

A Behavior Language for Story-based Believable Agents

Michael Mateas
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

michaelm@cs.cmu.edu
www.cs.cmu.edu/~michaelm

Andrew Stern
InteractiveStory.net

andrew@interactivestory.net
www.interactivestory.net

Abstract
ABL is a reactive planning language, based on the Oz
Project language Hap, designed specifically for authoring
believable agents - characters which express rich
personality, and which, in our case, play roles in an
interactive, dramatic story world called Façade. Here we
give a brief overview of the language Hap and discuss the
new features in ABL, focusing on ABL’s support for multi-
character coordination. We also describe the ABL idioms
we are using to organize character behaviors in the context
of an interactive drama.

Introduction

Façade is an attempt to move beyond traditional branching
or hyper-linked narrative, to create a fully-realized
interactive drama - a dramatically interesting virtual world
inhabited by computer-controlled characters, within which

the user (hereafter referred to as the player) experiences a
story from a first person perspective (Mateas and Stern
2000). The complete, real-time, 3D, one-act interactive
drama will be available in a free public release at the end of
2002.
 You, the player, using your own name and gender, play
the character of a longtime friend of Grace and Trip, an
attractive and materially successful couple in their early
thirties. During an evening get-together at their apartment
that quickly turns ugly, you become entangled in the high-
conflict dissolution of Grace and Trip’s marriage. No one
is safe as the accusations fly, sides are taken and
irreversible decisions are forced to be made. By the end of
this intense one-act play you will have changed the course
of Grace and Trip’s lives -- motivating you to re-play the
drama to find out how your interaction could make things
turn out differently the next time. The player interacts by
navigating in the world, manipulating objects, and, most

Screen shot of Façade showing the characters Grace and Trip

significantly, through natural language dialogue.
 This project raises a number of interesting AI research
issues, including drama management for coordinating plot-
level interactivity, broad but shallow support for natural
language understanding and discourse management, and
autonomous believable agents in the context of interactive
story worlds. This paper focuses on the last issue,
describing the custom believable agent language developed
for this project, and the idioms developed within this
language for organizing character behaviors.

Project Goals

The field of interactive drama concerns itself with building
dramatically interesting virtual worlds inhabited by
computer-controlled characters, within which the user
(hereafter referred to as the player) experiences a story
from a first person perspective. Over the past decade there
has been a fair amount of research on believable agents,
that is, autonomous characters exhibiting rich personalities,
emotions, and social interactions (Bates, Loyall and Reilly
1992; Blumberg 1996; Lester and Stone 1997; Mateas
1999; Stern 1999). There has been comparatively little
work, however, exploring how the reactive behavior of
believable agents can be integrated with the more
deliberative nature of a story plot, so as to build interactive,
dramatic worlds (Weyhrauch 1997). Likewise, the
computer game industry has had little success in creating
powerful interactive narrative experiences in their games.
Although games often have characters in them, such as in
adventure or role-playing games, with few exceptions they
are not "believable", behaving one-dimensionally and
predictably, with little potential for more than shallow
interactivity.
 Motivated by their belief that a “fully-realized”
computer-based interactive drama has not yet been built,
the authors are currently engaged in a three year
collaboration to build Façade, an interactive story
integrating an interdisciplinary set of artistic practices and
artificial intelligence technologies.

Story Requirements
 The story requirements describe the properties we wish
our particular interactive drama to have. (These are not
intended to be absolute requirements; that is, this is not a
description of the properties that all interactive stories must
have.)

 Short one-act play. Any one run of the scenario should
take the player 15 to 20 minutes to complete. We focus on
a short story for a couple of reasons. Building an
interactive story has all the difficulties of writing and
producing a non-interactive story (film or play) plus all the
difficulty of supporting true player agency in the story. In
exploring this new interactive art form it makes sense to
first work with a distilled form of the problem, exploring
scenarios with the minimum structure required to support

dramatically interesting interaction. In addition, a short
one-act play is an extreme, contrarian response to the many
hours of game play celebrated in the design of
contemporary computer games. Instead of providing the
player with 40 to 60 hours of episodic action and endless
wandering in a huge world, we want to design an
experience that provides the player with 15 to 20 minutes
of emotionally intense, tightly unified, dramatic action. The
story should have the intensity, economy and catharsis of
traditional drama.

 Relationships. Rather than being about manipulating
magical objects, fighting monsters, and rescuing princesses,
the story should be about the emotional entanglements of
human relationships. We are interested in interactive
experiences that appeal to the adult, non-computer geek,
movie-and-theater-going public.

 Three characters. The story should have three
characters, two controlled by the computer and one
controlled by the player. Three is the minimum number of
characters needed to support complex social interaction
without placing the responsibility on the player to
continually move the story forward. If the player is shy or
confused about interacting, the two computer controlled
characters can conspire to set up dramatic situations, all the
while trying to get the player involved.

 The player should be the protagonist. Ideally the
player should experience the change in the protagonist as a
personal journey. The player should be more than an
"interactive observer," not simply poking at the two
computer controlled characters to see how they change.

 Embodied interaction should matter. Though dialogue
should be a significant (perhaps the primary) mechanism
for character interaction, it should not be the sole
mechanism. Embodied interaction, such as moving from
one location to another, picking up an object, or touching a
character, should play a role in the action. These physical
actions should carry emotional and symbolic weight, and
should have a real influence on the characters and their
evolving interaction. The physical representation of the
characters and their environment should support action
significant to the plot.

