A Behavior Language for Story-based Believable Agents

Michael Mateas
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
michaelm@cs.cmu.edu
www.cs.cmu.edu/~michaelm

Abstract

ABL is a reactive planning language, based on tlee O
Project language Hap, designed specifically foharinhg
believable agents - characters which express rich
personality, and which, in our case, play roles an
interactive, dramatic story world called FacadereHwe
give a brief overview of the language Hap and discihe
new features in ABL, focusing on ABL’s support foulti-
character coordination. We also describe the ABbns

we are using to organize character behaviors irctimeext

of an interactive drama.

Introduction

Facade is an attempt to move beyond traditionaldiviag
or hyper-linked narrative, to create a fully-reatiz
interactive drama - a dramatically interestinguattworld
inhabited by computer-controlled characters, withimich

Andrew Stern
InteractiveStory.net
andrew@interactivestory.net
www.interactivestory.net

the user (hereafter referred to as the player) reeqpees a
story from a first person perspective (Mateas atetnS
2000). The complete, real-time, 3D, one-act intiévac
drama will be available in a free public releasthatend of
2002.

You, the player, using your own name and gendes, p
the character of a longtime friend of Grace andp,Tén
attractive and materially successful couple in rtresrly
thirties. During an evening get-together at tlegiartment
that quickly turns ugly, you become entangled i tiigh-
conflict dissolution of Grace and Trip’s marriadéo one

is safe as the accusations fly, sides are taken and

irreversible decisions are forced to be made. Hayend of
this intense one-act play you will have changedciverse
of Grace and Trip’s lives -- motivating you to rieyp the
drama to find out how your interaction could makings
turn out differently the next time. The player iatets by
navigating in the world, manipulating objects, amnapst

Screen shot dfacadeshowing the characters Grace and Trip



significantly, through natural language dialogue.

This project raises a number of interesting Alessh
issues, including drama management for coordingtlot
level interactivity, broad but shallow support foatural
language understanding and discourse managemetht, an
autonomous believable agents in the context ofanteve
story worlds. This paper focuses on the last issue,
describing the custom believable agent languageldped
for this project, and the idioms developed withimst
language for organizing character behaviors.

Project Goals

The field of interactive drama concerns itself withilding
dramatically interesting virtual worlds inhabitedy b
computer-controlled characters, within which theerus
(hereafter referred to as the player) experiencesosy
from a first person perspective. Over the pasadechere
has been a fair amount of research on believakdatag
that is, autonomous characters exhibiting rich qeaibties,
emotions, and social interactions (Bates, Loyatl Reilly
1992; Blumberg 1996; Lester and Stone 1997; Mateas
1999; Stern 1999). There has been comparativete lit
work, however, exploring how the reactive behawvidr
believable agents can be integrated with the more
deliberative nature of a story plot, so as to bintdractive,
dramatic worlds (Weyhrauch 1997). Likewise,
computer game industry has had little success éatirrg
powerful interactive narrative experiences in thgames.
Although games often have characters in them, siscim
adventure or role-playing games, with few excegitirey

are not "believable", behaving one-dimensionallyd an
predictably, with little potential for more than alow
interactivity.

Motivated by their belief that a “fully-realized”
computer-based interactive drama has not yet bedth b
the authors are currently engaged in a three vyear
collaboration to build Facade, an interactive story
integrating an interdisciplinary set of artisticaptices and
artificial intelligence technologies.

the

Story Requirements

The story requirements describe the propertieswigh
our particular interactive drama to have. (These are not
intended to be absolute requirements; that is, ithisot a
description of the properties that all interact$teries must
have.)

Short one-act play. Any one run of the scenario should
take the player 15 to 20 minutes to complete. Weigoon
a short story for a couple of reasons. Building
interactive story has all the difficulties of wngf and
producing a non-interactive story (film or playuglall the
difficulty of supporting true player agency in thtory. In
exploring this new interactive art form it makeqise to
first work with a distilled form of the problem, gboring
scenarios with the minimum structure required tppsut

an

dramatically interesting interaction. In additioa, short
one-act play is an extreme, contrarian respongigetonany
hours of game play celebrated in the design of
contemporary computer games. Instead of providimg t
player with 40 to 60 hours of episodic action andless
wandering in a huge world, we want to design an
experience that provides the player with 15 to 20utes

of emotionally intense, tightly unified, dramatictian. The
story should have the intensity, economy and caihanf
traditional drama.

Relationships. Rather than being about manipulating
magical objects, fighting monsters, and rescuirigcgisses,
the story should be about the emotional entanglésnei
human relationships. We are interested in interacti
experiences that appeal to the adult, non-compygek,
movie-and-theater-going public.

Three characters. The story should have three
characters, two controlled by the computer and one
controlled by the player. Three is the minimum nembf
characters needed to support complex social irtierac
without placing the responsibility on the player to
continually move the story forward. If the playsrshy or
confused about interacting, the two computer cdletio
characters can conspire to set up dramatic sinstall the
while trying to get the player involved.

The player should be the protagonist. Ideally the
player should experience the change in the protagas a
personal journey. The player should be more than an
"interactive observer," not simply poking at theotw
computer controlled characters to see how theygshan

Embodied interaction should matter. Though dialogue
should be a significant (perhaps the primary) meisma
for character interaction, it should not be the esol
mechanism. Embodied interaction, such as moving fro
one location to another, picking up an object,ooarching a
character, should play a role in the action. Thasgsical
actions should carry emotional and symbolic weigim
should have a real influence on the charactersthen
evolving interaction. The physical representatidntie
characters and their environment should supporibract
significant to the plot.

