Foundations and Applications of Schema Mappings

Phokion G. Kolaitis

IBM Almaden Research Center & UC Santa Cruz

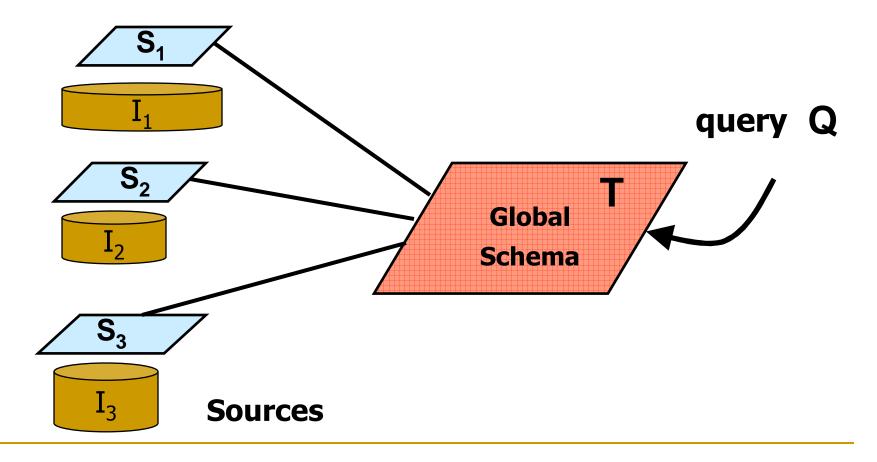
The Data Interoperability Problem

Data may reside

- at several different sites
- □ in several different formats (relational, XML, ...).
- Applications need to access all these data.
- Two different, but closely related, facets of data interoperability:
 - Data Integration (aka Data Federation):
 - Data Exchange (aka Data Translation):

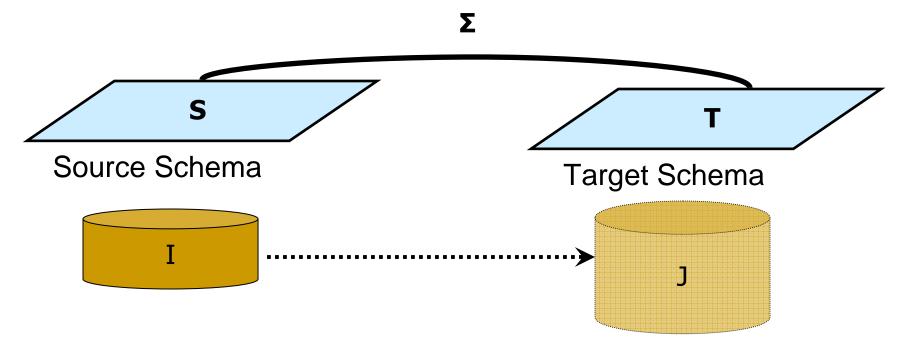
Data Integration

Query heterogeneous data in different sources via a virtual global schema



Data Exchange

Transform data structured under a source schema into data structured under a different target schema.



4

Data Exchange

Data Exchange is an old, but recurrent, database problem

- Phil Bernstein 2003
 "Data exchange is the oldest database problem"
- EXPRESS: IBM San Jose Research Lab 1977
 EXtraction, Processing, and REStructuring System for transforming data between hierarchical databases.
- Data Exchange underlies:
 - Data Warehousing, ETL (Extract-Transform-Load) tasks;
 - XML Publishing, XML Storage, ...

Challenges in Data Interoperability

Fact:

- Data interoperability tasks require expertise, effort, and time.
- Human experts have to generate complex transformations that specify the relationship between schemas written as programs (e.g., in Java) or as SQL/XSLT scripts.
- At present, there is relatively little automation.

Question: How can we address these challenges?

Answer: Introduce a higher level of abstraction that makes it possible to separate the design of the relationship between schemas from its implementation.

Schema Mappings

Schema mappings:

High-level, declarative assertions that specify the relationship between two database schemas.