 Action takes place in a single location. This provides
unity of space and forces a focus on plot and character
interaction.

 The player should not be over-constrained by a role.
The amount of non-interactive exposition describing the
player's role should be minimal. The player should not have
the feeling of playing a role, of actively having to think
about how the character they are playing would react.
Rather, the player should be able to be herself as she
explore the dramatic situation. Any role-related scripting of
the interactor (Murray 1998) should occur as a natural by-
product of their interaction in the world. The player should
"ease into" their role; the role should be the "natural" way
to act in the environment, given the dramatic situation.

ABL overview

ABL (A Behavior Language, pronounced “able”) is based
on the Oz Project believable agent language Hap developed
by A. B. Loyall (Loyall 1997, Bates, Loyall and Reilly
1992). The ABL compiler is written in Java and targets
Java; the generated Java code is supported by the ABL
runtime system.
 ABL modifies Hap in a number of ways, changing the
syntax (making it more Java-like), generalizing the
mechanisms by which an ABL agent connects to a sensory-
motor system, and, most significantly, adding new
constructs to the language, including language support for
multi-agent coordination in the carrying out of dramatic
action. This section provides an overview of the ABL
language and discusses some of the ways in which ABL
modifies or extends Hap. The discussion of joint behaviors,
the mechanism for multi-agent coordination, occurs in its
own section below.

Hap Semantics
Since ABL builds on top of Hap, here we briefly describe
the organization and semantics of a Hap program by
walking through a series of examples. All examples use the
ABL syntax.
 Hap/ABL programs are organized as collections of
behaviors. In sequential behaviors, the steps of the
behavior are accomplished serially. As each step is
executed, it either succeeds or fails; step success makes the
next step available for execution. If any step fails, it causes
the enclosing behavior to fail. An example sequential
behavior is shown below.

sequential behavior AnswerTheDoor() {
 WME w;
 with success_test { w = (KnockWME) } wait;
 act sigh();
 subgoal OpenDoor();
 subgoal GreetGuest();
 mental_act { deleteWME(w); }
}

 In this sequential behavior, an agent waits for someone
to knock on a door, sighs, then opens the door and greets
the guest. This behavior demonstrates the four basic step
types, namely wait , act , subgoal , and mental_act .
Wait steps are never chosen for execution; a naked wait
step in a sequential behavior would block the behavior
from executing past the wait. However, when combined
with a success test, a wait step can be used to make a
demon which waits for a condition to become true. Success
tests are continuously monitored conditions which, when
they become true, cause their associated step to
immediately succeed. Though in this example the success
test is associated with a wait step to make a demon, it can
be associated with any step type.
 Success tests, as well as other tests which will be
described shortly, perform their test against the agent’s
working memory. A working memory contains a number of

working memory elements (WMEs) which hold
information. WMEs are like instances in an object-oriented
language; every WME has a type plus some number of
typed fields which can take on values. As described later on
in the paper, WMEs are also the mechanism by which an
agent becomes aware of sensed information. In this
example the success test is looking for WMEs of type
KnockWME, which presumably is placed in the agent’s
working memory when someone knocks on a door. Since
there are no field constraints in the test, the test succeeds as
soon as a KnockWME appears.
 An act step tells the agent’s body (sensory-motor system)
to perform an action. For graphical environments such as
Façade, physical acts will ultimately be translated into calls
to the animation engine, though the details of this
translation are hidden from the Hap/ABL program. In this
example, the act makes the body sigh. Note that physical
acts can fail - if the sensory-motor system determines that it
is unable to carry out the action, the corresponding act step
fails, causing the enclosing behavior to fail.
 Subgoal steps establish goals that must be accomplished
in order to accomplish the behavior. The pursuit of a
subgoal within a behavior recursively results in the
selection of a behavior to accomplish the subgoal.
 Mental acts are used to perform bits of pure
computation, such as mathematical computations or
modifications to working memory. In the final step of the
example, the mental_act deletes the KnockWME (making a
call to a method defined on ABL agents), since the
knocking has now been dealt with. In ABL, mental acts are
written in Java.
 The next example demonstrates how Hap/ABL selects a
behavior to accomplish a subgoal through signature
matching and precondition satisfaction.

sequential behavior OpenDoor() {
 precondition {
 (KnockWME doorID :: door)
 (PosWME spriteID == door pos :: doorPos)
 (PosWME spriteID == me pos :: myPos)
 (Util.computeDistance(doorPos, myPos) > 100)
 }
 specificity 2;
 // Too far to walk, yell for knocker to come in
 subgoal YellAndWaitForGuestToEnter(doorID);
}

sequential behavior OpenDoor() {
 precondition { (KnockWME doorID :: door) }
 specificity 1;
 // Default behavior - walk to door and open
 . . .
}

