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Abstract

Statistical models for tracking different moving bodies
must be able to reason about occlusions in order to be
effective. Representing the joint statistics across different
bodies is computationally hard, since the size of the rep-
resentation grows exponentially with the number of bodies
being tracked. Separable tracking, with one tracker per
body, cannot deal with occlusions effectively. We propose
a new model, dubbed Hybrid Joint-Separable (HJS), that
uses a representation size that grows linearly with the num-
ber of bodies, and a computational complexity that grows
quadratically. This model can reason explicitly about oc-
clusions. We describe a particle filter implementation of
this model, and present promising experimental results.

1. Introduction

Visual tracking of multiple moving targets is a challeng-
ing problem. Independent tracking of individual bodies fails
in the presence of occlusions, where the disappearance of
a target cannot be explained if not in relationship with the
other targets. On the other hand, describing the dynamics of
the different bodies with a joint model requires a represen-
tation size and computational cost that grow exponentially
with the number of bodies.

We propose a new approach to recursive Bayes track-
ing that can describe occlusions explicitly, and yet has an
approachable complexity. In particular, the representation
size of the whole system grows linearly with the number
of tracked bodies,K, while the complexity at each upgrade
grows quadratically withK. Our strategy is based on an
hybrid between separable and joint tracking models. More
precisely, we represent the posterior probability (belief) of
the joint state using a separable (independent component)
model. At each update, a joint likelihood model (which
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takes occlusions into account) is used to describe the correc-
tion to the projected belief determined on the scene appear-
ance. This update produces a non–separable posterior dis-
tribution, which is then “marginalized” into a set ofK dif-
ferent distributions. We show in this paper that this update
sequence can be implemented efficiently using a particle–
based representation of the beliefs for the different targets.
Although suboptimal. this strategy has shown excellent re-
sults in experiments involving multiple occluding bodies.

This article is organized as follows. After a brief review
of previous work in the field, we introduce the Hybrid Joint–
Separable model in Sec. 2, Sec. 3 describes the basic theory
of HJS multibody tracking, while Sec. 4 discuss the imple-
mentation of HJS tracking using particle filtering, focusing
first on the case of occlusions on a single line of sight, and
then extending the algorithm to the general case of full–
image tracking. Sec. 5 presents tracking experiments on
two sequences with persons moving in a room, demonstrat-
ing the power of HJS tracking even in difficult cases with
full occlusions. Sec. 6 has the conclusions.

1.1. Previous Work

A probabilistic exclusion principle for tracking was in-
troduced in [7]. By preventing a single pixel from being
independently associated to different objects, a robust form
for multibody observation probability density was found.
The object state is enhanced with a discrete dimension
that discriminates between foreground and background hy-
potheses, thus allowing for occlusion modeling in a princi-
pled way. However, this approach is restricted to specific
contour-based measurement types which in general do not
convey information to distinguish between different objects
with similar shape. Tracking using an abstraction to object–
level and configuration–level behavior was proposed in [9].
In this work, independent single–object hypotheses are re-
viewed using heuristics based on blob coverage and com-
pactness. This approach conceals the nature of the tracked
probability density, making it difficult to obtain a rigorous
probabilistic interpretation. In partially occluded situations,



feature-based tracking can still be applied with success to
points that are suitably selected at each frame [4]. A major
drawback of feature–based methods is their focus on local
features, while neglecting important higher–level informa-
tion such as target shape and texture. In addition, an object
that becomes completely occluded becomes lost, even if the
occlusion lasts for only a few frames. A two–step recur-
sive Bayesian estimation approach for a multiview setup is
presented in [8]. This algorithm tracks objects located in the
intersections of 2–D visual angles, which are extracted from
silhouettes obtained from image segmentation in the differ-
ent cameras. Occlusion hypotheses are generated and tested
using a branch–and–merge strategy. To avoid the combina-
torial explosion arising from recursively testing all possi-
ble hypotheses, only hypotheses with posterior probability
above a certain threshold are kept. In [3], a strategy for
solving the track split, merge and overlap problem as aris-
ing in segmentation–based approaches during occlusions is
proposed. While easily accommodated in real–time, sudden
changes in the background are fatal for this kind of meth-
ods. Also, appearance model adaptation is prone to learn
the occluder’s appearance if covered for a period of time.