- Schema mappings constitute the essential building blocks in formalizing and studying data interoperability tasks, including data integration and data exchange.
- Schema mappings help with the development of tools:
 - □ Are easier to generate and manage (semi)-automatically;
 - □ Can be compiled into SQL/XSLT scripts automatically.

Outline of the Tutorial

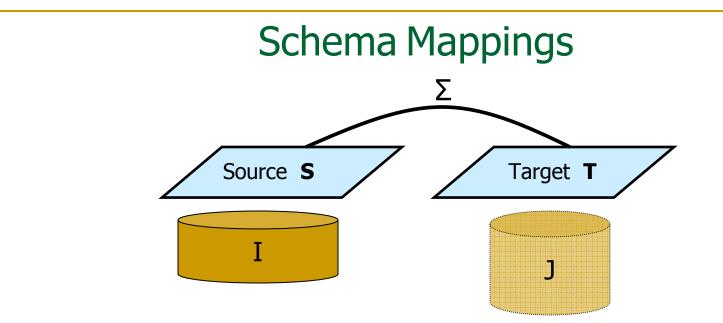
- Schema Mappings as a framework for formalizing and studying data interoperability tasks.
- Data Exchange and Solutions in Data Exchange
 Universal Solutions and the Core.
- Query Answering in Data Exchange.
- Managing schema mappings via operators:
 - □ The composition operator
 - □ The inverse operator and its variants

Acknowledgments

- Much of the work presented has been carried out in collaboration with
 - Ron Fagin, IBM Almaden
 - Renee J. Miller, U. of Toronto
 - Lucian Popa, IBM Almaden
 - □ Wang-Chiew Tan, UC Santa Cruz.

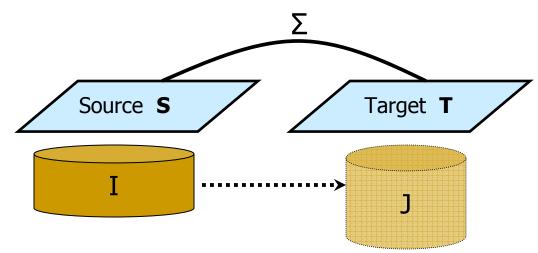
Papers in ICDT 2003, PODS 2003-2008, TCS, ACM TODS.

The work has been motivated from the Clio Project at IBM Almaden aiming to develop a working system for schema mapping generation and data exchange.



- Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$
 - Source schema S, Target schema T
 - High-level, declarative assertions Σ that specify the relationship between S-instances and T-instances.
- Inst(**M**) = { (I, J): I is an **S**-instance, J is a **T**-instance, and $(I, J) \models \Sigma$ }.

Schema Mappings & Data Exchange



- Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \boldsymbol{\Sigma})$
 - Source schema S, Target schema T
 - High-level, declarative assertions Σ that specify the relationship between S and T.
- Data Exchange via the schema mapping M = (S, T, Σ)
 Transform a given source instance I to a target instance J, so that (I, J) satisfy the specifications Σ of M.

Solutions in Schema Mappings

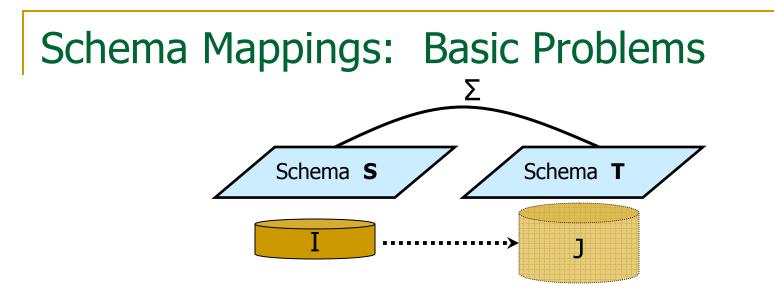
Definition: Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ If I is a source instance, then a solution for I is a target instance J such that (I, J) satisfy Σ .

Fact: In general, for a given source instance I,

No solution for I may exist

or

 Multiple solutions for I may exist; in fact, infinitely many solutions for I may exist.