In this example there are two sequential behaviors
OpenDoor() , either of which could potentially be used to
satisfy the goal OpenDoor() . The first behavior opens
the door by yelling for the guest to come in and waiting for
them to open the door. The second behavior (details elided)
opens the door by walking to the door and opening it.
When AnswerTheDoor() pursues the subgoal
OpenDoor() , Hap/ABL determines, based on signature
matching, that there are two behaviors which could
possibly open the door. The precondition of both behaviors

is executed. In the event that only one of the preconditions
is satisfied, that behavior is chosen as the method to use to
accomplish the subgoal. In the event that both
preconditions are satisfied, the behavior with the highest
specificity is chosen. If there are multiple satisfied
behaviors with highest specificity, one is chosen at random.
In this example, the first OpenDoor() behavior is chosen
if the lazy agent is too far from the door to walk there (“too
far” is arbitrarily represented as a distance > “100”).
 The precondition demonstrates the testing of the fields of
a WME. The :: operator assigns the value of the named
WME field on the left of the operator to the variable on the
right.1 This can be used both to grab values from working
memory which are then used in the body of the behavior,
and to chain constraints through the WME test.
 The last example demonstrates parallel behaviors and
context conditions.

parallel behavior
YellAndWaitForGuestToEnter(int doorID) {
 precondition { (CurrentTimeWME t :: startT) }
 context_condition {
 (CurrentTimeWME t <= startT + 10000) }
 number_needed_for_success 1;

 with success_test {
 (DoorOpenWME door == doorID) } wait;
 with (persistent) subgoal YellForGuest(doorID);
}

In a parallel behavior, the steps are pursued simultaneously.
YellAndWaitForGuestToEnter(int)
simultaneously yells “come in” towards the door (the door
specified by the integer parameter) and waits to actually see
the door open. The persistent modifier on the
YellForGuest(int) subgoal makes the subgoal be
repeatedly pursued, regardless of whether the subgoal
succeeds or fails (one would imagine that the behavior that
does the yelling always succeeds). The
number _needed _for _success annotation (only
usable on parallel behaviors) specifies that only one step
has to succeed in order for the behavior to succeed. In this
case, that one step would be the demon step waiting for the
door to actually open. The context condition is a
continuously monitored condition that must remain true
during the execution of a behavior. If the context condition
fails during execution, then the behavior immediately fails.
In this example, the context condition tests the current time,
measured in milliseconds, against the time at which the
behavior started. If after 10 seconds the door hasn’t yet
opened (the guest isn’t coming in), then the context
condition will cause the behavior to fail.
 As failure propagates upwards through the subgoal
chain, it will cause the first OpenDoor() behavior to fail,
and eventually reach the OpenDoor() subgoal in
AnswerTheDoor() . The subgoal will then note that
there is another OpenDoor() behavior which has not
been tried yet and whose precondition is satisfied; this

1 In ABL, a locally-scoped appropriately typed variable is
automatically declared if it is assigned to in a WME test
and has not been previously explicitly declared.

behavior will be chosen in an attempt to satisfy the subgoal.
So if the guest doesn’t enter when the agent yells for
awhile, the agent will then walk over to the door and open
it.
 Finally, note that parallel behaviors introduce multiple
lines of expansion into a Hap/ABL program. Consequently,
the current execution state of the program is represented by
a tree, the active behavior tree (ABT), where the leaves of
the tree constitute the current set of executable steps.
 These examples give a sense for the Hap semantics
which ABL reimplements and extends. There are many
other features of Hap (also implemented in ABL) which it
is not possible to re-describe here, including how multiple
lines of expansion mix (based on priority, blocking on
physical acts, and a preference for pursing the current line
of expansion), declaration of behavior and step conflicts
(and the resulting concept of suspended steps and
behaviors), and numerous annotations which modify the
default semantics of failure and success propagation. The
definitive reference on Hap is of course Loyall’s
dissertation (Loyall 1997).

ABL Extensions
ABL extends Hap in a number of ways, including:

 • Generalizing the mechanisms for connecting to the
sensory-motor system. The ABL runtime provides
abstract superclasses for sensors and actions. To connect
an ABL program to a new sensory-motor system (e.g.
animation engine, robot), the author merely defines
specific sensors and actions as concrete subclasses of the
abstract sensor and action classes. ABL also includes
additional language constructs for binding sensors to
WMEs. ABL then takes responsibility for calling the
sensors appropriately when bound WMEs are referenced
in working memory tests.

• Atomic behaviors. Atomic behaviors prevent other active
behaviors from mixing in. Atomic behaviors are useful
for atomically updating state (e.g. updating multiple
WMEs atomically), though they should be used
sparingly, as a time-consuming atomic behavior could
impair reactivity.

• Reflection. ABL gives behaviors reflective access to the
current state of the ABT, supporting the authoring of
meta-behaviors which match on patterns in the ABT and
dynamically modify other running behaviors. Supported
ABT modifications include succeeding, failing or
suspending a goal or behavior, and modifying the
annotations of a subgoal step, such as changing the
persistence or priority. Safe reflection is provided by
wrapping all ABT nodes in special WMEs. Pattern
matching on ABT state is then accomplished through
normal WME tests. A behavior can only touch the ABT
through the reflection API provided on these wrapper
WMEs.

• Multiple named memories. Working memories can be
given a public name, which then, through the name, are
available to all ABL agents. Any WME test can

simultaneously reference multiple memories (the default
memory is the agent’s private memory). Named
memories are used by the joint behavior mechanisms
(see below) for the construction of team memories. In
Façade, named memories are also useful for giving
agents access to a global story memory.