Compared with these previous approaches, our proposed
algorithm has the advantage of: (1) Using descriptive and
robust features (color histograms), (2) Relying on sound
probabilistic modeling, and (3) Reasoning explicitly about
occlusions, while maintaining an approachable computa-
tional cost.

2. Hybrid Joint–Separable Models

We will denote byxt = (x1

t , x
2

t , . . . , x
K
t ) the joint state

vector at timet (where time assumes only discrete values).
The K components ofxt (which may themselves be vec-
tors) represent the states of theK bodies being tracked. The
observation at timet is indicated byzt; the sequence of ob-
servations until timet is denoted byz1:t. The pdf of the
state at timet = 0, p(x0), is assumed known. The evolu-
tion of the state sequence is described by a Markov process
of order one:

xt = ft (xt−1,vt−1) (1)

wherevt−1 is an i.i.d. noise process sequence. The obser-
vationzt depends onxt as by:

zt = gt (xt, wt) (2)

wherewt is an i.i.d. noise process sequence. Our goal
is to estimatep (xt|z1:t), the posterior distribution (belief)
of xt given the observation sequencez1:t. Using Bayes’
theorem and the total probability theorem, the Chapman–
Kolmogorov recursion is found [1] (see Fig. 1(a)):

p (xt|z1:t) (3)

∝ p (zt|xt)

∫

p (xt|xt−1) p (xt−1|z1:t−1) dxt−1

= p (zt|xt)Et−1 [p (xt|xt−1)]

whereEt−1[·] represents expectation with respect to the
previously found posterior distributionp (xt−1|z1:t−1). In
other words,Et−1 [p (xt|xt−1)] projects the belief ofx at
time t − 1 into the belief at timet before observingzt:

Et−1 [p (xt|xt−1)] = p (xt|z1:t−1) (4)

Exact or approximated solutions to this recursion can be
found using Kalman filtering, grid–based methods, or par-
ticle filtering [1]. Unfortunately, representing the jointpos-
terior distributionp (xt|z1:t) may be unwieldy. The size of
the representation, as well as the cost of computing the re-
cursion in (3), grows exponentially with the numberK of
bodies being tracked. A simple solution would be to repre-
sent and estimate the evolution of the bodies independently.
Formally, a separable model is defined by the following two
hypotheses:

Separability Hypothesis 1:

p (xt|xt−1) =
∏

i

p
(

xi
t|x

i
t−1

)

(5)

Separability Hypothesis 2:

p (zt|xt) ∝
∏

i

p
(

zt|x
i
t

)

(6)

It is easy to show that, when the two separability hypothe-
ses above are satisfied, and ifp (x0) is separable (i.e., it
factorizes into

∏

i p
(

xi
0

)

), then the posterior distribution
p (xt|z1:t) is separable:

p (xt|z1:t) =
∏

i

p
(

xi
t|z1:t

)

(7)

In this case,K trackers can be implemented independently,
one for each body (see Fig. 1(b)):

p
(

xi
t|z1:t

)

= p
(

zt|x
i
t

)

Ei
t−1

[

p
(

xi
t|x

i
t−1

)]

(8)

where Ei
t−1

[·] is the expectation with respect to
p

(

xi
t−1

|z1:t−1

)

. Both storage requirements and computa-
tional complexity to implement the recursion in (8) grow
linearly with the numberK of bodies.

How acceptable are the separable model hypotheses?
Hypothesis 1 states that bodies move independently of each
other. We argue that this is an acceptable assumption, with
the following caveats. First, it cannot model the case of peo-
ple interacting and congregating. Second, it implicitly as-
sumes that bodies can compenetrate (or that they have very
small size). The real problems with the separable model,



however, are associated with Hypothesis 2, which states
that different bodies contribute independently to the obser-
vation. This is clearly not true in the case of occlusions:
if a body is occluded, its contribution to the observation is
null. This has been formalized, for example, as a proba-
bilistic exclusion principle for contour-based tracking [7].
Experience has shown that occlusions are a major cause of
failure for tracking systems. Hence, Hypothesis 2 is simply
not acceptable in practice.

