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Abstract 
ABL is a reactive planning language, based on the Oz 
Project language Hap, designed specifically for authoring 
believable agents - characters which express rich 
personality, and which, in our case, play roles in an 
interactive, dramatic story world called Façade. Here we 
give a brief overview of the language Hap and discuss the 
new features in ABL, focusing on ABL’s support for multi-
character coordination. We also describe the ABL idioms 
we are using to organize character behaviors in the context 
of an interactive drama. 

Introduction 

Façade is an attempt to move beyond traditional branching 
or hyper-linked narrative, to create a fully-realized 
interactive drama - a dramatically interesting virtual world 
inhabited by computer-controlled characters, within which 

the user (hereafter referred to as the player) experiences a 
story from a first person perspective (Mateas and Stern 
2000). The complete, real-time, 3D, one-act interactive 
drama will be available in a free public release at the end of 
2002.  
 You, the player, using your own name and gender, play 
the character of a longtime friend of Grace and Trip, an 
attractive and materially successful couple in their early 
thirties.  During an evening get-together at their apartment 
that quickly turns ugly, you become entangled in the high-
conflict dissolution of Grace and Trip’s marriage. No one 
is safe as the accusations fly, sides are taken and 
irreversible decisions are forced to be made.  By the end of 
this intense one-act play you will have changed the course 
of Grace and Trip’s lives -- motivating you to re-play the 
drama to find out how your interaction could make things 
turn out differently the next time. The player interacts by 
navigating in the world, manipulating objects, and, most 
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significantly, through natural language dialogue.  
 This project raises a number of interesting AI research 
issues, including drama management for coordinating plot-
level interactivity, broad but shallow support for natural 
language understanding and discourse management, and 
autonomous believable agents in the context of interactive 
story worlds. This paper focuses on the last issue, 
describing the custom believable agent language developed 
for this project, and the idioms developed within this 
language for organizing character behaviors. 

Project Goals 

The field of interactive drama concerns itself with building 
dramatically interesting virtual worlds inhabited by 
computer-controlled characters, within which the user 
(hereafter referred to as the player) experiences a story 
from a first person perspective.  Over the past decade there 
has been a fair amount of research on believable agents, 
that is, autonomous characters exhibiting rich personalities, 
emotions, and social interactions (Bates, Loyall and Reilly 
1992; Blumberg 1996; Lester and Stone 1997; Mateas 
1999; Stern 1999). There has been comparatively little 
work, however, exploring how the reactive behavior of 
believable agents can be integrated with the more 
deliberative nature of a story plot, so as to build interactive, 
dramatic worlds (Weyhrauch 1997).  Likewise, the 
computer game industry has had little success in creating 
powerful interactive narrative experiences in their games. 
Although games often have characters in them, such as in 
adventure or role-playing games, with few exceptions they 
are not "believable", behaving one-dimensionally and 
predictably, with little potential for more than shallow 
interactivity. 
 Motivated by their belief that a “fully-realized” 
computer-based interactive drama has not yet been built, 
the authors are currently engaged in a three year 
collaboration to build Façade, an interactive story 
integrating an interdisciplinary set of artistic practices and 
artificial intelligence technologies.   
 

Story Requirements 
 The story requirements describe the properties we wish 
our particular interactive drama to have. (These are not 
intended to be absolute requirements; that is, this is not a 
description of the properties that all interactive stories must 
have.) 

 Short one-act play. Any one run of the scenario should 
take the player 15 to 20 minutes to complete. We focus on 
a short story for a couple of reasons. Building an 
interactive story has all the difficulties of writing and 
producing a non-interactive story (film or play) plus all the 
difficulty of supporting true player agency in the story. In 
exploring this new interactive art form it makes sense to 
first work with a distilled form of the problem, exploring 
scenarios with the minimum structure required to support 

dramatically interesting interaction. In addition, a short 
one-act play is an extreme, contrarian response to the many 
hours of game play celebrated in the design of 
contemporary computer games. Instead of providing the 
player with 40 to 60 hours of episodic action and endless 
wandering in a huge world, we want to design an 
experience that provides the player with 15 to 20 minutes 
of emotionally intense, tightly unified, dramatic action. The 
story should have the intensity, economy and catharsis of 
traditional drama.  

  Relationships. Rather than being about manipulating 
magical objects, fighting monsters, and rescuing princesses, 
the story should be about the emotional entanglements of 
human relationships. We are interested in interactive 
experiences that appeal to the adult, non-computer geek, 
movie-and-theater-going public. 

  Three characters. The story should have three 
characters, two controlled by the computer and one 
controlled by the player. Three is the minimum number of 
characters needed to support complex social interaction 
without placing the responsibility on the player to 
continually move the story forward. If the player is shy or 
confused about interacting, the two computer controlled 
characters can conspire to set up dramatic situations, all the 
while trying to get the player involved.  

  The player should be the protagonist. Ideally the 
player should experience the change in the protagonist as a 
personal journey. The player should be more than an 
"interactive observer," not simply poking at the two 
computer controlled characters to see how they change.  

  Embodied interaction should matter. Though dialogue 
should be a significant (perhaps the primary) mechanism 
for character interaction, it should not be the sole 
mechanism. Embodied interaction, such as moving from 
one location to another, picking up an object, or touching a 
character, should play a role in the action. These physical 
actions should carry emotional and symbolic weight, and 
should have a real influence on the characters and their 
evolving interaction. The physical representation of the 
characters and their environment should support action 
significant to the plot.  