 Dramatic Beats

The rest of this paper discusses ABL’s support for joint
action and the idioms we’ve developed for organizing
character behaviors within Façade. But both the support for
joint action and the programming idioms are motivated by
an analysis which first appeared in (Mateas and Stern
2000) arguing that behaviors for story-based believable
agents should be organized around the dramatic beat. This
argument is briefly recapitulated here.

Autonomy and story-based believable agents
Most work in believable agents has been organized around
the metaphor of strong autonomy. Such an agent chooses
its next action based on local perception of its environment
plus internal state corresponding to the goals and possibly
the emotional state of the agent. Using autonomy as a
metaphor driving the design of believable agents works
well for believable agent applications in which a single
agent is facilitating a task, such as instructing a student
(Lester & Stone 1997), giving a presentation, or in
entertainment applications in which a user develops a long-
term relationship with the characters by "hanging-out" with
them (Stern 1999). But for believable agents used as
characters in a story world, strong autonomy becomes
problematic. Knowing which action to take at any given
time depends not just on the private internal state of the
agent plus current world state, but also on the current story
state, including the entire past history of interactions
building on each other towards some end. The global
nature of story state is inconsistent with the notion of an
autonomous character that makes decisions based only on
private goal and emotion state and local sensing of the
environment.
 Only a small amount of work has been done on the
integration of story and character. This work has preserved
the strong autonomy of the characters by architecturally
dividing the responsibility for state maintenance between a
drama manager that is responsible for maintaining story
state, and the believable agents that are responsible for
maintaining character state and making the moment-by-
moment behavior decisions (e.g. Weyhrauch 1997). In this
approach, the character is still responsible for most of the
decision making. Occasionally the drama manager will
modify one or more of the characters’ behaviors (by giving
them a new goal or directly instigating a behavior) so as to
move the plot along. In the absence of the drama manager,
the character would still perform its normal autonomous
behavior. This architecture makes several assumptions
regarding the nature of interactive drama and believable

agents: drama manager decisions are infrequent, the
internal structure of the believable agents can be reasonably
decoupled from their interaction with the drama manager,
and multiple-character coordination is handled within the
agents. Let's explore each of these assumptions.
 Infrequent guidance of strongly autonomous believable
agents means that most of the time, behavior selection for
the believable agents will occur locally, without reference
to any (global) story state. The drama manager will
intervene to move the story forward at specific points; the
rest of the time the story will be "drifting," that is, action
will be occurring without explicit attention to story
movement. Weyhrauch (Weyhrauch 1997) does state that
his drama manager was designed for managing the
sequencing of plot points, that is, for guiding characters so
as to initiate the appropriate next scene necessary to make
the next plot point happen (whatever plot point has been
decided by the drama manager). Within a scene, some
other architectural component, a "scene manager," would
be necessary to manage the playing out of the individual
scene. And this is where the assumption of infrequent, low-
bandwidth guidance becomes violated. As is described
below, the smallest unit of story structure within a scene is
the beat, a single action/reaction pair. The scene-level
drama manager will thus need to continuously guide the
autonomous decision making of the agent. This frequent
guidance from the drama manager will be complicated by
the fact that low-bandwidth guidance (such as giving a
believable agent a new goal) will interact strongly with the
moment-by-moment internal state of the agent, such as the
set of currently active goals and behaviors, leading to
surprising and potentially unwanted behavior. In order to
reliably guide an agent, the scene-level drama manager will
have to engage in higher-bandwidth guidance involving the
active manipulation of internal agent state (e.g. editing the
currently active goal tree). Authoring strongly autonomous
characters for story-worlds is not only extra, unneeded
work (given that scene-level guidance will need to
intervene frequently), but actively makes guidance more
difficult, in that the drama manager will have to
compensate for the internal decision-making processes (and
associated state) of the agent.
 As the drama manager provides guidance, it will often be
the case that the manager will need to carefully coordinate
multiple characters so as to make the next story event
happen. For example, it may be important for two
characters to argue in such a way as to conspire towards the
revelation of specific information at a certain moment in
the story. To achieve this with autonomous agents, one
could try to back away from the stance of strong autonomy
and provide special goals and behaviors within the
individual agents that the drama manager can activate to
create coordinated behavior. But even if the character
author provides these special coordination hooks,
coordination is still being handled at the individual goal
and behavior level, in an ad-hoc way. What one really
wants is a way to directly express coordinated character
action.

Integrating Plot and Character with the Dramatic
Beat
Given that a strong architectural separation of character
and story is problematic, one is left with the question of
what architectural principle could be used to more tightly
integrate character and story; the answer is found in the
theory of dramatic writing in the concept of the dramatic
beat.
 In dramatic writing, stories are thought of as consisting
of events that turn (change) values (McKee 1997). A value
is a property of an individual or relationship, such as trust,
love, hope (or hopelessness), etc. A story event is precisely
any activity that turns a value. If there is activity –
characters running around, witty dialogue, buildings and
bridges exploding, and so on – but this activity is not
turning a value, then there is no story event, no dramatic
action. Thus one of the primary goals of an interactive
drama system should be to make sure that all activity turns
values. Of course these values should be changed in such a
way as to make some plot arc happen that enacts the story
premise (the Façade story premise is “To be happy you
must be true to yourself”). Beats are the smallest unit of
value change. Roughly, a beat consists of one or more
action/reaction pairs between characters. Generally
speaking, in the interest of maintaining economy and
intensity, a beat should not last longer than a few actions or
lines of dialogue.
 In Façade beats become first class architectural entities,
consisting of both the declarative knowledge needed to
sequence beats in a dramatically interesting way (the details
of Façade’s drama manager are not discussed in this paper)
and the procedural knowledge, expressed as ABL
behaviors, necessary for the characters to jointly carry out
the dramatic action within the beat. The rest of this paper
discusses ABL’s support for joint action and the idioms
(ways of using ABL) that we have developed for
organizing behaviors within a beat.