We propose a new model, dubbedHybrid Joint–
Separable (HJS), for describing the relationship between
the system’s dynamics and the observations. The HJS
model allows one to recursively estimate the state with a
computational complexity that grows quadratically (rather
than exponentially) with the number of bodies,K. The rep-
resentation size grows linearly withK. The basic idea is
to represent posterior distributions via the outer productof
their marginals:

p (xt|z1:t) ≈ p̄ (xt|z1:t) =
∏

i

p
(

xi
t|z1:t

)

(9)

where the marginalp
(

xi
t|z1:t

)

is defined by:

p
(

xi
t|z1:t

)

=

∫

x
¬i

p (xt|z1:t) dx¬i (10)

wherex
¬i represent the vectorx with the i–th component

removed. The HJS model defines the following update re-
cursion (see Fig. 1(c)):

p̃ (xt|z1:t) = p (zt|xt) Ēt−1 [p (xt|xt−1)] (11)

p̄ (xt|z1:t) =
∏

i

p̃
(

xi
t|z1:t

)

where Ēt−1 [·] represents expectation with respect to
p̄ (xt−1|z1:t−1). Note that we are using the joint form of
the conditional likelihoodp (zt|xt), andnot its separable
version (6). Sincep (xt|xt−1) is assumed to be separable
(Hypothesis 1 above), and̄p (xt−1|z1:t−1) is separable by
definition, it is possible to express (11) as a parallel of sys-
tems (see Fig. 1(d)):

p̄
(

xi
t|z1:t

)

= Ēi
t−1

[

p
(

xi
t|x

i
t−1

)]

· (12)

·

∫

p (zt|xt)
∏

j 6=i

Ē
j
t−1

[

p
(

x
j
t |x

j
t−1

)]

dx¬i

= p̄
(

xi
t|z

i
1:t−1

)

∫

x
¬i

p (zt|xt)
∏

j 6=i

p̄
(

x
j
t |z

j
1:t−1

)

dx¬i

Note that if the conditional likelihoodp (zt|xt) is separa-
ble as in assumption (6), then (12) becomes identical to (8).
We will show in Sec. 3 that, for the particular form that
p (zt|xt) takes in the case of occlusion, the complexity of
approximating the integral in (12) is linear inK, and there-
fore the overall complexity of state update is quadratic in
K.
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(d) HJS Model (Parallel Implementation)

Figure 1. Schematic representation of the
models described in Sec. 2. Bold lines rep-
resent joint distributions. Dotted lines repre-
sent joint distributions expressed as product
of marginals. Thin lines represent marginal
distributions.

2.1. An Example: HJS Kalman Tracking

The HJS approximation can be applied to virtually any
tracking algorithm. Sec. 3 describes its use with particle
filtering tracking of multiple bodies. To illustrate the per-
formance of HJS tracking in a simpler context, we present
here an example of application with Kalman filtering. Con-
sider the following linear stochastic dynamic system:

xt = xt−1 + vt−1

zt = Hxt + wt
(13)

where xt and zt are 2–D random variables,H =
(

1 5
0 1

)

, andvt−1 andwt are i.i.d. noise process se-

quences with covarianceΣv = Σw = I2 (I2 being the
2 × 2 identity matrix). Thus,xt evolves as an isotropic
random walk, which is then skewed by the effect of the
observation matrixH . This system satisfies Hypothesis 1
(5) but not Hypothesis 2 (6). A short sequence of a ran-
dom walk realization of the statex is shown in Fig. 2(a)
(stars), together with the optimal estimation obtained by



(a) (b) (c)

Figure 2. An instance of random walk of the
state xt for the system (13) (stars), together
with the estimated trajectories (circles) us-
ing Kalman filtering based on (a) the joint
model, (b) the separable model, and (c) the
HJS model.