Action takes place in a single location. This provides
unity of space and forces a focus on plot and dhara
interaction.

The player should not be over-constrained by a role.
The amount of non-interactive exposition describthg
player's role should be minimal. The player shawdtihave
the feeling of playing a role, of actively having think
about how the character they are playing would treac
Rather, the player should be able to be herselthes
explore the dramatic situation. Any role-relatedmimng of
the interactor (Murray 1998) should occur as a naétioy-
product of their interaction in the world. The ptayshould
"ease into" their role; the role should be the tralt' way
to act in the environment, given the dramatic situa



ABL overview

ABL (A BehaviorLanguage, pronounced “able”) is based
on the Oz Project believable agent language Hapldped
by A. B. Loyall (Loyall 1997, Bates, Loyall and Hgi
1992). The ABL compiler is written in Java and &g
Java; the generated Java code is supported by Bie A
runtime system.

ABL modifies Hap in a number of ways, changing the
syntax (making it more Java-like), generalizing the
mechanisms by which an ABL agent connects to aosgns
motor system, and, most significantly, adding new
constructs to the language, including language adpr
multi-agent coordination in the carrying out of mhatic
action. This section provides an overview of the LAB
language and discusses some of the ways in which AB
modifies or extends Hap. The discussion of joirtehors,
the mechanism for multi-agent coordination, ocaargts
own section below.

Hap Semantics

Since ABL builds on top of Hap, here we briefly cidéise

the organization and semantics of a Hap program by
walking through a series of examples. All exampiges the
ABL syntax.

Hap/ABL programs are organized as collections of
behaviors. In sequential behaviors, the steps & th
behavior are accomplished serially. As each step is
executed, it either succeeds or fails; step suaveses the
next step available for execution. If any stepsfail causes
the enclosing behavior to fail. An example sequanti
behavior is shown below.
sequential behavior AnswerTheDoor() {

WME w;

with success_test { w = (KnockWME) } wait;
act sigh();

subgoal OpenDoor();

subgoal GreetGuest();
mental_act { deleteWME(w); }

In this sequential behavior, an agent waits foneone
to knock on a door, sighs, then opens the doorgaedts
the guest. This behavior demonstrates the fourchstep
types, namelyvait , act , subgoal , andmental_act
Wait steps are never chosen for execution; a nakast
step in a sequential behavior would block the biav
from executing past the wait. However, when comthine
with a success test, a wait step can be used te raak
demon which waits for a condition to become trugcc®ss
tests are continuously monitored conditions whishgen

working memory elements (WMEs) which hold
information. WMEs are like instances in an objedeated
language; every WME has a type plus some number of
typed fields which can take on values. As describ&st on

in the paper, WMEs are also the mechanism by whith
agent becomes aware of sensed information. In this
example the success test is looking for WMEs ofetyp
KnockWME, which presumably is placed in the agent's
working memory when someone knocks on a door. Since
there are no field constraints in the test, thedesceeds as
soon as a KnockWME appears.

An act step tells the agent’s body (sensory-mgystem)
to perform an action. For graphical environmentshsas
Facade, physical acts will ultimately be transl&ted calls
to the animation engine, though the details of this
translation are hidden from the Hap/ABL programthis
example, the act makes the body sigh. Note thasipaly
acts can fail - if the sensory-motor system deteemithat it
is unable to carry out the action, the correspagndict step
fails, causing the enclosing behavior to fail.

Subgoal steps establish goals that must be aczirag!
in order to accomplish the behavior. The pursuitaof
subgoal within a behavior recursively results ine th
selection of a behavior to accomplish the subgoal.

Mental acts are used to perform bits of pure
computation, such as mathematical computations or
modifications to working memory. In the final stepthe
example, the mental_act deletes the KnockWME (ngp&in
call to a method defined on ABL agents), since the
knocking has now been dealt with. In ABL, mentasaare
written in Java.

The next example demonstrates how Hap/ABL sekects
behavior to accomplish a subgoal through signature
matching and precondition satisfaction.
sequential behavior OpenDoor() {

precondition {

(KnockWME doorlD :: door)

(PosWME spritelD == door pos :: doorPos)

(PosWME spritelD == me pos :: myPos)

(Util.computeDistance(doorPos, myPos) > 100)

specificity 2;
/I Too far to walk, yell for knocker to come in
subgoal YellAndWaitForGuestToEnter(doorID);

sequential behavior OpenDoor()
precondition { (KnockWME doorID :: door) }
specificity 1;
/I Default behavior - walk to door and open

)

In this example there are two sequential behaviors
OpenDoor() , either of which could potentially be used to
satisfy the goalOpenDoor() . The first behavior opens

they become true, cause their associated step tothe door by yelling for the guest to come in andtina for

immediately succeed. Though in this example theesg
test is associated with a wait step to make a derha@an
be associated with any step type.