Support for Joint Action

In order to facilitate the coordination of multiple
characters, we have extended the semantics of Hap to
support joint goals and behaviors. The driving design goal
of joint behaviors is to combine the rich semantics for
individual expressive behavior offered by Hap with support
for the automatic synchronization of behavior across
multiple agents.

Joint Behaviors
In ABL, the basic unit of coordination is the joint behavior.
When a behavior is marked as joint, ABL enforces
synchronized entry and exit into the behavior. Part of the
specification for an “offer the player a drink” behavior
from Façade is shown below. This will be used as the
guiding behavior specification in the joint behavior

examples provided in this paper. To simplify the
discussion, the example leaves out the specification of how
player activity would modify the performance of this beat;
the next section describes idioms for supporting
interactivity. Also, it should be pointed out that though this
example involves only two characters coordinating, the
coordination framework and implemented infrastructure is
general enough to handles teams of n coordinating
characters.

(At the beginning of the behavior, Trip starts walking
to the bar. If he gets to the bar before the end of the
behavior, he stands behind it while delivering lines.)
Trip: A beer? Glass of wine? (Grace smiles at player.
Short pause)
Trip: You know I make a mean martini. (Grace
frowns at Trip partway into line. At the end of line,
she rolls her eyes at the ceiling.)
Grace: (shaking her head, smiling) Trip just bought
these fancy new cocktail shakers. He’s always looking
for a chance to show them off. (If Trip is still walking
to the bar, he stops at “shakers”. At “shakers” Trip
looks at Grace and frowns slightly. At the end of the
line he looks back at the player and smiles. If he was
still on the way to the bar, he resumes walking to the
bar).

In order to perform this coordinated activity, Grace and
Trip must first synchronize on offering a drink, so that they
both know they are working together to offer the drink.
Grace and Trip both have the following behavior definition
in their respective behavior libraries.

joint sequential behavior OfferDrink() {
 team Grace, Trip;
 // The steps of Grace’s and Trip’s OfferDrink()
 // behaviors differ.
}

The declaration of a behavior as joint tells ABL that
entry into and exit from the behavior must be coordinated
with team members, in this case Grace and Trip. Entry into
a behavior occurs when the behavior is chosen to satisfy a
subgoal. Exit from the behavior occurs when the behavior
succeeds, fails, or is suspended. Synchronization is
achieved by means of a two-phase commit protocol:

1. The initiating agent broadcasts an intention (to enter,
succeed, fail or suspend) to the team.

2. All agents receiving an intention respond by, in the case
of an entry intention, signaling their own intention to
enter or a rejection of entry, or in the case of exit
signaling their own intention to succeed, fail, or suspend.

3. When an agent receives intentions from all team
members, the agent performs the appropriate entry into
or exit from the behavior.1

1 Appropriate timeouts handle the case of non-responding
agents who fail to send appropriate intention or ready
messages.

 Imagine that Trip pursues a joint OfferDrink()
subgoal and picks the joint OfferDrink() behavior to
accomplish the subgoal. After the behavior has been
chosen, but before it is added to the ABT, Trip negotiates
entry with his teammate Grace. On receipt of the intention-
to-enter OfferDrink() , Grace checks if she has a joint
behavior OfferDrink() with a satisfied precondition. If
she does, she signals her intention-to-enter. Trip and Grace
then exchange ready-messages and enter the behavior. In
Trip’s case the behavior is rooted normally in the ABT at
the subgoal which initiated behavior selection, while in
Grace the spawned subgoal and corresponding joint
behavior are rooted at the collection behavior at the root of
the ABT.1 If Grace didn’t have a satisfied joint
OfferDrink() behavior, she would send a reject
message to Trip, which would cause Trip’s
OfferDrink() subgoal to fail, with all the normal
effects of failure propagation (perhaps causing Trip to
pursue an individual OfferDrink() goal). Note that
during the negotiation protocol, the agents continue to
pursue other lines of expansion in their ABT’s; if the
protocol takes awhile to negotiate, behavior continues
along these other lines.
 The negotiation protocol may seem overly complex. In
the case that all the team members are on the same machine
(the case for Façade), one can assume that negotiation will
be very fast and no messages will be lost. Therefore it may
seem that agents only need to exchange a pair of messages
for behavior entry, while the initiator only needs to send a
single message for behavior exit. However, even in the
same-machine case, the team members are fully
asynchronous, and thus a joint behavior in one agent may
succeed while the matching joint behavior in another agent
fails - negotiation is necessary to come to agreement as a
team on the status of the behavior. And the simplified
protocol would certainly break in the distributed case
where team member’s messages may be lost, or in cases
where an agent might disappear unexpectedly (e.g. a game
where agents can be killed) in the middle of the
negotiation.2
 But the most interesting feature the more complex
negotiation protocol provides are authorial “hooks” for
attaching transition behaviors to joint behavior entry and
exit. Sengers, in her analysis of the Luxo Jr. short by Pixar,
identified behavior transitions as a major means by which
narrative flow is communicated (Sengers 1998). Animators
actively communicate changes in the behavior state of their
characters (e.g. the change from playing to resting) by
having the characters engage in short transitional behaviors
that communicate why the behavior change is happening.
Sengers’ architectural extensions to Hap provided support
for authoring individual transition behaviors (Sengers