Kalman filtering (circles). Averaged over 10,000 samples,
the quadratic tracking error was equal to 2.20. This empiri-
cal value is consistent with the asymptotic error covariance,

P∞ =

(

4.55 −0.87
0.87 0.20

)

, found by solving the Riccati

equation associated with (13).
A separable approximate model for this system is ob-

tained by rewriting the system equations as follows:

x̂t = x̂t−1 + v̂t−1

zt = x̂t + wt
(14)

wherex̂t = Hxt andv̂t−1 is an i.i.d. noise sequence with

covarianceQ̂ = HHT =

(

26 5
5 1

)

. The separable ver-

sion of this system is obtained by assuming that the compo-

nents ofv̂t−1 are incorrelated, i.e., that̂Q =

(

26 0
0 1

)

.

Fig. 2(b) shows the estimation of the state trajectory us-
ing this separable model for the same sequence as in the
previous test. It is clear from the figure that the separa-
ble tracker has suboptimal performance; the quadratic error
over the same test sequence was equal to 4.03. We repeated
the tracking experiment with the HJS model. According to
Fig. 1(c), HJS simply marginalizes the joint posterior dis-
tribution p (xt|z1:t). In the case of linear Gaussian models
(like the one of this example), this operation is equivalent
to diagonalizing the posterior error covariance estimatedat
each iteration. The resulting estimated trajectory, shownin
Fig. 2(c), is much closer to the actual one than in the sep-
arable case. Indeed, the quadratic tracking error is equal to
2.41, only slightly higher than in the optimal case. Whereas
there is probably little computational advantage in using the
HJS approximation for Kalman filtering, we’ll show in the
next section that, for richer models that can describe com-
plex distributions, HSJ can dramatically reduce the compu-
tation load and representation size involved in the tracking
process.

3. HJS Visual Multibody Tracking

The goal of visual tracking is to monitor the spatial posi-
tion of one or more moving bodies in the scene. When sev-
eral cameras are available, one can hope to take direct 3–D
measurements by triangulation. With single camera track-
ing, weak depth information can be inferred by geometric
constraints (e.g., by detecting the position of the tracked
person’s feet on the calibrated ground plane), by measur-
ing foreshortening, or by reasoning on occlusions. We will
assume that the state vector for each body being tracked (xi

t)
contains explicit spatial information. For example,xi

t could
represent the body’s 3–D position with respect to a fixed co-
ordinate system, together with its velocity. The observation
zt is the projection of the body figure(s) onto the camera
plane. If only one body is present in the scene, the condi-
tional likelihoodp(zt|x

i
t) can be defined based on geomet-

ric and appearance models. For example, if the camera is
calibrated with respect to the chosen world coordinate sys-
tem, one may compute the position on the image plane of
the projection of the body center, together with its expected
appearance (defined, for example, by an histogram model).
The likelihoodp(zt|x

i
t) could then be defined based on a

suitable distance between the predicted image and the ac-
tual image. When several bodies are present in the scene,
occlusions will occur, meaning that if two bodies are lined
up in front of a camera, the closer one will cover view of
the other one. In order to express the recursion (12) for the
case of multiple occluding bodies, in a way that is amenable
to implementation by a particle filter, we consider the sim-
ple case of a single line of sight. This could be interpreted
as the likelihood relative to a single pixel. We’ll show in
Sec. 4.3 how to extend this model to the general case of
bodies covering possibly large image areas. For simplicity’s
sake, in this treatment we will assume that eachxi

t simply
contains the distance of thei–th body to the camera. Thus,
if xi

t < x
j
t , thei–the body is closer to the camera than the

j–th body at timet, where both bodies are along the line
of sight. In addition,xi

t < x
¬i
t means that thei–th body is

closer to the camera than any other body, whilexi
t > x

¬i
t

means that thei–th body is not the closest one to the cam-
era. It is clear that the value of the observation,zt, given the
positions of the bodies, is a function only of the closest one.
In other words, for a giveni:

p (zt|xt) =

{

p
(

zt|x
i
t

)

if xi
t < x

¬i
t

p
(

zt|x
¬i
t

)

otherwise
(15)

wherep
(

zt|x
i
t

)

represents the likelihood of the observation
of the unoccludedi–th body. In our derivation, we will
make use of the following notation. Given an integerk be-
tween 1 andK, and any subsetV of ℜK , let Sk be the
subset of pointsx in V such thatxk < x