Definition: Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

- The existence-of-solutions problem Sol(M): (decision problem) Given a source instance I, is there a solution J for I?
- The data exchange problem associated with M: (function problem)
 Given a source instance I, construct a solution J for I, provided a solution exists.

Schema Mapping Specification Languages

- Ideally, schema mappings should be
 - expressive enough to specify data interoperability tasks;
 - simple enough to be efficiently manipulated by tools.
- **Question**: How are schema mappings specified?
- Answer: Use logic. In particular, it is natural to try to use first-order logic as a specification language for schema mappings.
- Fact: There is a fixed first-order sentence specifying a schema mapping M* such that Sol(M*) is undecidable.
- Hence, we need to restrict ourselves to well-behaved fragments of first-order logic.

Embedded Implicational Dependencies

- Dependency Theory: extensive study of constraints in relational databases in the 1970s and 1980s.
- Embedded Implicational Dependencies: Fagin, Beeri-Vardi, ...
 Class of constraints with a balance between high expressive power and good algorithmic properties:
 - Tuple-generating dependencies (tgds)
 - Inclusion and multi-valued dependencies are a special case.
 - Equality-generating dependencies (egds)
 - Functional dependencies are a special case.

Schema Mapping Specification Language

The relationship between source and target is given by formulas of first-order logic, called

Source-to-Target Tuple Generating Dependencies (s-t tgds) $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y}), \text{ where}$

- $\varphi(\mathbf{x})$ is a conjunction of atoms over the source;
- $\psi(\mathbf{x}, \mathbf{y})$ is a conjunction of atoms over the target.

Example:

 $(Student(s) \land Enrolls(s,c)) \rightarrow \exists t \exists g (Teaches(t,c) \land Grade(s,c,g))$

Schema Mapping Specification Language

 s-t tgds assert that: some conjunctive query over the source is contained in some other conjunctive query over the target.

(Student (s) \land Enrolls(s,c)) $\rightarrow \exists t \exists g (Teaches(t,c) \land Grade(s,c,g))$

- s-t tgds generalize the main specifications used in data integration:
 - They generalize LAV (local-as-view) specifications:

 $P(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi(\mathbf{x}, \mathbf{y})$, where P is a source schema.

They generalize GAV (global-as-view) specifications:

 $\varphi(\mathbf{x}) \rightarrow R(\mathbf{x})$, where R is a target relation (they are equivalent to full tgds: $\varphi(\mathbf{x}) \rightarrow \psi(\mathbf{x})$, where $\varphi(\mathbf{x})$ and $\psi(\mathbf{x})$ are conjunctions of atoms).

Target Dependencies

In addition to source-to-target dependencies, we also consider target dependencies:

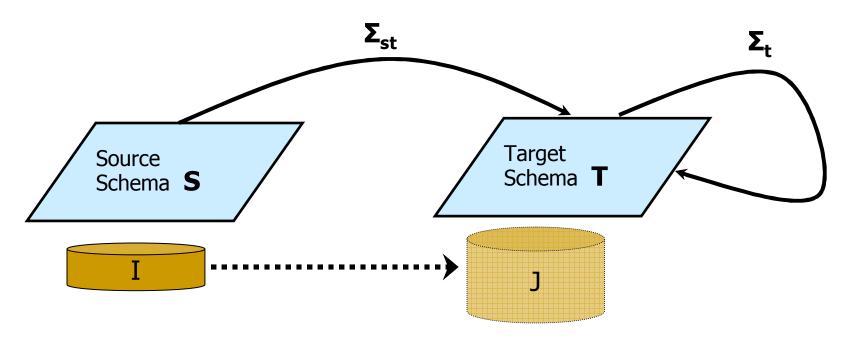
□ Target Tgds : $\phi_T(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi_T(\mathbf{x}, \mathbf{y})$

Dept (did, dname, mgr_id, mgr_name) → Mgr (mgr_id, did) (a target inclusion dependency constraint)

□ Target Equality Generating Dependencies (egds): $\phi_T(\mathbf{x}) \rightarrow (x_1=x_2)$

 $\begin{array}{l} (\text{Mgr } (e, d_1) \land \text{Mgr } (e, d_2)) \rightarrow \ (d_1 = d_2) \\ (a \text{ target key constraint}) \end{array}$

Data Exchange Framework



Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$, where

- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target tgds and target egds

Underspecification in Data Exchange

Fact: Given a source instance, multiple solutions may exist.