1 A collection behavior is a variety of parallel behavior in
which every step need only be attempted for the behavior
to succeed.
2 The negotiation protocol can easily be extended to a
three-phase protocol to support lost messages.

1998). However, she also noted that animators make use of
coordinated multi-character transitions to communicate
changes in multi-character behavioral state, but did not
provide architectural support for this in her system. By
exposing the negotiation protocol to the agent programmer,
ABL can support the authoring of behaviors which
communicate transitions in multi-agent behavior state.

Posting Actions and Step Synchronization
In addition to synchronizing on behavior entry and exit,
ABL provides other mechanisms for synchronizing agents,
namely support for posting information to a team working
memory, and the ability to synchronize the steps of
sequential behaviors. Below are the two OfferDrink()
behaviors for Trip and Grace.

Trip’s behavior:

joint sequential behavior OfferDrink() {
 team Trip, Grace;

 with (post-to OfferDrinkMemory)
 // Individual behavior for initial offer
 subgoal InitialDrinkOffer();
 subgoal LookAtPlayerAndWait(0.5);
 with (synchronize) joint subgoal
 SuggestMartini();

 // react to Grace’s line about fancy shakers
 with (synchronize) joint subgoal
 FancyCocktailShakers();
}

Grace’s behavior:

joint sequential behavior OfferDrink() {
 team Trip, Grace;

 // wait for Trip to say first line
 with (success_test { OfferDrinkMemory
 (CompletedGoalWME name == iInitialDrinkOffer
 status == SUCCEEDED)})
 wait;
 subgoal LookAtPlayerAndWait(0.5);

 // react to Martini suggestion
 with (synchronize) joint subgoal
 SuggestMartini();
 with (synchronize) joint subgoal
 FancyCocktailShakers();
}

 Whenever a joint behavior is entered, the ABL runtime
automatically creates a new named team working memory
that persists for the duration of the joint behavior.3 This
team memory, which can be written to and read from by
any member of the team, can be used as a communication
mechanism for coordinating team activity. The first subgoal
of Trip’s behavior is annotated with a post-to
annotation; for any subgoal marked with post-to , a
CompletedGoalWME is added to the named memory when
the subgoal completes (with either success or failure). A
CompletedGoalWME, the definition of which is provided
by the ABL runtime, contains the name of the goal, its

3 By default the name of the team memory is the
concatenation of the name of the behavior and the string
“Memory”.

completion state (success or failure), the name of the agent
who performed the goal, any goal arguments, and a
timestamp. The post-to annotation automatically fills in
the appropriate arguments. This facility, inspired by the
sign management system in Senger’s extension of Hap
(Sengers 1998), can be used to provide an agent with a
selective episodic memory. This facility is useful even in a
single agent situation, as the future behavior of an agent
may conditionally depend on past episodic sequences.
Since the ABT no longer has state for already completed
subgoals and actions, an ABL agent’s reflective access to
its own ABT doesn’t by itself provide access to past
episodic sequences. However, in a team situation, access to
episodic state can be used to coordinate team members. In
the first line of Grace’s behavior, a demon step monitors
the team memory for the completion of
InitialDrinkOffer() . In the behavior spec above,
Grace doesn’t begin directly reacting to Trip until after
Trip’s first line. Keep in mind that an ABL agent pursues
multiple lines of expansion, so while Grace is waiting for
Trip to complete his first line, she will continue to behave,
in this case engaging in small idle movements as she smiles
at the player. When Trip completes his first subgoal, an
appropriate CompletedGoalWME is posted to the team
memory; Trip then moves onto his second subgoal, to look
at the player and wait for about half a second. The posting
of the CompletedGoalWME causes Grace’s first line to
succeed, and she also, independently, waits for about half a
second. One of them will be first to finish waiting, and will
move onto the next line, which, being a joint behavior,
reestablishes synchronization.
 The last two subgoals of Grace’s and Trip’s behaviors
are annotated with a synchronize annotation. To
understand what this does, first imagine the case where the
annotation is absent. Assume Grace is the first to finish the
second subgoal (the goal to look at the player and wait).
Grace will then attempt to satisfy the subgoal
SuggestMartini() , causing Trip to spawn this goal at
the root of his ABT and enter his local version of
SuggestMartini() . As they jointly pursue the
SuggestMartini() line of expansion, Trip will
continue to pursue the OfferDrink() line of expansion,
eventually initiating SuggestMartini() on his side,
causing Grace to spawn the goal at her root and enter
another copy of the behavior. At this point each is pursuing
two copies of the joint behavior SuggestMartini() ,
one copy rooted at the subgoal within OfferDrink() ,
and the other rooted at the root of the ABT. This is not
what the behavior author intended; rather it was intended
that when the characters synchronize on the joint subgoal
SuggestMartini() , they would each begin pursing
their local version of SuggestMartini() rooted at the
respective subgoals within their local versions of
OfferDrink() . The synchronize annotation allows
a behavior author to specify that a joint behavior should be
rooted at a specific subgoal, rather than at the ABT root.
Synchronize is only allowed within joint behaviors as
an annotation on a goal that has at least one joint behavior