Success tests, as well as other tests which vall b
described shortly, perform their test against tgents
working memory. A working memory contains a numbgr

them to open the door. The second behavior (detkdiled)
opens the door by walking to the door and opening i
When AnswerTheDoor() pursues the subgoal
OpenDoor() , Hap/ABL determines, based on signature
matching, that there are two behaviors which could
possibly open the door. The precondition of bothawéors



is executed. In the event that only one of the gmditions
is satisfied, that behavior is chosen as the methatse to
accomplish the subgoal. In the event that both
preconditions are satisfied, the behavior with tighest
specificity is chosen. If there are multiple sadidf
behaviors with highest specificity, one is choseraadom.
In this example, the firdDpenDoor() behavior is chosen
if the lazy agent is too far from the door to wtikre (“too
far” is arbitrarily represented as a distance >00

The precondition demonstrates the testing ofigldd of
a WME. The:: operator assigns the value of the named
WME field on the left of the operator to the vat@bn the
right! This can be used both to grab values from working
memory which are then used in the body of the biehav
and to chain constraints through the WME test.

The last example demonstrates parallel behavints a
context conditions.
parallel behavior
YellAndWaitForGuestToEnter(int doorID) {

precondition { (CurrentTimeWME t :: startT) }
context_condition {

(CurrentTimeWME t <= startT + 10000) }
number_needed_for_success 1;

with success_test {
(DoorOpenWME door == doorlD) } wait;
with (persistent) subgoal YellForGuest(doorID);

In a parallel behavior, the steps are pursued sameibusly.
YellAndWaitForGuestToEnter(int)

simultaneously yells “come in” towards the doore(ttoor
specified by the integer parameter) and waits toadly see
the door open. The persistent modifier on the
YellForGuest(int) subgoal makes the subgoal be
repeatedly pursued, regardless of whether the siibgo
succeeds or fails (one would imagine that the biehdkat
does the yelling always succeeds). The
number_needed for _success annotation  (only
usable on parallel behaviors) specifies that omlg step
has to succeed in order for the behavior to sucdeetthis
case, that one step would be the demon step wadirtte
door to actually open. The context condition is a
continuously monitored condition that must remainet
during the execution of a behavior. If the conteomdition
fails during execution, then the behavior immedyatails.

In this example, the context condition tests theemnt time,
measured in milliseconds, against the time at whbah
behavior started. If after 10 seconds the door "hast
opened (the guest isn't coming in), then the cdntex
condition will cause the behavior to fail.

As failure propagates upwards through the subgoal
chain, it will cause the firdDpenDoor() behavior to fail,
and eventually reach thépenDoor() subgoal in
AnswerTheDoor() . The subgoal will then note that
there is anothe©OpenDoor() behavior which has not
been tried yet and whose precondition is satisfibis

Y In ABL, a locally-scoped appropriately typed vatiis
automatically declared if it is assigned to in a &/Rkést
and has not been previously explicitly declared.

behavior will be chosen in an attempt to satisg/shbgoal.
So if the guest doesn't enter when the agent yelts
awhile, the agent will then walk over to the doadapen
it.

Finally, note that parallel behaviors introduceltipie
lines of expansion into a Hap/ABL program. Consetjye
the current execution state of the program is sepreed by
a tree, the active behavior tree (ABT), where tavés of
the tree constitute the current set of executabless

These examples give a sense for the Hap semantics
which ABL reimplements and extends. There are many
other features of Hap (also implemented in ABL) aimhit
is not possible to re-describe here, including mowitiple
lines of expansion mix (based on priority, blocking
physical acts, and a preference for pursing thesatiline
of expansion), declaration of behavior and stepflicts
(and the resulting concept of suspended steps and
behaviors), and numerous annotations which modify t
default semantics of failure and success propagalibe
definitive reference on Hap is of course Loyall's
dissertation (Loyall 1997).

ABL Extensions
ABL extends Hap in a number of ways, including:

* Generalizing the mechanisms for connecting te th
sensory-motor system. The ABL runtime provides
abstract superclasses for sensors and actionorrect
an ABL program to a new sensory-motor system (e.g.
animation engine, robot), the author merely defines
specific sensors and actions as concrete subclabtas
abstract sensor and action classes. ABL also ieslud
additional language constructs for binding sendors
WMEs. ABL then takes responsibility for calling the
sensors appropriately when bound WMEs are refetence
in working memory tests.

« Atomic behaviors. Atomic behaviors prevent otaetive
behaviors from mixing in. Atomic behaviors are wsef
for atomically updating state (e.g. updating misdtip
WMEs atomically), though they should be used
sparingly, as a time-consuming atomic behavior a¢oul
impair reactivity.

» Reflection. ABL gives behaviors reflective accésshe
current state of the ABT, supporting the authorofg
meta-behaviors which match on patterns in the ABd@ a
dynamically modify other running behaviors. Suppdrt
ABT modifications include succeeding, failing or
suspending a goal or behavior, and modifying the
annotations of a subgoal step, such as changing the
persistence or priority. Safe reflection is proddby
wrapping all ABT nodes in special WMEs. Pattern
matching on ABT state is then accomplished through
normal WME tests. A behavior can only touch the ABT
through the reflection API provided on these wrappe
WMEs.

e Multiple named memories. Working memories can be
given a public name, which then, through the naane,
available to all ABL agents. Any WME test can



simultaneously reference multiple memories (theadef
memory is the agent's private memory). Named

agents: drama manager decisions are infrequent, the
internal structure of the believable agents carebsonably

memories are used by the joint behavior mechanisms decoupled from their interaction with the drama agger,

(see below) for the construction of team memorias.
Facade, named memories are also useful for giving
agents access to a global story memory.