¬k. It is easy to see
that, modulo a set of measure zero, the set of theSk form a



partition ofV . Hence, we can re–write (12) as follows:

p̄
(

xi
t|z1:t

)

= p̄
(

xi
t|z

i
1:t−1

)

·
[

∫

xi
t<x

¬i
t

p (zt|xt)
∏

j 6=i p̄
(

x
j
t |z

j
1:t−1

)

dx¬i

+
∫

xi
t
>x

¬i
t

p (zt|xt)
∏

j 6=i p̄
(

x
j
t |z

j
1:t−1

)

dx¬i
]

(16)

= p̄
(

xi
t|z

i
1:t−1

)

[

p
(

zt|x
i
t

) ∫

xi
t
<x

¬i
t

∏

j 6=i p̄
(

x
j
t |z1:t−1

)

dx¬i
t

+
∑

k 6=i

∫

Sk p
(

zt|x
¬i
t

)
∏

j 6=i p̄
(

x
j
t |z1:t−1

)

dx¬i
t

]

= p̄
(

xi
t|z

i
1:t−1

)

[

p
(

zt|x
i
t

)
∏

j 6=i

∫

xi
t<x

j
t

p̄
(

x
j
t |z1:t−1

)

dx
j
t

+
∑

k 6=i

∫

Sk p
(

zt|x
k
t

)

p̄
(

xk
t |z1:t−1

)

·
∏

j 6=i,k p̄
(

x
j
t |z1:t−1

)

dx¬i
t

]

= p̄
(

xi
t|z

i
1:t−1

)

·
[

p
(

zt|x
i
t

)
∏

j 6=i

(

1 −
∫

x
j

t
<xi

t

p̄
(

x
j
t |z1:t−1

)

dx
j
t

)

+
∑

k 6=i

∫

xk
t
<xi

t

p
(

zt|x
k
t

)

p̄
(

xk
t |z1:t−1

)

·
∏

j 6=i,k

(

1 −
∫

x
j
t<xk

t

p̄
(

x
j
t |z1:t−1

)

dx
j
t

)

dxk
t

]

where in this caseV is the subset of the pointsx¬i such
that xi > x

¬i. Eq. (16) reveals an important property
about the posterior distribution̄p(xi

t|z1:t): its value atxi
t

only depends on the values ofp̄(xj
t |z1:t−1), with j 6= i, for

x
j
t < xi

t. This property is key to the efficient implementa-
tion of HJS particle filtering described in the next section.

4. HJS Particle Filtering

4.1. Particle Filter: Background

The idea underlying particle filters is to maintain a com-
pressed representation of the estimated belief density viaa
set of representative sample states, the particles. In Monte
Carlo sampling, these samples are chosen i.i.d. distributed
according to the densityp(x) that they should represent. If
the densityp(x) is difficult to sample, one can sample from
some other feasible importance densityg(x), correcting the
introduced sampling bias by sample weighting. Formally,
if xn are the samples obtained by sampling fromg(x), the
importance sampling approximation of an arbitrary density
functionp(x) can be described by:

P (A) =

∫

A

p(x) dx ≈
∑

n

πn δA(xn), πn =
p(xn)

g(xn)

(17)
The weighted particle set{〈xn, πn〉} can therefore be used
to representp(x). The expectation overp(x) of any given
function of interestf(x) can be estimated by:

E
[

f(x)
]