with matching signature in the behavior library. In the case
of sequential joint behaviors, synchronization on a
synchronize subgoal forces the success of all steps
between the current step counter position and the
synchronize subgoal, and moves the step counter up to
the synchronize subgoal.

Beat Idioms

Developing a believable agent language such as ABL
involves simultaneously defining and implementing
language constructs which support the authoring of
expressive behavior, and the exploration of idioms for
expressive behavior using the language. This section
describes the ABL idioms used in authoring beat behaviors.
 Above we described the ABL support for coordinating
multiple believable agents. But of course in an interactive
drama there is always an additional character, the human
player, whose behavior can’t be directly coordinated using
joint goals and behaviors. The idioms described in this
section are the behavior organization techniques we’ve
developed for incorporating player interactivity into the
accomplishment of dramatic action within a beat.
 Beat behaviors are divided into three categories: beat
goals, handlers, and cross-beat behaviors. A greeting beat,
in which Trip greets the player at the door, will provide
examples of these three behaviors categories and the
relationships between the categories. To simplify the
discussion, the example involves a single character (rather
than a team) interacting with the player.
 In the greeting beat, Trip wants to initially greet the
player (“Hey! So glad you could make it. Thanks for
coming over man.”), yell for Grace (“Grace, come on out!
Our guest is here.”), and invite the player in (“Come on in,
don’t be shy”). These are the three beat goals of the
greeting beat and should be accomplished sequentially.
 Of course, during this greeting, the player will engage in
various actions which should be handled in the context of
the greeting. These interactions take the form of physical
movement, object manipulation, and natural language text
typed by the player. At the beat behavior level, player text
is captured by WMEs representing the meaning of the text
as a discourse act.1 Handlers are demons responsible for
handling player interaction. For the purposes of this
example, assume that the greeting beat wants to handle the
cases of the player greeting Trip, the player referring to
Grace, and the player preemptively walking into the
apartment before she has been invited in. The code below
starts the handlers and begins the sequence of beat goals.

parallel behavior StartTheBeat() {

1 For translating surface text into formally represented
discourse acts, Façade employs a custom rule language for
specifying templates and discourse chaining rules. The
discourse rule compiler targets Jess, a CLIPS-like forward-
chaining rule language (available at
http://herzberg.ca.sandia.gov/jess/).

 with (priority 1)
 subgoal StartTheHandlers();
 subgoal BeatGoals();
}

parallel behavior StartTheHandlers() {
 with (persistent, priority 20)
 subgoal handlerDAGreet();
 with (persistent, priority 15)
 subgoal handlerDAReferTo_grace();
 with (priority 10, ignore_failure)
 subgoal handlerPreInviteAptMove();
}

sequential behavior BeatGoals() {
 with (persistent when_fails)
 bgOpenDoorAndGreetPlayer();
 with (persistent when_fails) bgYellForGrace();
 with (persistent when_fails) bgInviteIntoApt();
}

 Handlers are started in various priority tiers
corresponding to the relative importance of handling that
interaction. Priorities are used to resolve cases where
another player interaction happens in the middle of
handling the previous player interaction, or when
simultaneous player interactions occur. A higher priority
handler can interrupt a lower priority handler, while same
or lower priority handlers must wait for a higher priority
handler to finish before handling the nested interaction.
Generally handlers are persistent; when a handler finishes
responding to an interaction, it should “reset” and be ready
to deal with another interaction in the same category. In
general handlers are higher priority than beat goals so that
if an interaction occurs in the middle of the beat goal, the
handler will “wake up” and interrupt it.
 Handlers tend to be meta-behaviors; that is, they make
use of reflection to directly modify the ABT state. When a
handler triggers, it fails the current beat goal, potentially
succeeds other beat goals, possibly pursues a beat goal
within the handler (effectively reordering beat goals), and
engages in its own bit of handler specific behavior. In some
cases the handler specific behavior may entail mapping the
recognized action to a different recognized action, which
will then trigger a different corresponding handler. Below
is a simplified version of
handlerDAReferTo _grace() .

sequential behavior handlerDAReferTo_grace() {
 with (success_test { (DAReferToWME topicID ==
 eTopic_grace) }) wait;
 with (ignore_failure) subgoal
 handlerDAReferTo_grace_Body();
 subgoal DAReferTo_grace_Cleanup();
}

// by mentioning Grace, we will say "Grace? uh
// yeah" and then yell for Grace but only if we
// aren't currently doing bgYellForGrace!
sequential behavior handlerDAReferTo_grace_Body()
{
 precondition {
 (GoalStepWME signature == "bgYellForGrace()"
 isExecuting == false) }
 subgoal handlerDA_InterruptWith(
 eTripScript_graceuhyeah,
 eFullExpression_blank);
 subgoal handlerDAReferTo_grace_Body2();
}