Dramatic Beats

The rest of this paper discusses ABL’s supportjéimt
action and the idioms we've developed for orgamjzin
character behaviors within Facade. But both theaertdor
joint action and the programming idioms are motdaby
an analysis which first appeared in (Mateas andnSte
2000) arguing that behaviors for story-based bealéy
agents should be organized around the dramatic bhat
argument is briefly recapitulated here.

Autonomy and story-based believable agents

Most work in believable agents has been organizednal
the metaphor of strong autonomy. Such an agentsesoo
its next action based on local perception of itgr@mment
plus internal state corresponding to the goals @rgkibly
the emotional state of the agent. Using autonomyaas
metaphor driving the design of believable agentsks/o
well for believable agent applications in which iagte
agent is facilitating a task, such as instructingtiadent
(Lester & Stone 1997), giving a presentation, or in
entertainment applications in which a user devebfmng-
term relationship with the characters by "hanging-evith
them (Stern 1999). But for believable agents used a
characters in a story world, strong autonomy besome
problematic. Knowing which action to take at anyegi
time depends not just on the private internal stdt¢he
agent plus current world state, but also on theectirstory
state, including the entire past history of intémats
building on each other towards some end. The global
nature of story state is inconsistent with the omtof an
autonomous character that makes decisions basgdoonl
private goal and emotion state and local sensinghef
environment.

Only a small amount of work has been done on the
integration of story and character. This work hessprved
the strong autonomy of the characters by architaltyu
dividing the responsibility for state maintenanegween a
drama manager that is responsible for maintainiogys
state, and the believable agents that are respenfib
maintaining character state and making the moment-b
moment behavior decisions (e.g. Weyhrauch 1997himn
approach, the character is still responsible fostnud the
decision making. Occasionally the drama managel wil
modify one or more of the characters’ behaviorsdivng
them a new goal or directly instigating a behavaw)as to
move the plot along. In the absence of the dramaager,
the character would still perform its normal autoows
behavior. This architecture makes several assumgptio
regarding the nature of interactive drama and belike

and multiple-character coordination is handled initthe
agents. Let's explore each of these assumptions.

Infrequent guidance of strongly autonomous bebéva
agents means that most of the tirnehavior selection for
the believable agents will occur locally, withoefarence
to any (global) story state. The drama manager will
intervene to move the story forward at specificnpgi the
rest of the time the story will be "drifting," th&, action
will be occurring without explicit attention to sto
movement. Weyhrauch (Weyhrauch 1997) does state tha
his drama manager was designed for managing the
sequencing of plot points, that is, for guiding rettéers so
as to initiate the appropriate next scene necedsanyake
the next plot point happen (whatever plot point basn
decided by the drama manager). Within a scene, some
other architectural component, a "scene managewildv
be necessary to manage the playing out of the iohaiV
scene. And this is where the assumption of infratjuew-
bandwidth guidance becomes violated. As is desgribe
below, the smallest unit of story structure withirscene is
the beat, a single action/reaction pair. The sdews-
drama manager will thus need to continuously gufde
autonomous decision making of the agent. This &atju
guidance from the drama manager will be complicdted
the fact that low-bandwidth guidance (such as givan
believable agent a new goal) will interact strongith the
moment-by-moment internal state of the agent, sicthe
set of currently active goals and behaviors, legdio
surprising and potentially unwanted behavior. ldesrto
reliably guide an agent, the scene-level drama gemaill
have to engage in higher-bandwidth guidance innglthe
active manipulation of internal agent state (editireg the
currently active goal tree). Authoring strongly @utmous
characters for story-worlds is not only extra, weded
work (given that scene-level guidance will need to
intervene frequently), but actively makes guidameere
difficult, in that the drama manager will have to
compensate for the internal decision-making praeeéand
associated state) of the agent.

As the drama manager provides guidance, it widrobe
the case that the manager will need to carefidiyrdinate
multiple characters so as to make the next stogntev
happen. For example, it may be important for two
characters to argue in such a way as to conspirartis the
revelation of specific information at a certain nerhin
the story. To achieve this with autonomous ageois
could try to back away from the stance of strongpaomy
and provide special goals and behaviors within the
individual agents that the drama manager can detii@a
create coordinated behavior. But even if the charac
author provides these special coordination hooks,
coordination is still being handleat the individual goal
and behavior level, in an ad-hoc way. What onelyeal
wants is a way talirectly express coordinated character
action.



Integrating Plot and Character with the Dramatic
Beat

Given that a strong architectural separation ofrattar
and story is problematic, one is left with the dio#s of
what architectural principle could be used to mightly
integrate character and story; the answer is fauanthe
theory of dramatic writing in the concept of theamhatic
beat.

In dramatic writing, stories are thought of as sisting
of events that turn (change) values (McKee 1997)alve
is a property of an individual or relationship, sus trust,
love, hope (or hopelessness), etc. A story evepitasisely
any activity that turns a value. If there is adfivi-
characters running around, witty dialogue, buildirend
bridges exploding, and so on but this activity is not
turning a value, then there is no story event, rematic
action. Thus one of the primary goals of an intiévac
drama system should be to make sure that all gctivins
values. Of course these values should be changautina
way as to make some plot arc happen that enactstahe

examples provided in this paper. To simplify the
discussion, the example leaves out the specificatichow
player activity would modify the performance ofdHieat;
the next section describes idioms for supporting
interactivity. Also, it should be pointed out thhbugh this
example involves only two characters coordinatititgg
coordination framework and implemented infrastruetis
general enough to handles teams mf coordinating
characters.