  Action takes place in a single location. This provides 
unity of space and forces a focus on plot and character 
interaction.  

  The player should not be over-constrained by a role. 
The amount of non-interactive exposition describing the 
player's role should be minimal. The player should not have 
the feeling of playing a role, of actively having to think 
about how the character they are playing would react. 
Rather, the player should be able to be herself as she 
explore the dramatic situation. Any role-related scripting of 
the interactor (Murray 1998) should occur as a natural by-
product of their interaction in the world. The player should 
"ease into" their role; the role should be the "natural" way 
to act in the environment, given the dramatic situation. 



ABL overview 

ABL (A Behavior Language, pronounced “able”) is based 
on the Oz Project believable agent language Hap developed 
by A. B. Loyall (Loyall 1997, Bates, Loyall and Reilly 
1992). The ABL compiler is written in Java and targets 
Java; the generated Java code is supported by the ABL 
runtime system.  
 ABL modifies Hap in a number of ways, changing the 
syntax (making it more Java-like), generalizing the 
mechanisms by which an ABL agent connects to a sensory-
motor system, and, most significantly, adding new 
constructs to the language, including language support for 
multi-agent coordination in the carrying out of dramatic 
action. This section provides an overview of the ABL 
language and discusses some of the ways in which ABL 
modifies or extends Hap. The discussion of joint behaviors, 
the mechanism for multi-agent coordination, occurs in its 
own section below. 

Hap Semantics  
Since ABL builds on top of Hap, here we briefly describe 
the organization and semantics of a Hap program by 
walking through a series of examples. All examples use the 
ABL syntax.  
 Hap/ABL programs are organized as collections of 
behaviors. In sequential behaviors, the steps of the 
behavior are accomplished serially. As each step is 
executed, it either succeeds or fails; step success makes the 
next step available for execution. If any step fails, it causes 
the enclosing behavior to fail. An example sequential 
behavior is shown below. 

sequential behavior AnswerTheDoor() { 
  WME w;    
  with success_test { w = (KnockWME) } wait; 
  act sigh(); 
  subgoal OpenDoor(); 
  subgoal GreetGuest(); 
  mental_act { deleteWME(w); } 
} 

 In this sequential behavior, an agent waits for someone 
to knock on a door, sighs, then opens the door and greets 
the guest. This behavior demonstrates the four basic step 
types, namely wait , act , subgoal , and mental_act . 
Wait steps are never chosen for execution; a naked wait 
step in a sequential behavior would block the behavior 
from executing past the wait. However, when combined 
with a success test, a wait step can be used to make a 
demon which waits for a condition to become true. Success 
tests are continuously monitored conditions which, when 
they become true, cause their associated step to 
immediately succeed. Though in this example the success 
test is associated with a wait step to make a demon, it can 
be associated with any step type.  
 Success tests, as well as other tests which will be 
described shortly, perform their test against the agent’s 
working memory. A working memory contains a number of 

working memory elements (WMEs) which hold 
information. WMEs are like instances in an object-oriented 
language; every WME has a type plus some number of 
typed fields which can take on values. As described later on 
in the paper, WMEs are also the mechanism by which an 
agent becomes aware of sensed information. In this 
example the success test is looking for WMEs of type 
KnockWME, which presumably is placed in the agent’s 
working memory when someone knocks on a door. Since 
there are no field constraints in the test, the test succeeds as 
soon as a KnockWME appears.  
 An act step tells the agent’s body (sensory-motor system) 
to perform an action. For graphical environments such as 
Façade, physical acts will ultimately be translated into calls 
to the animation engine, though the details of this 
translation are hidden from the Hap/ABL program. In this 
example, the act makes the body sigh. Note that physical 
acts can fail - if the sensory-motor system determines that it 
is unable to carry out the action, the corresponding act step 
fails, causing the enclosing behavior to fail.  
 Subgoal steps establish goals that must be accomplished 
in order to accomplish the behavior. The pursuit of a 
subgoal within a behavior recursively results in the 
selection of a behavior to accomplish the subgoal.  
 Mental acts are used to perform bits of pure 
computation, such as mathematical computations or 
modifications to working memory. In the final step of the 
example, the mental_act deletes the KnockWME (making a 
call to a method defined on ABL agents), since the 
knocking has now been dealt with. In ABL, mental acts are 
written in Java.  
 The next example demonstrates how Hap/ABL selects a 
behavior to accomplish a subgoal through signature 
matching and precondition satisfaction. 

sequential behavior OpenDoor() {  
 precondition {  
    (KnockWME doorID :: door) 
    (PosWME spriteID == door pos :: doorPos) 
    (PosWME spriteID == me  pos :: myPos) 
    (Util.computeDistance(doorPos, myPos) > 100)  
  } 
 specificity 2; 
 // Too far to walk, yell for knocker to come in 
 subgoal YellAndWaitForGuestToEnter(doorID); 
} 
 
sequential behavior OpenDoor() { 
 precondition { (KnockWME doorID :: door) } 
  specificity 1; 
 // Default behavior - walk to door and open 
  . . . 
} 