=

∫

f(x)p(x) dx ≈
1

π

∑

n

f(xn)πn (18)

with the normalization factorπ given by the sum of weights
πi. The estimated state is often taken to be the mean, which
is obtained settingf(x) = x in the above relation. Given
a weighted particle representation{〈xn, πn〉} for the belief
at timet − 1, the recursion in (3) becomes (modulo a nor-
malization factor):

p (xt|z1:t) ≈ p(zt|xt)
∑

n

p(xt|xn)πn. (19)

A common choice for the importance density is the mixture
density derived from the dynamical model:

g(xt) =
∑

n

p(xt|xn)πn. (20)

At each iterationt, a new set of representative samples{x̄n}
is sampled fromg(x). Then, the observationzt is used to
compute the new importance weightsπ̄n = p(zt|x̄n)πn.
Due to the usually diffusive behavior of the dynamical
model, the weight distribution becomes more and more
skewed with each iteration. To avoid this degeneracy prob-
lem, particles are periodically resampled according to their
weights . This is the basic version of the particle filter,
also known as CONDENSATION algorithm. For a more
detailed introduction see [5, 6, 1].

4.2. Implementation of HJS Particle Filtering

Algorithm 1 shows an efficient particle filter implemen-
tation of the HJS recursion in (16). Each object’s belief is
represented viaN weighted particles,{〈xi

n, πi
n〉}. The par-

ticles are independently projected form timet − 1 to timet

by samplingN times from the importance mixture density
in (20)

{x̄i
n}

i.i.d.
∼

∑

n

p(xi
t|x

i
n)πi

n ≈ Ēi
t−1

[

p(xi
t|x

i
t−1

)
]

. (21)

This can be done in two steps. First, weighted resampling
(takingO(N) time [7]), is performed at each iteration, by
sampling from the discrete distribution{πi

n}. Each sample
represents one mixture componentp(xi

t|x
i
n) in (21). Then,

for each sample, a new particle is sampled from the se-
lected mixture components. A procedure for sampling from
p(xi

t|x
i
n) can usually be derived directly from the state dy-

namics model [1]. These new particles are initially assigned
identical weights.

Finally, weights are assigned to the particles based on
the observationzt. This operationcannotbe performed in-
dependently for each particle. Algorithm 1 describes the
weight allocation procedure, which is based on (16). This
procedure visits particles from the closest one to the camera
to the farthest one. For each bodyi, two buffers,bi

fg and
bi

bg, are used to incrementally compute the weight factors



Algorithm 1 HJS update in a particle filter

input:
{〈xi

n, πi
n〉} are particle sets representingp(xi

t−1
|z1:t−1)

sampling:
foreachobject indexi do

resampleN particle indexes i.i.d. according to{πi
n}

foreachselected particle indexp do
sample new particlēxi

n i.i.d. according top(xi
t|x

i
p)

{〈x̄i
n,1〉} are particle sets representingĒi

t−1

[

p(xi
t|x

i
t−1

)
]

weighting:
order{x̄i

n} according to camera distance:{x̄p, ip}
initialize buffers{bi

fg = N, bi
bg = 0}

for p = 1, . . . , P do
compute single–body likelihoodqp = p(zt|x̄p)

π̄p = qp

∏

j 6=ip
b
j
fg +

∑

j 6=ip
b
j
bg

b
ip

fg = b
ip

fg − 1

foreachobject indexj 6= ip do
b
j
bg = b

j
bg + qp

∏

k 6=j,ip
bk

fg

{〈x̄i
n, π̄i

n〉} are particle sets representingp(xi
t|z1:t)

and offsets of the single–body likelihoods.bi
fg accounts for

single–body likelihood:

bi
fg ≈ 1 −

∫

x
j

t
<xi

t

p
(

x
j
t |z1:t−1

)

dx
j
t (22)

while bi
bg accounts for occlusion evidence:

bi
bg ≈

∑

k 6=i

∫

xk
t
<xi

t

p
(

zt|x
k
t

)

p
(

xk
t |z1:t−1

)

·
∏

j 6=i,k

(

1 −
∫

x
j

t
<xi

t

p
(

x
j
t |z1:t−1

)

dx
j
t

)

dxk
t ,

(23)