(At the beginning of the behavior, Trip starts viagk
to the bar. If he gets to the bar before the enthef
behavior, he stands behind it while delivering dine
Trip: A beer? Glass of wine? (Grace smiles at player.
Short pause)

Trip: You know | make a mean martini. (Grace
frowns at Trip partway into line. At the end ofdin
she rolls her eyes at the ceiling.)

Grace: (shaking her head, smiling) Trip just bought
these fancy new cocktail shakers. He's always lopki
for a chance to show them off. (If Trip is still g

to the bar, he stops at “shakers”. At “shakerspTri

looks at Grace and frowns slightly. At the end loé t
line he looks back at the player and smiles. lfMas

still on the way to the bar, he resumes walkingh®

bar).

In order to perform this coordinated activity, Gzaand
Trip must first synchronize on offering a drink, that they
both know they are working together to offer thénkir
Grace and Trip both have the following behavioiirdébn

in their respective behavior libraries.

premise (the Facade story premise is “To be happy y
must be true to yourself’Beats are the smallest unit of
value change. Roughly, a beat consists of one aremo
action/reaction pairs between characters. Generally
speaking, in the interest of maintaining economy an
intensity, a beat should not last longer than adetions or
lines of dialogue.

In Facade beats become first class architectuntéties,
consisting ofboth the declarative knowledge needed to
sequence beats in a dramatically interesting way details
of Facade’s drama manager are not discussed sipapier)
and the procedural knowledge, expressed as ABL
behaviors, necessary for the characters to jooalyy out
the dramatic action within the beat. The rest id thaper }
discusses ABL’s support for joint action and theids
(ways of using ABL) that we have developed for
organizing behaviors within a beat.

joint sequential behavior OfferDrink() {
team Grace, Trip;
/I The steps of Grace’s and Trip’s OfferDrink()
/I behaviors differ.

The declaration of a behavior @Ent tells ABL that
entry into and exit from the behavior must be cowatkd
with team members, in this case Grace and Hifry into

a behavior occurs when the behavior is chosentisfsa
subgoal.Exit from the behavior occurs when the behavior
succeeds, fails, or is suspended. Synchronizati®n i
In order to facilitate the coordination of multiple achieved by means of a two-phase commit protocol:

characters, we have extended the semantics of Bap t 1. The initiating agent broadcasts an intention tter,
supportjoint goals and behaviorshe driving design goal succeed, fail or suspend) to the team.

gd{\(l)ilgltj alljzr:(a\r”eosrssivg Jghg\?i?rb(')r;feerteh; brlcnasevgjt?; mgft 2. All agents receiving an intention respond bythie case
P y hap P of an entry intention, signaling their own intemtido

for the automatic synchronization of behavior asros enter or a rejection of entry, or in the case oft ex

multiple agents. signaling their own intention to succeed, failsaspend.

3. When an agent receives intentions from all team
members, the agent performs the appropriate entoy i
or exit from the behavidt.

Support for Joint Action

Joint Behaviors

In ABL, the basic unit of coordination is the joim¢havior.
When a behavior is marked as joint, ABL enforces
synchronized entry and exit into the behavior. Rérthe
specification for an “offer the player a drink” laakor
from Facade is shown below. This will be used as th
guiding behavior specification in the joint behavio

! Appropriate timeouts handle the case of non-resipon
agents who fail to send appropriate intention adye
messages.



Imagine that Trip pursues a joir®@fferDrink()
subgoal and picks the joir@fferDrink() behavior to

1998). However, she also noted that animators makeof
coordinated multi-character transitions to commaitsc

accomplish the subgoal. After the behavior has been changes in multi-character behavioral state, budt bt

chosen, but before it is added to the ABT, Tripateges
entry with his teammate Grace. On receipt of thenition-
to-enterOfferDrink() , Grace checks if she has a joint
behaviorOfferDrink() with a satisfied precondition. If
she does, she signals her intention-to-enter. dmgh Grace
then exchange ready-messages and enter the behiawior
Trip’'s case the behavior is rooted normally in &&T at
the subgoal which initiated behavior selection, levtin

Grace the spawned subgoal and corresponding joint

behavior are rooted at the collection behaviohatrbot of

the ABT! If Grace didn't have a satisfied joint
OfferDrink() behavior, she would send a reject
message to Trip, which would cause Trip's
OfferDrink() subgoal to fail, with all the normal

effects of failure propagation (perhaps causingp Tio
pursue anindividual OfferDrink() goal). Note that
during the negotiation protocol, the agents comtirta
pursue other lines of expansion in their ABT's; tlife
protocol takes awhile to negotiate, behavior camm
along these other lines.