In this example there are two sequential behaviors 
OpenDoor() , either of which could potentially be used to 
satisfy the goal OpenDoor() . The first behavior opens 
the door by yelling for the guest to come in and waiting for 
them to open the door. The second behavior (details elided) 
opens the door by walking to the door and opening it. 
When AnswerTheDoor()  pursues the subgoal 
OpenDoor() , Hap/ABL determines, based on signature 
matching, that there are two behaviors which could 
possibly open the door. The precondition of both behaviors 



is executed. In the event that only one of the preconditions 
is satisfied, that behavior is chosen as the method to use to 
accomplish the subgoal. In the event that both 
preconditions are satisfied, the behavior with the highest 
specificity is chosen. If there are multiple satisfied 
behaviors with highest specificity, one is chosen at random. 
In this example, the first OpenDoor()  behavior is chosen 
if the lazy agent is too far from the door to walk there (“too 
far” is arbitrarily represented as a distance > “100”).  
 The precondition demonstrates the testing of the fields of 
a WME. The ::  operator assigns the value of the named 
WME field on the left of the operator to the variable on the 
right.1 This can be used both to grab values from working 
memory which are then used in the body of the behavior, 
and to chain constraints through the WME test.  
 The last example demonstrates parallel behaviors and 
context conditions.  

parallel behavior  
YellAndWaitForGuestToEnter(int doorID) { 
  precondition { (CurrentTimeWME t :: startT) } 
  context_condition {  
    (CurrentTimeWME t <= startT + 10000) } 
  number_needed_for_success 1; 
 
  with success_test {  
    (DoorOpenWME door == doorID) } wait; 
  with (persistent) subgoal YellForGuest(doorID); 
} 

In a parallel behavior, the steps are pursued simultaneously.  
YellAndWaitForGuestToEnter(int) 
simultaneously yells “come in” towards the door (the door 
specified by the integer parameter) and waits to actually see 
the door open. The persistent modifier on the 
YellForGuest(int)  subgoal makes the subgoal be 
repeatedly pursued, regardless of whether the subgoal 
succeeds or fails (one would imagine that the behavior that 
does the yelling always succeeds). The 
number _needed _for _success  annotation (only 
usable on parallel behaviors) specifies that only one step 
has to succeed in order for the behavior to succeed. In this 
case, that one step would be the demon step waiting for the 
door to actually open. The context condition is a 
continuously monitored condition that must remain true 
during the execution of a behavior. If the context condition 
fails during execution, then the behavior immediately fails. 
In this example, the context condition tests the current time, 
measured in milliseconds, against the time at which the 
behavior started. If after 10 seconds the door hasn’t yet 
opened (the guest isn’t coming in), then the context 
condition will cause the behavior to fail.  
 As failure propagates upwards through the subgoal 
chain, it will cause the first OpenDoor()  behavior to fail, 
and eventually reach the OpenDoor()  subgoal in 
AnswerTheDoor() . The subgoal will then note that 
there is another OpenDoor()  behavior which has not 
been tried yet and whose precondition is satisfied; this 
                                                 
1 In ABL, a locally-scoped appropriately typed variable is 
automatically declared if it is assigned to in a WME test 
and has not been previously explicitly declared. 

behavior will be chosen in an attempt to satisfy the subgoal. 
So if the guest doesn’t enter when the agent yells for 
awhile, the agent will then walk over to the door and open 
it.  
 Finally, note that parallel behaviors introduce multiple 
lines of expansion into a Hap/ABL program. Consequently, 
the current execution state of the program is represented by 
a tree, the active behavior tree (ABT), where the leaves of 
the tree constitute the current set of executable steps. 
 These examples give a sense for the Hap semantics 
which ABL reimplements and extends. There are many 
other features of Hap (also implemented in ABL) which it 
is not possible to re-describe here, including how multiple 
lines of expansion mix (based on priority, blocking on 
physical acts, and a preference for pursing the current line 
of expansion), declaration of behavior and step conflicts  
(and the resulting concept of suspended steps and 
behaviors), and numerous annotations which modify the 
default semantics of failure and success propagation. The 
definitive reference on Hap is of course Loyall’s 
dissertation (Loyall 1997).  

ABL Extensions 
ABL extends Hap in a number of ways, including: 

 • Generalizing the mechanisms for connecting to the 
sensory-motor system. The ABL runtime provides 
abstract superclasses for sensors and actions. To connect 
an ABL program to a new sensory-motor system (e.g. 
animation engine, robot), the author merely defines 
specific sensors and actions as concrete subclasses of the 
abstract sensor and action classes. ABL also includes 
additional language constructs for binding sensors to 
WMEs. ABL then takes responsibility for calling the 
sensors appropriately when bound WMEs are referenced 
in working memory tests. 

• Atomic behaviors. Atomic behaviors prevent other active 
behaviors from mixing in. Atomic behaviors are useful 
for atomically updating state (e.g. updating multiple 
WMEs atomically), though they should be used 
sparingly, as a time-consuming atomic behavior could 
impair reactivity.  

• Reflection. ABL gives behaviors reflective access to the 
current state of the ABT, supporting the authoring of 
meta-behaviors which match on patterns in the ABT and 
dynamically modify other running behaviors. Supported 
ABT modifications include succeeding, failing or 
suspending a goal or behavior, and modifying the 
annotations of a subgoal step, such as changing the 
persistence or priority. Safe reflection is provided by 
wrapping all ABT nodes in special WMEs. Pattern 
matching on ABT state is then accomplished through 
normal WME tests. A behavior can only touch the ABT 
through the reflection API provided on these wrapper 
WMEs. 