Note that, for each particlep, the bufferbi
fg is simply the

overall number of particlesN , minus the number of parti-
cles for thei–th body already visited beforep. Hence, when
a particlep associated thei–th body is visited, only the
bufferbi

fg needs to be updated. At the same time, the buffers

b
j
bg for j 6= i need to be updated. For each visited particle,

the single–body likelihood is computed first. Then, the new
particle weight is calculated according to Equation (16), by
utilizing bi

bg andbi
fg. Finally, the contribution of the visited

particle is accumulated in the affected buffers. The com-
plexity for calculating particle weights isO(NK2), while
the ordering can be done inO(NK log NK), this last term
becoming negligible for reasonably sized particle sets.

4.3. Occlusion Reasoning: The General Case

The theory developed in the previous sections was based
on the assumption that bodies are aligned along a single line

Figure 3. The compound occlusion volumes
generated by a target with a bimodal belief.
Dotted lines show their slices at a hypothetic
particle depth and their image projections.

of sight. If partial occlusions are neglected, it is easy to ex-
tend this theory to the general case of bodies figures with fi-
nite extent in the image. A straightforward approach would
be to regard the entire camera’s field of view as a single
cone-of-sight. This approximation, however, is unaccept-
able: the closest target to the image would be assumed to
occlude all other targets, even if its appearance is of limited
extent. Instead, we propose to subdivide the camera’s field
of view adaptively into several cones–of–sight. Within one
cone–of–sight, states are assumed to be aligned, with the
ones in the front fully occluding the ones in the back.

Observed from a given viewpoint, each opaque object
generates a cone–shaped occlusion volume, formed by the
3–D space points that it covers. However, being its loca-
tion only estimated in form of a set of representative sam-
ples, the inferred occlusion structure is no longer described
by a single cone. Instead, each object’s occlusion volume
is represented by a compound of cone segments, each ele-
ment generated by a different hypothesis of the same target.
Fig. 3 shows an example. When a particle is analyzed for its
weight, the corresponding cone–of–sight is generated as the
union of selected occlusion volumes belonging to the other
bodies.

The occlusion volumes associated with different bodies
can be generated and compounded incrementally, in paral-
lel to weight calculation. For each particle, a coarse pro-
jected shape model is assumed. When visiting a new par-
ticle, its projected shape is examined for significant inter-
section with the other objects’ compounded occlusion vol-
umes. Those with significant intersection are considered as
the particle’s cone–of–sight. The particle’s weight is then
computed based on Algorithm 1, instantiated within the
identified cone-of-sight. If its weight is sufficiently high,
the particle’s occlusion cone is then accumulated into the
compound volume of the object it belongs to.

We used an efficient representation for the compound oc-
clusion volumes. In order to identify the cone–of–sight, or
HJS tracker instance, associated with a particle, only the



Figure 5. Tree subsequent frames showing
ephemerality of phantom hypotheses. Rect-
angles show projected bounding boxes of the
different targets’ compound occlusion vol-
umes.

spherical slices of the other objects’ occlusion volumes, lo-
cated at the particle depth, need to be considered. In ad-
dition, its intersection with the particle’s shape can be per-
formed on the image plane. Thus, occlusion volumes can
be efficiently represented by the image–plane projection of
the identified cone segment. An efficient implementation
based on Algorithm 1 computes occlusion volumes as a se-
quence of projected slices. In particular, bounding boxes
are suitable representation which have been used in the ex-
periments.

5. Experiments

Experiments have been carried out on video sequences
captured by a single camera in a small office. Up to three
persons were moving randomly in the camera’s field of view
at the same time, leading to significant partial or even com-
plete occlusions.

Target states were defined by the bodies’ positions on a
calibrated horizontal reference plane. More precisely, each
statexi

t contains the 2–D position and velocity of thei–th
target.

