = 1, . . . , 8

ICI directional adaptive scales
{h+ (x, θk)}8k=1

Adaptive neighborhood of the origin
U+x = polygonal_hull

©
supp gh+(x,θk),θk

ª8
k=1

Adaptive neighborhood
of estimation point x
(mirror-translates)

�U+x =
= {v ∈X : (x−v)∈U+x }



19Intersection of ConÞdence Intervals (ICI ) (Goldenshluger&Nemirovski, 1997)
(for each Þxed direction θk)

The estimates �yh(x) are calculated for a set H = {hj}Jj=1 of increasing scales. The ICI rule
yields a pointwise adaptive estimate �yh+(x), where for every x an adaptive scale h+ (x) ∈ H
is used such that �yh+(x) ≈ �yh∗(x)(x).
ICI rule: Consider the intersection of conÞdence intervals

Ij=
j\
i=1

Di, where Di =
h
�yhi(x) − Γσ�yhi , �yhi(x)+Γσ�yhi

i
and Γ>0 is a threshold parameter, and let j+ be the largest of the indexes j for which Ij
is non-empty, Ij+ 6=∅ and Ij++1=∅. Then, h+ is deÞned as h+=hj+ and the adaptive
estimate is �yh+(x).



20Block-matching

Adaptive neighborhoods can be too small for reliable matching!

Matching for �U+x needs to be carried out for a superset.

We use square blocks of size (2hmax − 1)× (2hmax − 1) centered at x, hmax = max {H}.

Adaptive neighborhoods �U+x ∀x ∈ X
Blocks �Bx ∀x ∈ XB ( X

To every x ∈ X we associate xB ∈ XB such that kδB (x)k2 of δB (x) = xB − x is minimal.
The mapping x 7→ xB and δB (x) are univocally deÞned (for convex X).

δB (x) 6= 0 only for x sufficiently close to the boundary ∂X of X.



21Shape-adaptive grouping

For given points x, xR deÞne the translate of �U+xR
�U+x,xR =

©
v ∈ X : (x− v) ∈ U+xR

ª
=
n
v ∈ X : (xR − x+ v) ∈ �U+xR

o
.

�U+x,xR is an adaptive neighborhood of x which uses the
adaptive scales of the �reference point� xR.

It can happen that �U+x,xR 6= �U+x .

To a given �reference� point xR we can now associate not only its own adaptive neighbor-
hood �U+xR , but a collection (disjoint union)

eUxR of neighborhoods deÞned aseUxR = a
x+δB (xR)∈SxR+δB (xR)

�U+x,xR =
n
�U+x,xR : x+ δB (xR) ∈ SxR+δB (xR)

o
,

where SxR+δB (xR) is the result of block-matching for
�BxR+δB (xR).

All neighborhoods in eUxR have the same shape, completely determined by adaptive scales
{h+ (xR, θk)}8k=1 at xR.



22Shape-Adaptive Discrete Cosine Transform (SA-DCT) (Sikora et al., 1995)

Shape-Adaptive Discrete Cosine Transform (SA-DCT) and its inverse. Transformation
is computed by cascaded application of one-dimensional varying-length DCT transforms,
along the columns and along the rows.



23Shape-Adaptive Discrete Cosine Transform (SA-DCT)

� direct generalization of the classical block-DCT (B-DCT);
� on rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
� the same computational complexity as the B-DCT (separable);
� SA-DCT is part of the MPEG-4 standard;
� efficient (low-power) hardware implementations available;

� shape must be coded separately (constitutes some overhead).

Orthonormal SA-DCT does not have a DC term and works best if applied on zero-mean
data: �Orthonormal SA-DCT with DC separation and ∆DC compensation�, Kauff et al.
1997.
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SA-DCT (forward transform)
[as used in Pointwise SA-DCT denoising algorithm (Foi et al., IEEE TIP 2007)]

Shape-adaptive collaborative Þltering (forward transform)



25BM3D-SADCT

BM3D-SADCT algorithm follows the general scheme of BM3D:

LPA-ICI + Block-Matching/Grouping + Collaborative hard-thresholding + Aggregation

LPA-ICI + Block-Matching/Grouping + Collaborative Wiener Þltering + Aggregation

!!! Delicate points with respect to standard BM3D are:
Wiener Þltering (DC separation)

aggregation weights (supports of different sizes)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �A non-local and shape-adaptive
transform-domain collaborative Þltering�, LNLA 2008, August 2008.