• Multiple named memories. Working memories can be 
given a public name, which then, through the name, are  
available to all ABL agents. Any WME test can 



simultaneously reference multiple memories (the default 
memory is the agent’s private memory). Named 
memories are used by the joint behavior mechanisms 
(see below) for the construction of team memories. In 
Façade, named memories are also useful for giving 
agents access to a global story memory.  

 Dramatic Beats 

The rest of this paper discusses ABL’s support for joint 
action and the idioms we’ve developed for organizing 
character behaviors within Façade. But both the support for 
joint action and the programming idioms are motivated by 
an analysis which first appeared in (Mateas and Stern 
2000) arguing that behaviors for story-based believable 
agents should be organized around the dramatic beat. This 
argument is briefly recapitulated here.  

Autonomy and story-based believable agents 
Most work in believable agents has been organized around 
the metaphor of strong autonomy. Such an agent chooses 
its next action based on local perception of its environment 
plus internal state corresponding to the goals and possibly 
the emotional state of the agent. Using autonomy as a 
metaphor driving the design of believable agents works 
well for believable agent applications in which a single 
agent is facilitating a task, such as instructing a student 
(Lester & Stone 1997), giving a presentation, or in 
entertainment applications in which a user develops a long-
term relationship with the characters by "hanging-out" with 
them (Stern 1999). But for believable agents used as 
characters in a story world, strong autonomy becomes 
problematic. Knowing which action to take at any given 
time depends not just on the private internal state of the 
agent plus current world state, but also on the current story 
state, including the entire past history of interactions 
building on each other towards some end. The global 
nature of story state is inconsistent with the notion of an 
autonomous character that makes decisions based only on 
private goal and emotion state and local sensing of the 
environment.  
 Only a small amount of work has been done on the 
integration of story and character. This work has preserved 
the strong autonomy of the characters by architecturally 
dividing the responsibility for state maintenance between a 
drama manager that is responsible for maintaining story 
state, and the believable agents that are responsible for 
maintaining character state and making the moment-by-
moment behavior decisions (e.g. Weyhrauch 1997). In this 
approach, the character is still responsible for most of the 
decision making. Occasionally the drama manager will 
modify one or more of the characters’ behaviors (by giving 
them a new goal or directly instigating a behavior) so as to 
move the plot along. In the absence of the drama manager, 
the character would still perform its normal autonomous 
behavior. This architecture makes several assumptions 
regarding the nature of interactive drama and believable 

agents: drama manager decisions are infrequent, the 
internal structure of the believable agents can be reasonably 
decoupled from their interaction with the drama manager, 
and multiple-character coordination is handled within the 
agents. Let's explore each of these assumptions. 
 Infrequent guidance of strongly autonomous believable 
agents means that most of the time, behavior selection for 
the believable agents will occur locally, without reference 
to any (global) story state. The drama manager will 
intervene to move the story forward at specific points; the 
rest of the time the story will be "drifting," that is, action 
will be occurring without explicit attention to story 
movement. Weyhrauch (Weyhrauch 1997) does state that 
his drama manager was designed for managing the 
sequencing of plot points, that is, for guiding characters so 
as to initiate the appropriate next scene necessary to make 
the next plot point happen (whatever plot point has been 
decided by the drama manager). Within a scene, some 
other architectural component, a "scene manager," would 
be necessary to manage the playing out of the individual 
scene. And this is where the assumption of infrequent, low-
bandwidth guidance becomes violated. As is described 
below, the smallest unit of story structure within a scene is 
the beat, a single action/reaction pair. The scene-level 
drama manager will thus need to continuously guide the 
autonomous decision making of the agent. This frequent 
guidance from the drama manager will be complicated by 
the fact that low-bandwidth guidance (such as giving a 
believable agent a new goal) will interact strongly with the 
moment-by-moment internal state of the agent, such as the 
set of currently active goals and behaviors, leading to 
surprising and potentially unwanted behavior. In order to 
reliably guide an agent, the scene-level drama manager will 
have to engage in higher-bandwidth guidance involving the 
active manipulation of internal agent state (e.g. editing the 
currently active goal tree). Authoring strongly autonomous 
characters for story-worlds is not only extra, unneeded 
work (given that scene-level guidance will need to 
intervene frequently), but actively makes guidance more 
difficult, in that the drama manager will have to 
compensate for the internal decision-making processes (and 
associated state) of the agent. 
 As the drama manager provides guidance, it will often be 
the case that the manager will need to carefully coordinate 
multiple characters so as to make the next story event 
happen. For example, it may be important for two 
characters to argue in such a way as to conspire towards the 
revelation of specific information at a certain moment in 
the story. To achieve this with autonomous agents, one 
could try to back away from the stance of strong autonomy 
and provide special goals and behaviors within the 
individual agents that the drama manager can activate to 
create coordinated behavior. But even if the character 
author provides these special coordination hooks, 
coordination is still being handled at the individual goal 
and behavior level, in an ad-hoc way. What one really 
wants is a way to directly express coordinated character 
action.   