Each body’s appearance was modeled by two pre–
acquired rough RGB color histograms, one for the head and
one for the torso. The single–body log–likelihood of any
given target was represented by the sum of theL1 distances
of its model histogram pair to the corresponding candidate
histogram pair. Candidate histograms were determined as
follows. A pair of 3–D points identifying the hypothetic po-
sition of the backbone were obtained from the particle state
and the target’s known physical height. A calibrated camera
model computed the projections of such points on the im-
age plane, around which a coarse planar human silhouette
shape was fitted. Candidate color histograms for head and
torso were extracted from the data within such silhouettes,
and used for likelihood calculation. Cones–of–sight were
computed from the silhouette bounding boxes in order to
further reduce their representation complexity.

HJS tracking of the persons in the room was imple-
mented as discussed in the previous section. In order to sat-

isfy real–time constraints, only 150 particles per target were
used. Note that, since the posterior distributionp (xt|z1:t) is
represented by its marginals, a limited number of particles,
proportional to the number of bodiesK, can be used.

The three targets could enter the room only from one
door, at different but known times. Their initial beliefs were
sampled from a Gaussian distribution located at the en-
trance. A linear dynamical model with Gaussian noise was
assumed. Thus, at each time, particles were sampled from
a mixture of Gaussians whose components are centered at
linearly propagated particles, thus implementing (21).

Fig. 4 compares the performance of a separable tracker
(top row) and HJS tracking (bottom row) for the same se-
quence. The separable tracker loses one target immediately
after the first short-term occlusion, and can not recover from
its failure. This is due in part to the severe behavior of the
L1 norm, which rejects hypotheses much sooner than other
types of histogram distances do, e.g. Bhattacharrya distance
[2]. It was the intent of the authors to use a discriminant dis-
tance, in order to show the improved robustness of HJS. In-
deed, HJS succeeds at correctly tracking targets in the same
sequence.

Fig. 6 shows a very challenging sequence with two per-
sons entirely covered by a third one. Being not occluded,
the target in the foreground is reliably tracked. Thus, the
generated cone–of–sight covers closely its true occlusion
volume, wherein particles of the other objects remain sup-
ported even though not observed. Even objects with similar
appearance (such as the two individuals with similar gray
clothing in the sequence maintain their identity during oc-
clusions. A separable tracker would be prone to merge the
two into the visible, best–fitting target. It should also be
noted that depth is tracked to an extent that is sufficient for
the HJS to reason explicitly about occlusions even with a
single camera.

Fig. 5 shows another interesting situation. Right after a
short but complete occlusion, the belief of the occluded tar-
get shows a bimodal behavior, as can be noticed from the
envelope outlines of the different occlusion volume com-
ponents. This is due to the likelihood contribution of the
occluder, which allocates some phantom particles inside its
estimated occlusion volume. However, these false hypothe-
ses are released as soon as the target becomes fully visi-
ble and some particles acquire high likelihood, as shown in
the right image by means of disappearing occlusion volume
components.

6. Conclusions

A novel probabilistic framework for multiple object
tracking has been presented. The HJS model has been pro-
posed as a mathematically rigorous methodology for Recur-
sive Bayesian filtering with a reduced representation size.



Figure 4. A typical sequence where tracking with different i nstances of separable trackers fails (top
row). The same sequence is successfully tracked by the HJS pa rticle filter (bottom row).

Figure 6. A challenging sequence involving three targets th at are momentarily aligned along one line
of sight. Although not very accurate during occlusions, the tracker never loses the targets.

The occlusion process has been modeled to derive an algo-
rithm that scales quadratically with the number of objects.
Although formalized for a single line–of–sight, this algo-
rithm can be instantiated for several, adaptively selected
cones–of–sight, thus accommodating robust image–based
likelihoods.

Due to the discrete formulation of the occlusion relation
used in this work (in the sense that an object is either com-
pletely occluded or fully visible), the derived tracking algo-
rithm has limited accuracy during partial occlusions. The
authors are currently investigating the possibility of accom-
modating occlusion reasoning at pixel–level combined with
robust appearance features. The hope is to increase track-
ing accuracy during partial occlusions while preserving the
algorithm’s efficiency.
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