• Example:

Source relation E(A,B), target relation H(A,B)

 $\Sigma: \quad \mathsf{E}(x,y) \ \to \exists z \ (\mathsf{H}(x,z) \land \mathsf{H}(z,y))$

Source instance $I = \{E(a,b)\}$

Solutions: Infinitely many solutions exist

•
$$J_1 = \{H(a,b), H(b,b)\}$$

•
$$J_2 = \{H(a,a), H(a,b)\}$$

•
$$J_3 = \{H(a,X), H(X,b)\}$$

•
$$J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$$

•
$$J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$$

constants:

a, b, ...

variables (labelled nulls):

X, Y, ...

Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

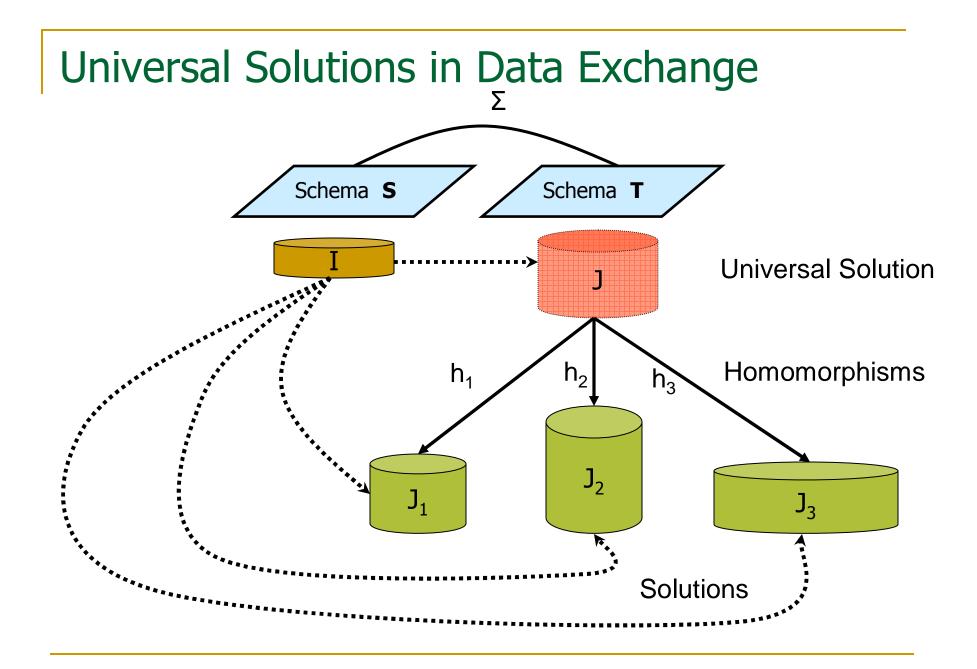
- When more than one solution exist, which solutions are "better" than others?
- How do we compute a "best" solution?
- In other words, what is the "right" semantics of data exchange?

Universal Solutions in Data Exchange

Definition (FKMP 2003): A solution is universal if it has homomorphisms to all other solutions (thus, it is a "most general" solution).

- Constants: entries in source instances
- Variables (labeled nulls): other entries in target instances
- □ Homomorphism h: $J_1 \rightarrow J_2$ between target instances:
 - h(c) = c, for constant c
 - If $P(a_1,...,a_m)$ is in $J_{1,}$, then $P(h(a_1),...,h(a_m))$ is in $J_{2.}$

Claim: Universal solutions are the *preferred* solutions in data exchange.