Integrating Plot and Character with the Dramatic 
Beat 
Given that a strong architectural separation of character 
and story is problematic, one is left with the question of 
what architectural principle could be used to more tightly 
integrate character and story; the answer is found in the 
theory of dramatic writing in the concept of the dramatic 
beat. 
 In dramatic writing, stories are thought of as consisting 
of events that turn (change) values (McKee 1997). A value 
is a property of an individual or relationship, such as trust, 
love, hope (or hopelessness), etc. A story event is precisely 
any activity that turns a value. If there is activity – 
characters running around, witty dialogue, buildings and 
bridges exploding, and so on – but this activity is not 
turning a value, then there is no story event, no dramatic 
action. Thus one of the primary goals of an interactive 
drama system should be to make sure that all activity turns 
values. Of course these values should be changed in such a 
way as to make some plot arc happen that enacts the story 
premise (the Façade story premise is “To be happy you 
must be true to yourself”). Beats are the smallest unit of 
value change. Roughly, a beat consists of one or more 
action/reaction pairs between characters. Generally 
speaking, in the interest of maintaining economy and 
intensity, a beat should not last longer than a few actions or 
lines of dialogue. 
 In Façade beats become first class architectural entities, 
consisting of both the declarative knowledge needed to 
sequence beats in a dramatically interesting way (the details 
of Façade’s drama manager are not discussed  in this paper) 
and the procedural knowledge, expressed as ABL 
behaviors, necessary for the characters to jointly carry out 
the dramatic action within the beat. The rest of this paper 
discusses ABL’s support for joint action and the idioms 
(ways of using ABL) that we have developed for 
organizing behaviors within a beat.  

Support for Joint Action 

In order to facilitate the coordination of multiple 
characters, we have extended the semantics of Hap to 
support joint goals and behaviors. The driving design goal 
of joint behaviors is to combine the rich semantics for 
individual expressive behavior offered by Hap with support 
for the automatic synchronization of behavior across 
multiple agents. 

Joint Behaviors 
In ABL, the basic unit of coordination is the joint behavior. 
When a behavior is marked as joint, ABL enforces 
synchronized entry and exit into the behavior. Part of the 
specification for an “offer the player a drink” behavior 
from Façade is shown below. This will be used as the 
guiding behavior specification in the joint behavior 

examples provided in this paper. To simplify the 
discussion, the example leaves out the specification of how 
player activity would modify the performance of this beat; 
the next section describes idioms for supporting 
interactivity. Also, it should be pointed out that though this 
example involves only two characters coordinating, the 
coordination framework and implemented infrastructure is 
general enough to handles teams of n coordinating 
characters. 

(At the beginning of the behavior, Trip starts walking 
to the bar. If he gets to the bar before the end of the 
behavior, he stands behind it while delivering lines.) 
Trip: A beer? Glass of wine?  (Grace smiles at player. 
Short pause)  
Trip: You know I make a mean martini. (Grace 
frowns at Trip partway into line. At the end of line, 
she rolls her eyes at the ceiling.) 
Grace: (shaking her head, smiling) Trip just bought 
these fancy new cocktail shakers. He’s always looking 
for a chance to show them off. (If Trip is still walking 
to the bar, he stops at “shakers”. At “shakers” Trip 
looks at Grace and frowns slightly. At the end of the 
line he looks back at the player and smiles. If he was 
still on the way to the bar, he resumes walking to the 
bar). 

In order to perform this coordinated activity, Grace and 
Trip must first synchronize on offering a drink, so that they 
both know they are working together to offer the drink. 
Grace and Trip both have the following behavior definition 
in their respective behavior libraries.  
 
joint sequential behavior OfferDrink() { 
  team Grace, Trip; 
  // The steps of Grace’s and Trip’s OfferDrink() 
  // behaviors differ. 
} 
 
The declaration of a behavior as joint  tells ABL that 
entry into and exit from the behavior must be coordinated 
with team members, in this case Grace and Trip. Entry into 
a behavior occurs when the behavior is chosen to satisfy a 
subgoal. Exit from the behavior occurs when the behavior 
succeeds, fails, or is suspended. Synchronization is 
achieved by means of a two-phase commit protocol: 

1. The initiating agent broadcasts an intention (to enter, 
succeed, fail or suspend) to the team.  

2. All agents receiving an intention respond by, in the case 
of an entry intention, signaling their own intention to 
enter or a rejection of entry, or in the case of exit 
signaling their own intention to succeed, fail, or suspend. 

3. When an agent receives intentions from all team 
members, the agent performs the appropriate entry into 
or exit from the behavior.1  

                                                 
1 Appropriate timeouts handle the case of non-responding 
agents who fail to send appropriate intention or ready 
messages. 