// we aren't currently doing yellForGrace, and if
// we haven't completed yellForGrace, then do it
sequential behavior
 handlerDAReferTo_grace_Body2() {
 // Goal still exists in the ABT so it hasn't
 // been completed
 precondition {
 (GoalStepWME signature == "bgYellForGrace()")
 }
 specificity 2;
 subgoal SetBeatGoalSatisfied(
 "bgYellForGrace()", true);
 with (persistent when_fails)
 subgoal bgYellForGrace();
}

// otherwise we must have already completed
// yellForGrace, so say "She's coming, I don't
// know where she's hiding"
sequential behavior
 handlerDAReferTo_grace_Body2() {
 specificity 1;
 subgoal handlerDA_InterruptWith(
 etripScript_shescomingidontknow,
 eFullExpression_smallSmile);
}

 When the player refers to Grace (perhaps saying, “I’m
looking forward to meeting Grace”, or “Where is Grace”,
or “Hi Grace”) this handler is triggered. The handler body
behavior uses reflection to test if the beat goal to yell for
Grace is currently not executing. If it is executing (e.g. Trip
was in the middle of yelling for Grace when the player said
“Where’s Grace”), the body precondition fails, causing the
handler to fail, which then restarts because of the
persistence annotation, leaving Trip ready to handle
another reference to Grace. Effectively Trip ignores
references to Grace if he’s in the middle of yelling for
Grace. Otherwise, Trip interrupts whatever he is saying
with “Oh, yeah…”. handlerDAInterruptWith uses
reflection to fail the currently executing beat goal, thus, as
the name implies, interrupting the beat goal. When the
handler is finished, the persistent when_fails
annotation will causes any handler-failed beat goals to
restart. After saying “Oh yeah…” Trip either performs the
yell for Grace beat goal within the handler (and succeeds it
out of the BeatGoals behavior) or, if yell for Grace has
already happened, says “She’s coming. I don’t know where
she’s hiding.” This handler demonstrates how player
interaction can cause beat goals to be interrupted,
effectively reordered, and responded to in a way dependent
on what has happened in the beat so far.
 The final category of beat behaviors are the cross-beat
behaviors. These are behaviors that cross beat goal and
handler boundaries. An example beat goal behavior is the
staging behavior that an agent uses to move to certain
dramatically significant positions (e.g. close or far
conversation position with the player or another agent, into
position to pickup or manipulate another object, etc.). A
staging request to move to close conversation position with
the player might be initiated by the first beat goal in a beat.
The staging goal is spawned to another part of the ABT.
After the first beat goal completes its behavior, other beat
goals and handlers can happen as the agent continues to
walk towards the requested staging point. Of course at any

time during a cross-beat behavior, beat goals and handlers
can use reflection to find out what cross-beat behaviors are
currently happening and succeed or fail them if the cross-
beat behaviors are inappropriate for the current beat goal’s
or handler’s situation.
 The example in this section involved only a single
character interacting with the player. Multi-agent beats use
the same idioms for coordinating beat goals, responding to
player interaction, and pursing longer term goals; the
various beat behaviors just become joint behaviors instead
of individual behaviors.

Conclusion

ABL provides a rich programming framework for
authoring story-based believable agents. Here we’ve
described ABL’s novel features and provided examples of
how we’re using these features to author characters for
Façade, an interactive dramatic world.

References

Bates, J., Loyall, A. B., and Reilly, W. S. 1992. Integrating
Reactivity, Goals, and Emotion in a Broad Agent.
Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society, Bloomington, Indiana, July
1992.

Blumberg, B. 1996. Old Tricks, New Dogs: Ethology and
Interactive Creatures. Ph.D. Dissertation. MIT Media Lab.

Lester, J., Stone, B. 1997. Increasing Believability in
Animated Pedagogical Agents. Proceedings of the First
International Conference on Autonomous Agents. Marina
del Rey, CA, USA, 16-21.

Loyall, A. B. 1997. Believable Agents. Ph.D. thesis, Tech
report CMU-CS-97-123, Carnegie Mellon University.

Mateas, M. 1999. An Oz-Centric Review of Interactive
Drama and Believable Agents. In M. Wooldridge and M.
Veloso, (Eds.), AI Today: Recent Trends and
Developments. Lecture Notes in AI 1600. Berlin, New
York: Springer.

Mateas, M. and Stern, A. 2000. Towards Integrating Plot
and Character for Interactive Drama. In Working notes of
the Social Intelligent Agents: The Human in the Loop
Symposium. AAAI Fall Symposium Series. Menlo Park,
CA: AAAI Press.

McKee, R. 1997. Story: Substance, Structure, Style, and
the Principles of Screenwriting. New York, NY:
HarperCollins.

Sengers, P. 1998. Anti-Boxology: Agent Design in
Cultural Context. Ph.D. Thesis. School of Computer
Science, Carnegie Mellon University.

Stern, A. 1999. Virtual Babyz with Narrative Intelligence.
In Working notes of the Narrative Intelligence Symposium.
AAAI Fall Symposium Series. Menlo Park, CA: AAAI
Press.

Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
thesis, Tech report CMU-CS-97-109, Carnegie Mellon
University.