26Denoising results

Noisy Cameraman, σ = 25 BM3D PSNR=29.48dB



27Denoising results

P.SADCT PSNR=29.10dB BM3D-SADCT PSNR=29.56dB



28Denoising results

Noisy Barbara, σ = 25 BM3D PSNR=30.72dB



29Denoising results

P.SADCT PSNR=28.94dB BM3D-SADCT PSNR=30.59dB



30Denoising results

Noisy GreyCheese, σ = 25 BM3D PSNR=36.71dB



31Denoising results

P.SADCT PSNR=38.68dB BM3D-SADCT PSNR=39.62dB



32Video denoising (VBM3D)



33Collaborative sharpening

Introduce alpha-rooting immediately after shrinkage, before inverting the T 3D transform.
Modify aggregation weights (sharpening changes the total variance of the estimate group).

Alpha-rooting (Aghagolzadeh&Ersoy, 1992)

Transform spectrum t of a signal with DC coefficient t (0), α ≥ 1 sharpening exponent

tsharp (i) =

 sign [t (i)] |t (0)|
¯̄̄̄
t (i)

t (0)

¯̄̄̄ 1
α , if t (0) 6= 0

t (i) , otherwise.



34Aggregation weights for sharpening

Variance of sharpened coefficients (using Þrst order approximations)

var {tsharp (i)} '
µ
1− 1

α

¶2
|t (0)|−

2
α |t (i)|

2
α σ2 +

1

α2
|t (i)|

2
α−2 |t (0)|2−

2
α σ2 =

= ωiσ
2.

Total variance of the thresholded and sharpened group bYs h a rp
xR is approximated as

tsvar
nbYsh a rp

xR

o
= σ2 +

X
t(i)6=0,i>0

ωiσ
2.

Hence, aggregation weights are

wxR =
1

tsvar
nbYs h a rp

xR

o .



35Collaborative sharpening: experiments

Noisy House, σ = 10



36Collaborative sharpening: experiments

BM3D-SH3D, α = 1.2



37Collaborative sharpening: experiments

BM3D-SH3D, α = 1.4



38Collaborative sharpening: experiments

BM3D-SH3D, α = 1.6



39Collaborative sharpening: experiments

BM3D-SH3D, α = 1.8



40Collaborative sharpening: experiments

BM3D-SH3D, α = 2.0



41Collaborative sharpening: experiments

Noisy Fundus σ = 20 BM3D-SH3D



42BM3D Deconvolution (non blind)

Approach:

standard Tikhonov regularized deconvolution coupled with BM3D regularization
(in practice the Þltering is equivalent to colored noise removal)

References:

K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, �Image restoration by sparse 3D transform-
domain collaborative Þltering�, Proc. SPIE El. Imaging 2008, Image Process.: Algorithms
and Systems VII, 6812-06, San Jose (CA), USA, January 2008.

A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian, �Shape-adaptive DCT for denoising
and image reconstruction�, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms and
Systems V, 6064A-18, San Jose (CA), USA, January 2006.



43Iterative image reconstruction

Ω is the support of the available portion of the spectrum y

y = y1 + y2 = χΩy + (1− χΩ) y

Recursive algorithm

(
�y
(0)
2 = 0, (initialization) k = 0,

�y
(k)
2 = �y

(k−1)
2 − γk

h
�y
(k−1)
2 − (1− χΩ)T

³
Φ
³
T −1

³
y1 + �y

(k−1)
2

´´´
+ (1− χΩ) ηk

i
, k ≥ 1.

T transform T = F Fourier
Φ spatially adaptive Þlter Φ = BM3D
ηk excitation noise ηk = N

¡
0, α−k−β

¢
γk step size γk = 1



44Possible interpretations:

stochastic optimization (Robbins-Monro type),
random search,

simulated annealing,
randomized alternated projections / POCS,

etc.



45Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

Shepp-Logan phantom

T =F Fourier transform



46Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

11 radial lines 11 radial line limited angle (61 lines)

χΩ

image
(b.p.)



47Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

In all three cases we achieve exact reconstruction (PSNR'260dB)



48Image upsampling

χΩ image (b.p.)



49Image upsampling

extrapolating missing high-frequencies



50Image upsampling (4×, blind case)



51References:

Egiazarian, K., A. Foi, and V. Katkovnik, �Compressed Sensing Image Reconstruction via
Recursive Spatially Adaptive Filtering�, Proc. IEEE Int. Conf. Image Process., ICIP
2007, San Antonio, TX, USA, pp. 549-552, September 2007.

Image upsampling across wavelet approximation subbands (nested recursion)

A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian: "Image Upsampling via Spatially
Adaptive Block-Matching Filtering�, EUSIPCO 2008, August 2008.

Super-resolution of video

A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian: "Image and video super-resolution
via spatially adaptive block-matching Þltering", LNLA 2008, August 2008.
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LNLA 2008

2008 International Workshop on
Local and Non-Local Approximation

in Image Processing

Lausanne, Switzerland - August 23-24, 2008

http://sp.cs.tut.fi/ticsp/lnla08

LNLA 2008 is a satellite event of EUSIPCO 2008 (August 25-29, 2008).