 Imagine that Trip pursues a joint OfferDrink()  
subgoal and picks the joint OfferDrink()  behavior to 
accomplish the subgoal. After the behavior has been 
chosen, but before it is added to the ABT, Trip negotiates 
entry with his teammate Grace. On receipt of the intention-
to-enter OfferDrink() , Grace checks if she has a joint 
behavior OfferDrink()  with a satisfied precondition. If 
she does, she signals her intention-to-enter. Trip and Grace 
then exchange ready-messages and enter the behavior. In 
Trip’s case the behavior is rooted normally in the ABT at 
the subgoal which initiated behavior selection, while in 
Grace the spawned subgoal and corresponding joint 
behavior are rooted at the collection behavior at the root of 
the ABT.1 If Grace didn’t have a satisfied joint 
OfferDrink()  behavior, she would send a reject 
message to Trip, which would cause Trip’s 
OfferDrink()  subgoal to fail, with all the normal 
effects of failure propagation (perhaps causing Trip to 
pursue an individual OfferDrink()  goal). Note that 
during the negotiation protocol, the agents continue to 
pursue other lines of expansion in their ABT’s; if the 
protocol takes awhile to negotiate, behavior continues 
along these other lines.  
 The negotiation protocol may seem overly complex. In 
the case that all the team members are on the same machine 
(the case for Façade), one can assume that negotiation will 
be very fast and no messages will be lost. Therefore it may 
seem that agents only need to exchange a pair of messages 
for behavior entry, while the initiator only needs to send a 
single message for behavior exit. However, even in the 
same-machine case, the team members are fully 
asynchronous, and thus a joint behavior in one agent may 
succeed while the matching joint behavior in another agent 
fails - negotiation is necessary to come to agreement as a 
team on the status of the behavior. And the simplified 
protocol would certainly break in the distributed case 
where team member’s messages may be lost, or in cases 
where an agent might disappear unexpectedly (e.g. a game 
where agents can be killed) in the middle of the 
negotiation.2  
 But the most interesting feature the more complex 
negotiation protocol provides are authorial “hooks” for 
attaching transition behaviors to joint behavior entry and 
exit. Sengers, in her analysis of the Luxo Jr. short by Pixar, 
identified behavior transitions as a major means by which 
narrative flow is communicated (Sengers 1998). Animators 
actively communicate changes in the behavior state of their 
characters (e.g. the change from playing to resting) by 
having the characters engage in short transitional behaviors 
that communicate why the behavior change is happening. 
Sengers’ architectural extensions to Hap provided support 
for authoring individual transition behaviors (Sengers 
                                                 
1 A collection behavior is a variety of parallel behavior in 
which every step need only be attempted for the behavior 
to succeed. 
2 The negotiation protocol can easily be extended to a 
three-phase protocol to support lost messages. 

1998). However, she also noted that animators make use of 
coordinated multi-character transitions to communicate 
changes in multi-character behavioral state, but did not 
provide architectural support for this in her system. By 
exposing the negotiation protocol to the agent programmer, 
ABL can support the authoring of behaviors which 
communicate transitions in multi-agent behavior state. 

Posting Actions and Step Synchronization 
In addition to synchronizing on behavior entry and exit, 
ABL provides other mechanisms for synchronizing agents, 
namely support for posting information to a team working 
memory, and the ability to synchronize the steps of 
sequential behaviors. Below are the two OfferDrink()  
behaviors for Trip and Grace.  

Trip’s behavior:  

joint sequential behavior OfferDrink() { 
  team Trip, Grace; 
  
  with (post-to OfferDrinkMemory)  
    // Individual behavior for initial offer 
    subgoal InitialDrinkOffer();  
  subgoal LookAtPlayerAndWait(0.5); 
  with (synchronize) joint subgoal  
  SuggestMartini();  
 
  // react to Grace’s line about fancy shakers 
  with (synchronize) joint subgoal  
    FancyCocktailShakers();  
} 

Grace’s behavior: 

joint sequential behavior OfferDrink() { 
  team Trip, Grace; 
 
  // wait for Trip to say first line 
  with (success_test { OfferDrinkMemory 
    (CompletedGoalWME name == iInitialDrinkOffer 
                      status == SUCCEEDED)})     
    wait; 
  subgoal LookAtPlayerAndWait(0.5); 
 
  // react to Martini suggestion 
  with (synchronize) joint subgoal  
  SuggestMartini();  
  with (synchronize) joint subgoal   
    FancyCocktailShakers();  
} 

 Whenever a joint behavior is entered, the ABL runtime 
automatically creates a new named team working memory 
that persists for the duration of the joint behavior.3 This 
team memory, which can be written to and read from by 
any member of the team, can be used as a communication 
mechanism for coordinating team activity. The first subgoal 
of Trip’s behavior is annotated with a post-to  
annotation; for any subgoal marked with post-to , a 
CompletedGoalWME is added to the named memory when 
the subgoal completes (with either success or failure). A 
CompletedGoalWME, the definition of which is provided 
by the ABL runtime, contains the name of the goal, its 
                                                 