Example - continued

Source relation S(A,B), target relation T(A,B) $\Sigma : E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$ Source instance I = {H(a,b)}

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$ is not universal
- $J_2 = \{H(a,a), H(a,b)\}$ is not universal
- $J_3 = \{H(a,X), H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal

Structural Properties of Universal Solutions

- Universal solutions are analogous to most general unifiers in logic programming.
- Uniqueness up to homomorphic equivalence: If J and J' are universal for I, then they are homomorphically equivalent.
- Representation of the entire space of solutions: Assume that J is universal for I, and J' is universal for I'. Then the following are equivalent:
 - 1. I and I' have the same space of solutions.
 - 2. J and J' are homomorphically equivalent.

The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions problem **Sol(M)** for a fixed schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ specified by s-t tgds and target tgds and egds?

Answer: Depending on the target constraints in Σ_t :

- **Sol(M)** can be trivial (solutions always exist).
- Sol(M) can be in PTIME.
- Sol(M) can be undecidable.

Algorithmic Problems in Data Exchange

Proposition: If $M = (S, T, \Sigma_{st}, \Sigma_t)$ is a schema mapping such that Σ_t is a set of **full target tgds**, then:

- Solutions always exist; hence, Sol(M) is trivial.
- There is a Datalog program π over the target T that can be used to compute universal solutions as follows: Given a source instance I,
 - **1.** Compute a universal solution J* for I w.r.t. the schema mapping $M^* = (S, T, \Sigma_{st})$ using the **naïve chase** algorithm.
 - **2.** Run the **Datalog program** π on J* to obtain a universal solution J for I w.r.t. **M**.
- Consequently, universal solutions can be computed in polynomial time.

Algorithmic Problems in Data Exchange

Naïve Chase Algorithm for $M^* = (S, T, \Sigma_{st})$: given a source instance I, build a target instance J* that satisfies each s-t tgd in Σ_{st}

by introducing new facts in J as dictated by the RHS of the s-t tgd and

 by introducing new values (variables) in J each time existential quantifiers need witnesses.

 $\begin{array}{l} \textbf{Example: } \textbf{M} = (\textbf{S}, \textbf{T}, \Sigma_{st}, \Sigma_{t}) \\ \Sigma_{st} \vdots \quad \textbf{E}(\textbf{x}, \textbf{y}) \ \rightarrow \ \exists \ \textbf{z}(\textbf{F}(\textbf{x}, \textbf{z}) \land \textbf{F}(\textbf{z}, \textbf{y})) \\ \Sigma_{t} \vdots \quad \textbf{F}(\textbf{u}, \textbf{w}) \land \textbf{F}(\textbf{w}, \textbf{v}) \ \rightarrow \ \textbf{F}(\textbf{u}, \textbf{v}) \end{array}$

- The naïve chase returns a relation F* obtained from E by adding a new node between every edge of E.
- **2.** The Datalog program π computes the **transitive closure** of F*.

Algorithmic Problems in Data Exchang

Proposition : If $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ is a schema mapping such that Σ_t is a set of **full target tgds** and **target egds**, then:

- Solutions need not always exist.
- The existence-of-solutions problem Sol(M) is in PTIME, and may be PTIME-complete.

Proof: Reduction from Horn 3-SAT.

Algorithmic Problems in Data Exchange

Reducing Horn 3-SAT to the Existence-of-Solutions Problem Sol(M)

 $egin{aligned} & \mathsf{U}(\mathsf{x})
ightarrow \mathsf{U}'(\mathsf{x}) \ & \mathsf{P}(\mathsf{x},\mathsf{y},\mathsf{z})
ightarrow \mathsf{P}'(\mathsf{x},\mathsf{y},\mathsf{z}) \ & \mathsf{N}(\mathsf{x},\mathsf{y},\mathsf{z})
ightarrow \mathsf{N}'(\mathsf{x},\mathsf{y},\mathsf{z}) \ & \mathsf{N}(\mathsf{x},\mathsf{y},\mathsf{z})
ightarrow \mathsf{N}'(\mathsf{x},\mathsf{y},\mathsf{z}) \ & \mathsf{V}(\mathsf{x})
ightarrow \mathsf{V}'(\mathsf{x}) \end{aligned}$