The negotiation protocol may seem overly complex.
the case that all the team members are on the isecigEne
(the case for Fagade), one can assume that négotieit|
be very fast and no messages will be lost. Thezdfanay
seem that agents only need to exchange a pair sfages
for behavior entry, while the initiator only neetdssend a
single message for behavior exit. However, everha
same-machine case, the team members are
asynchronous, and thus a joint behavior in one tagey
succeed while the matching joint behavior in anotgent
fails - negotiation is necessary to come to agretras a
team on the status of the behavior. And the simeplif
protocol would certainly break in the distributedse
where team member's messages may be lost, or &scas
where an agent might disappear unexpectedly (eggnee
where agents can be killed) in the middle of the
negotiatior?

But the most interesting feature the more complex
negotiation protocol provides are authorial “hooKs’t
attaching transition behaviors to joint behaviotrgrand
exit. Sengers, in her analysis of the Luxo Jr. shgrPixar,
identified behavior transitions as a major meanavhich
narrative flow is communicated (Sengers 1998). Axtors
actively communicate changes in the behavior sthtbeir
characters (e.g. the change from playing to resting
having the characters engage in short transitibehhviors
that communicate why the behavior change is hapgeni
Sengers’ architectural extensions to Hap providggpert
for authoring individual transition behaviors (Serg

! A collection behavior is a variety of parallel laefor in
which every step need only béemptedor the behavior
to succeed.

% The negotiation protocol can easily be extendeal to
three-phase protocol to support lost messages.

fully

provide architectural support for this in her systeBy
exposing the negotiation protocol to the agent rogner,
ABL can support the authoring of behaviors which
communicate transitions in multi-agent behavioteta

Posting Actions and Step Synchronization

In addition to synchronizing on behavior entry agxit,
ABL provides other mechanisms for synchronizingrage
namely support for posting information to a teanrkig
memory, and the ability to synchronize the steps of
sequential behaviors. Below are the t@fferDrink()
behaviors for Trip and Grace.

Trip’s behavior:

joint sequential behavior OfferDrink() {
team Trip, Grace;

with (post-to OfferDrinkMemory)
/I Individual behavior for initial offer
subgoal InitialDrinkOffer();
subgoal LookAtPlayerAndWait(0.5);
with (synchronize) joint subgoal
SuggestMartini();

/I react to Grace’s line about fancy shakers
with (synchronize) joint subgoal
FancyCocktailShakers();
}

Grace’s behavior:

joint sequential behavior OfferDrink() {
team Trip, Grace;

I/ wait for Trip to say first line
with (success_test { OfferDrinkMemory
(CompletedGoalWME name == ilnitialDrinkOffer
status == SUCCEEDED)})
wait;
subgoal LookAtPlayerAndWait(0.5);

/I react to Martini suggestion
with (synchronize) joint subgoal
SuggestMartini();
with (synchronize) joint subgoal
FancyCocktailShakers();

Whenever a joint behavior is entered, the ABL imst
automatically creates a new named team working mgmo
that persists for the duration of the joint behavidhis
team memory, which can be written to and read flpm
any member of the team, can be used as a commonicat
mechanism for coordinating team activity. The fesgsbgoal
of Trip’s behavior is annotated with gost-to
annotation; for any subgoal marked wigost-to , a
CompletedGoalWME is added to the named memory when
the subgoal completes (with either success or rigiluA
CompletedGoalWME, the definition of which is prosal
by the ABL runtime, contains the name of the gal,

% By default the name of the team memory is the
concatenation of the name of the behavior andttivgs
“Memory”.



completion state (success or failure), the namefgent

who performed the goal, any goal arguments, and a of sequential joint behaviors,

timestamp. Theost-to  annotation automatically fills in
the appropriate arguments. This facility, inspiteyg the

sign management system in Senger’s extension of Hapsynchronize

(Sengers 1998), can be used to provide an ageht awit
selective episodic memory. This facility is useduen in a
single agent situation, as the future behavior rofagent
may conditionally depend on past episodic sequences
Since the ABT no longer has state &dready completed
subgoals and actions, an ABL agent’s reflectiveeasdo
its own ABT doesn’'t by itself provide access to tpas
episodic sequences. However, in a team situatmess to
episodic state can be used to coordinate team msiribe
the first line of Grace’s behavior, a demon stemitaos
the team memory for the completion of
InitialDrinkOffer() . In the behavior spec above,
Grace doesn't begin directly reacting to Trip urdfter
Trip’s first line. Keep in mind that an ABL agentrngues
multiple lines of expansion, so while Grace is wajtfor
Trip to complete his first line, she will contind@ behave,

in this case engaging in small idle movements assgtiles

at the player. When Trip completes his first sulbgaa
appropriate CompletedGoalWME is posted to the team
memory; Trip then moves onto his second subgodbadk

at the player and wait for about half a second. pb&ting

of the CompletedGoalWME causes Grace’s first line t
succeed, and she also, independently, waits fantdtadf a
second. One of them will be first to finish waitjrand will
move onto the next line, which, being a joint bebgv
reestablishes synchronization.