3 By default the name of the team memory is the 
concatenation of the name of the behavior and the string 
“Memory”.  



completion state (success or failure), the name of the agent 
who performed the goal, any goal arguments, and a 
timestamp. The post-to  annotation automatically fills in 
the appropriate arguments. This facility, inspired by the 
sign management system in Senger’s extension of Hap 
(Sengers 1998), can be used to provide an agent with a 
selective episodic memory. This facility is useful even in a 
single agent situation, as the future behavior of an agent 
may conditionally depend on past episodic sequences. 
Since the ABT no longer has state for already completed 
subgoals and actions, an ABL agent’s reflective access to 
its own ABT doesn’t by itself provide access to past 
episodic sequences. However, in a team situation, access to 
episodic state can be used to coordinate team members. In 
the first line of Grace’s behavior, a demon step monitors 
the team memory for the completion of 
InitialDrinkOffer() . In the behavior spec above, 
Grace doesn’t begin directly reacting to Trip until after 
Trip’s first line. Keep in mind that an ABL agent pursues 
multiple lines of expansion, so while Grace is waiting for 
Trip to complete his first line, she will continue to behave, 
in this case engaging in small idle movements as she smiles 
at the player. When Trip completes his first subgoal, an 
appropriate CompletedGoalWME is posted to the team 
memory; Trip then moves onto his second subgoal, to look 
at the player and wait for about half a second. The posting 
of the CompletedGoalWME causes Grace’s first line to 
succeed, and she also, independently, waits for about half a 
second. One of them will be first to finish waiting, and will 
move onto the next line, which, being a joint behavior, 
reestablishes synchronization. 
 The last two subgoals of Grace’s and Trip’s behaviors 
are annotated with a synchronize  annotation. To 
understand what this does, first imagine the case where the 
annotation is absent. Assume Grace is the first to finish the 
second subgoal (the goal to look at the player and wait). 
Grace will then attempt to satisfy the subgoal 
SuggestMartini() , causing Trip to spawn this goal at 
the root of his ABT and enter his local version of 
SuggestMartini() . As they jointly pursue the 
SuggestMartini()  line of expansion, Trip will 
continue to pursue the OfferDrink()  line of expansion, 
eventually initiating SuggestMartini()  on his side, 
causing Grace to spawn the goal at her root and enter 
another copy of the behavior. At this point each is pursuing 
two copies of the joint behavior SuggestMartini() , 
one copy rooted at the subgoal within OfferDrink() , 
and the other rooted at the root of the ABT. This is not 
what the behavior author intended; rather it was intended 
that when the characters synchronize on the joint subgoal 
SuggestMartini() , they would each begin pursing 
their local version of SuggestMartini()  rooted at the 
respective subgoals within their local versions of 
OfferDrink() . The synchronize  annotation allows 
a behavior author to specify that a joint behavior should be 
rooted at a specific subgoal, rather than at the ABT root. 
Synchronize  is only allowed within joint behaviors as 
an annotation on a goal that has at least one joint behavior 

with matching signature in the behavior library. In the case 
of sequential joint behaviors, synchronization on a 
synchronize  subgoal forces the success of all steps 
between the current step counter position and the 
synchronize  subgoal, and moves the step counter up to 
the synchronize  subgoal. 

Beat Idioms 

Developing a believable agent language such as ABL 
involves simultaneously defining and implementing 
language constructs which support the authoring of 
expressive behavior, and the exploration of idioms for 
expressive behavior using the language. This section 
describes the ABL idioms used in authoring beat behaviors.  
 Above we described the ABL support for coordinating 
multiple believable agents. But of course in an interactive 
drama there is always an additional character, the human 
player, whose behavior can’t be directly coordinated using 
joint goals and behaviors. The idioms described in this 
section are the behavior organization techniques we’ve 
developed for incorporating player interactivity into the 
accomplishment of dramatic action within a beat.  
 Beat behaviors are divided into three categories: beat 
goals, handlers, and cross-beat behaviors. A greeting beat, 
in which Trip greets the player at the door, will provide 
examples of these three behaviors categories and the 
relationships between the categories. To simplify the 
discussion, the example involves a single character (rather 
than a team) interacting with the player. 
 In the greeting beat, Trip wants to initially greet the 
player (“Hey! So glad you could make it. Thanks for 
coming over man.”), yell for Grace (“Grace, come on out! 
Our guest is here.”), and invite the player in (“Come on in, 
don’t be shy”). These are the three beat goals of the 
greeting beat and should be accomplished sequentially.  
 Of course, during this greeting, the player will engage in 
various actions which should be handled in the context of 
the greeting. These interactions take the form of physical 
movement, object manipulation, and natural language text 
typed by the player. At the beat behavior level, player text 
is captured by WMEs representing the meaning of the text 
as a discourse act.1 Handlers are demons responsible for 
handling player interaction. For the purposes of this 
example, assume that the greeting beat wants to handle the 
cases of the player greeting Trip, the player referring to 
Grace, and the player preemptively walking into the 
apartment before she has been invited in. The code below 
starts the handlers and begins the sequence of beat goals.  

parallel behavior StartTheBeat() { 

                                                 
1 For translating surface text into formally represented 
discourse acts, Façade employs a custom rule language for 
specifying templates and discourse chaining rules. The 
discourse rule compiler targets Jess, a CLIPS-like forward-
chaining rule language (available at 
http://herzberg.ca.sandia.gov/jess/). 



  with (priority 1) 
  subgoal StartTheHandlers(); 
  subgoal BeatGoals(); 
} 
 
parallel behavior StartTheHandlers() { 
  with (persistent, priority 20)  
    subgoal handlerDAGreet(); 
  with (persistent, priority 15) 
    subgoal handlerDAReferTo_grace(); 
  with (priority 10, ignore_failure) 
    subgoal handlerPreInviteAptMove(); 
} 
 
sequential behavior BeatGoals() { 
  with (persistent when_fails)  
    bgOpenDoorAndGreetPlayer(); 
  with (persistent when_fails) bgYellForGrace(); 
  with (persistent when_fails) bgInviteIntoApt(); 
} 