The last two subgoals of Grace’s and Trip's bedavi
are annotated with aynchronize annotation. To
understand what this does, first imagine the caserevthe
annotation isabsent Assume Grace is the first to finish the
second subgoal (the goal to look at the player \aatt).
Grace will then attempt to satisfy the subgoal
SuggestMartini() , causing Trip to spawn this goal at
the root of his ABT and enter his local version of
SuggestMartini() As they jointly pursue the

SuggestMartini() line of expansion, Trip will
continue to pursue th@fferDrink() line of expansion,
eventually initiating SuggestMartini() on his side,

causing Grace to spawn the goal at her root andrent
another copy of the behavior. At this point eachussuing
two copies of the joint behavidduggestMartini() .
one copy rooted at the subgoal witt@xiferDrink() .
and the other rooted at the root of the ABT. Thisot
what the behavior author intended; rather it wasnided
that when the characters synchronize on the jaibysal
SuggestMartini() , they would each begin pursing
their local version oSuggestMartini() rooted at the
respective subgoals within their local versions of
OfferDrink() . Thesynchronize  annotation allows

a behavior author to specify that a joint behasgioould be
rooted at a specific subgoal, rather than at thd@ A&ot.
Synchronize is only allowed within joint behaviors as
an annotation on a goal that has at least one ahéavior

with matching signature in the behavior library the case

synchronization on a
synchronize subgoal forces the success of all steps
between the current step counter position and the
subgoal, and moves the step counter up to

thesynchronize  subgoal.

Beat |dioms

Developing a believable agent language such as ABL
involves simultaneously defining and implementing
language constructs which support the authoring of
expressive behavior, and the exploration of idiofois
expressive behaviowusing the language. This section
describes the ABL idioms used in authoring beatlns.

Above we described the ABL support for coordingtin
multiple believable agents. But of course in arerattive
drama there is always an additional character,htimaan
player, whose behavior can't be directly coordidatsing
joint goals and behaviors. The idioms describedhis
section are the behavior organization techniquewewe
developed for incorporating player interactivitytanthe
accomplishment of dramatic action within a beat.

Beat behaviors are divided into three categoresat
goals handlers andcross-beat behaviord\ greeting beat,
in which Trip greets the player at the door, witbpide
examples of these three behaviors categories aad th
relationships between the categories. To simplifie t
discussion, the example involves a single chardcéther
than a team) interacting with the player.

In the greeting beat, Trip wants to initially grebe
player (“Hey! So glad you could make it. Thanks for
coming over man.”), yell for Grace (“Grace, comeaut!
Our guest is here.”), and invite the player in (h@oon in,
don’'t be shy”). These are the thréeat goalsof the
greeting beat and should be accomplished sequgntial

Of course, during this greeting, the player wiljage in
various actions which should be handled in the exdnof
the greeting. These interactions take the form tofsjzal
movement, object manipulation, and natural language
typed by the player. At the beat behavior levedypl text
is captured by WMEs representing the meaning otdke
as a discourse attHandlersare demons responsible for
handling player interaction. For the purposes o th
example, assume that the greeting beat wants tléhéme
cases of the player greeting Trip, the player rafgrto
Grace, and the player preemptively walking into the
apartment before she has been invited in. The bedey
starts the handlers and begins the sequence ofbalst

parallel behavior StartTheBeat() {

! For translating surface text into formally represel
discourse acts, Fagade employs a custom rule lgadoa
specifying templates and discourse chaining rles.
discourse rule compiler targets Jess, a CLIPSftikeard-
chaining rule language (available at
http://herzberg.ca.sandia.gov/jess/).



with (priority 1)
subgoal StartTheHandlers();
subgoal BeatGoals();

parallel behavior StartTheHandlers() {
with (persistent, priority 20)
subgoal handlerDAGreet();
with (persistent, priority 15)
subgoal handlerDAReferTo_grace();
with (priority 10, ignore_failure)
subgoal handlerPrelnviteAptMove();

sequential behavior BeatGoals() {
with (persistent when_fails)
bgOpenDoorAndGreetPlayer();
with (persistent when_fails) bgYellForGrace();
with (persistent when_fails) bginvitelntoApt();

Handlers are started in various priority tiers
corresponding to the relative importance of hamlinat
interaction. Priorities are used to resolve caséerev
another player interaction happens in the middle of
handling the previous player interaction, or when
simultaneous player interactions occur. A highdory
handler can interrupt a lower priority handler, whgame
or lower priority handlers must wait for a higheiopity
handler to finish before handling the nested irttoa.
Generally handlers are persistent; when a hantieshés
responding to an interaction, it should “reset” &edready
to deal with another interaction in the same categm
general handlers are higher priority than beatgyealthat
if an interaction occurs in the middle of the bgaal, the
handler will “wake up” and interrupt it.

Handlers tend to be meta-behaviors; that is, thage
use of reflection to directly modify the ABT stai&hen a
handler triggers, it fails the current beat goalteptially
succeeds other beat goals, possibly pursues adoedt
within the handler (effectively reordering beat 3daand
engages in its own bit of handler specific behaviosome
cases the handler specific behavior may entail ingpie
recognized action to a different recognized actiwhich
will then trigger a different corresponding handIiBelow
is a simplified version of
handlerDAReferTo _grace()
sequential behavior handlerDAReferTo_grace() {

with (success_test { (DAReferToWME topiclD ==
eTopic_grace) } ) wait;
with (ignore_failure) subgoal

handlerDAReferTo_grace_Body();
subgoal DAReferTo_grace_Cleanup();

// by mentioning Grace, we will say "Grace? uh

/l yeah" and then yell for Grace but only if we

I/l aren't currently doing bgYellForGrace!

sequential behavior handlerDAReferTo_grace_Body()

precondition {
(GoalStepWME signature == "bgYellForGrace()"
isExecuting == false) }
subgoal handlerDA_InterruptWith(
eTripScript_graceuhyeah,
eFullExpression_blank);
subgoal handlerDAReferTo_grace_Body2();