 Handlers are started in various priority tiers 
corresponding to the relative importance of handling that 
interaction. Priorities are used to resolve cases where 
another player interaction happens in the middle of 
handling the previous player interaction, or when 
simultaneous player interactions occur. A higher priority 
handler can interrupt a lower priority handler, while same 
or lower priority handlers must wait for a higher priority 
handler to finish before handling the nested interaction. 
Generally handlers are persistent; when a handler finishes 
responding to an interaction, it should “reset” and be ready 
to deal with another interaction in the same category. In 
general handlers are higher priority than beat goals so that 
if an interaction occurs in the middle of the beat goal, the 
handler will “wake up” and interrupt it.  
 Handlers tend to be meta-behaviors; that is, they make 
use of reflection to directly modify the ABT state. When a 
handler triggers, it fails the current beat goal, potentially 
succeeds other beat goals, possibly pursues a beat goal 
within the handler (effectively reordering beat goals), and 
engages in its own bit of handler specific behavior. In some 
cases the handler specific behavior may entail mapping the 
recognized action to a different recognized action, which 
will then trigger a different corresponding handler. Below 
is a simplified version of 
handlerDAReferTo _grace() .  

sequential behavior handlerDAReferTo_grace() { 
  with (success_test { (DAReferToWME topicID ==  
            eTopic_grace) } ) wait; 
  with (ignore_failure) subgoal    
    handlerDAReferTo_grace_Body();  
  subgoal DAReferTo_grace_Cleanup();       
} 
 
// by mentioning Grace, we will say "Grace? uh  
// yeah" and then yell for Grace but only if we 
// aren't currently doing bgYellForGrace! 
sequential behavior handlerDAReferTo_grace_Body() 
{ 
 precondition {  
    (GoalStepWME signature == "bgYellForGrace()"     
                 isExecuting == false) } 
  subgoal handlerDA_InterruptWith( 
    eTripScript_graceuhyeah, 
    eFullExpression_blank);     
 subgoal handlerDAReferTo_grace_Body2(); 
} 
 

// we aren't currently doing yellForGrace, and if 
// we haven't completed yellForGrace, then do it 
sequential behavior   
  handlerDAReferTo_grace_Body2() { 
  // Goal still exists in the ABT so it hasn't  
  // been completed 
  precondition {  
   (GoalStepWME signature == "bgYellForGrace()")   
  }  
  specificity 2; 
  subgoal SetBeatGoalSatisfied( 
    "bgYellForGrace()", true); 
 with (persistent when_fails) 
    subgoal bgYellForGrace(); 
} 
 
// otherwise we must have already completed  
// yellForGrace, so say "She's coming, I don't  
// know where she's hiding" 
sequential behavior  
  handlerDAReferTo_grace_Body2() { 
 specificity 1; 
 subgoal handlerDA_InterruptWith( 
    etripScript_shescomingidontknow,  
    eFullExpression_smallSmile);     
} 

 When the player refers to Grace (perhaps saying, “I’m 
looking forward to meeting Grace”, or “Where is Grace”, 
or “Hi Grace”) this handler is triggered. The handler body 
behavior uses reflection to test if the beat goal to yell for 
Grace is currently not executing. If it is executing (e.g. Trip 
was in the middle of yelling for Grace when the player said 
“Where’s Grace”), the body precondition fails, causing the 
handler to fail, which then restarts because of the 
persistence annotation, leaving Trip ready to handle 
another reference to Grace. Effectively Trip ignores 
references to Grace if he’s in the middle of yelling for 
Grace. Otherwise, Trip interrupts whatever he is saying 
with “Oh, yeah…”. handlerDAInterruptWith  uses 
reflection to fail the currently executing beat goal, thus, as 
the name implies, interrupting the beat goal. When the 
handler is finished, the persistent  when_fails  
annotation will causes any handler-failed beat goals to 
restart. After saying “Oh yeah…” Trip either performs the 
yell for Grace beat goal within the handler (and succeeds it 
out of the BeatGoals  behavior) or, if yell for Grace has 
already happened, says “She’s coming. I don’t know where 
she’s hiding.” This handler demonstrates how player 
interaction can cause beat goals to be interrupted, 
effectively reordered, and responded to in a way dependent 
on what has happened in the beat so far.  
 The final category of beat behaviors are the cross-beat 
behaviors. These are behaviors that cross beat goal and 
handler boundaries. An example beat goal behavior is the 
staging behavior that an agent uses to move to certain 
dramatically significant positions (e.g. close or far 
conversation position with the player or another agent, into 
position to pickup or manipulate another object, etc.). A 
staging request to move to close conversation position with 
the player might be initiated by the first beat goal in a beat. 
The staging goal is spawned to another part of the ABT. 
After the first beat goal completes its behavior, other beat 
goals and handlers can happen as the agent continues to 
walk towards the requested staging point. Of course at any 



time during a cross-beat behavior, beat goals and handlers 
can use reflection to find out what cross-beat behaviors are 
currently happening and succeed or fail them if the cross-
beat behaviors are inappropriate for the current beat goal’s 
or handler’s situation.  
 The example in this section involved only a single 
character interacting with the player. Multi-agent beats use 
the same idioms for coordinating beat goals, responding to 
player interaction, and pursing longer term goals; the 
various beat behaviors just become joint behaviors instead 
of individual behaviors.  

Conclusion 

ABL provides a rich programming framework for 
authoring story-based believable agents. Here we’ve 
described ABL’s novel features and provided examples of 
how we’re using these features to author characters for 
Façade, an interactive dramatic world. 
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