/I we aren't currently doing yellForGrace, and if
/I we haven't completed yellForGrace, then do it
sequential behavior
handlerDAReferTo_grace_Body2() {
I/ Goal still exists in the ABT so it hasn't
/I been completed
precondition {
(GoalStepWME signature == "bgYellForGrace()")

specificity 2;

subgoal SetBeatGoalSatisfied(
"bgYellForGrace()", true);
with (persistent when_fails)
subgoal bgYellForGrace();

/I otherwise we must have already completed
Il yellForGrace, so say "She's coming, | don't
/I know where she's hiding"
sequential behavior
handlerDAReferTo_grace_Body2() {
specificity 1;
subgoal handlerDA_InterruptWith(
etripScript_shescomingidontknow,
eFullExpression_smallSmile);

When the player refers to Grace (perhaps sayihg, “
looking forward to meeting Grace”, or “Where is Gag
or “Hi Grace”) this handler is triggered. The hardbody
behavior uses reflection to test if the beat goayell for
Grace is currently not executing. If it is execgti{e.g. Trip
was in the middle of yelling for Grace when theyplasaid
“Where’s Grace”), the body precondition fails, dagsthe
handler to fail, which then restarts because of the
persistence annotation, leaving Trip ready to handl
another reference to Grace. Effectively Trip igmore
references to Grace if he's in the middle of yellifor
Grace. Otherwise, Trip interrupts whatever he igingp
with “Oh, yeah...”. handlerDAlnterruptWith uses
reflection to fail the currently executing beat Qdhus, as
the name implies, interrupting the beat goal. Whiss
handler is finished, thepersistent when_fails
annotation will causes any handler-failed beat gdal
restart. After saying “Oh yeah...” Trip either perfts the
yell for Grace beat goal within the handler (andceeds it
out of theBeatGoals behavior) or, if yell for Grace has
already happened, says “She’s coming. | don’t kadwere
she’s hiding.” This handler demonstrates how player
interaction can cause beat goals to be interrupted,
effectively reordered, and responded to in a wgeddent
on what has happened in the beat so far.

The final category of beat behaviors are thess-beat
behaviors These are behaviors that cross beat goal and
handler boundaries. An example beat goal behasiting
staging behavior that an agent uses to move tainert
dramatically significant positions (e.g. close oar f
conversation position with the player or anothezraginto
position to pickup or manipulate another object.)etA
staging request to move to close conversationipasitith
the player might be initiated by the first beatIgoaa beat.
The staging goal is spawned to another part ofAB&.
After the first beat goal completes its behavidheo beat
goals and handlers can happen as the agent contioue
walk towards the requested staging point. Of coatsany



time during a cross-beat behavior, beat goals amdllbrs
can use reflection to find out what cross-beat biehs are
currently happening and succeed or fail them if dhess-
beat behaviors are inappropriate for the curreat geal’'s
or handler’s situation.

The example in this section involved only a single
character interacting with the player. Multi-agéefits use
the same idioms for coordinating beat goals, redjmonto
player interaction, and pursing longer term godlse
various beat behaviors just become joint behavistead
of individual behaviors.

Conclusion

ABL provides a rich programming framework for
authoring story-based believable agents. Here we've
described ABL'’s novel features and provided exasoie
how we're using these features to author charadtars
Facade, an interactive dramatic world.

References

Bates, J., Loyall, A. B., and Reilly, W. S. 199@tdgrating
Reactivity, Goals, and Emotion in a Broad Agent.
Proceedings of the Fourteenth Annual Conferencéhef
Cognitive Science SocietyBloomington, Indiana, July
1992.

Blumberg, B. 19960Id Tricks, New Dogs: Ethology and
Interactive CreaturesPh.D. Dissertation. MIT Media Lab.

Lester, J., Stone, B. 1997. Increasing Believabilit
Animated Pedagogical AgentRroceedings of the First
International Conference on Autonomous AgeMarina
del Rey, CA, USA, 16-21.

Loyall, A. B. 1997.Believable AgentsPh.D. thesis, Tech
report CMU-CS-97-123, Carnegie Mellon University.

Mateas, M. 1999. An Oz-Centric Review of Interagetiv
Drama and Believable Agents. In M. Wooldridge and M
Veloso, (Eds.), Al Today: Recent Trends and
Developments Lecture Notes in Al 1600. Berlin, New
York: Springer.

Mateas, M. and Stern, A. 2000. Towards Integrafat
and Character for Interactive Drama.Working notes of
the Social Intelligent Agents: The Human in the p.oo
Symposium AAAI Fall Symposium Series. Menlo Park,
CA: AAAI Press.

McKee, R. 1997 Story: Substance, Structure, Style, and
the Principles of Screenwriting New York, NY:
HarperCollins.

Sengers, P. 1998Anti-Boxology: Agent Design in
Cultural Context Ph.D. Thesis. School of Computer
Science, Carnegie Mellon University.

Stern, A. 1999. Virtual Babyz with Narrative Intgince.
In Working notes of the Narrative Intelligence Sympwsi
AAAI Fall Symposium Series. Menlo Park, CA: AAAI
Press.

Weyhrauch, P. 1997Guiding Interactive DramaPh.D.
thesis, Tech report CMU-CS-97-109, Carnegie Mellon
University.