 Σ_{st} :

- $\begin{array}{ll} \Sigma_t : & U'(x) \rightarrow \mathsf{M}'(x) \\ \mathsf{P}'(x,y,z) \wedge \mathsf{M}'(y) \wedge \mathsf{M}'(z) \rightarrow \mathsf{M}'(x) \\ \mathsf{N}'(x,y,z) \wedge \mathsf{M}'(x) \wedge \mathsf{M}'(y) \wedge \mathsf{M}'(z) \wedge \mathsf{V}'(u) \rightarrow \mathsf{W}'(u) \\ \mathsf{W}'(u) \wedge \mathsf{W}'(v) \rightarrow u = v \end{array}$
- U(x) encodes the unit clause x
 P(x,y,z) encodes the clause (¬ y ∨ ¬ z ∨ x)
 N(x,y,z) encodes the clause (¬ x ∨¬ y ∨ ¬ z)
 V = {0, 1}

Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?

Undecidability in Data Exchange

Theorem (K ..., Panttaja, Tan - 2006):

There is a schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma^*_{st}, \Sigma^*_t)$ such that:

- Σ^*_{st} consists of a single source-to-target tgd;
- Σ_t^* consists of one egd, one full target tgd, and one (non-full) target tgd;

The existence-of-solutions problem Sol(M) is undecidable.

Hint of Proof:

Reduction from the

Embedding Problem for Finite Semigroups:

Given a finite partial semigroup, can it be embedded to a finite semigroup?

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)

- $\Sigma_{st}: R(x,y,z) \rightarrow R'(x,y,z)$
 - Σ_t : • R' is a partial function: R'(x,y,z) ∧ R'(x,y,w) → z = w
 - R' is associative $R'(x,y,u) \land R'(y,z,v) \land R'(u,z,w) \rightarrow R'(x,u,w)$
 - R' is a total function $\begin{array}{l} \mathsf{R}'(\mathsf{x},\mathsf{y},\mathsf{z}) \land \mathsf{R}'(\mathsf{x}',\mathsf{y}',\mathsf{z}') \to \exists \mathsf{w}_1 \dots \exists \mathsf{w}_9 \\ & (\mathsf{R}'(\mathsf{x},\mathsf{x}',\mathsf{w}_1) \land \mathsf{R}'(\mathsf{x},\mathsf{y}',\mathsf{w}_2) \land \mathsf{R}'(\mathsf{x},\mathsf{z}',\mathsf{w}_3) \\ & \mathsf{R}'(\mathsf{y},\mathsf{x}',\mathsf{w}_4) \land \mathsf{R}'(\mathsf{y},\mathsf{y}',\mathsf{w}_5) \land \mathsf{R}'(\mathsf{x},\mathsf{z}',\mathsf{w}_6) \\ & \mathsf{R}'(\mathsf{z},\mathsf{x}',\mathsf{w}_7) \land \mathsf{R}'(\mathsf{z},\mathsf{y}',\mathsf{w}_8) \land \mathsf{R}'(\mathsf{z},\mathsf{z}',\mathsf{w}_9)) \end{array}$

The Existence-of-Solutions Problem

Summary: The existence-of-solutions problem

- is undecidable for schema mappings in which the target dependencies are arbitrary tgds and egds;
- is in **PTIME** for schema mappings in which the target dependencies are **full** tgds and egds.

Question: Are there classes of target tgds **richer** than full tgds and egds for which the existence-of-solutions problem is in **PTIME**?

Algorithmic Properties of Universal Solutions

Theorem (FKMP 2003): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$ such that:

- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

Then:

- Universal solutions exist if and only if solutions exist.
- Sol(M) is in PTIME.
- A *canonical* universal solution (if a solution exists) can be produced in polynomial time using the chase procedure.

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

Sets of full tgds

 $\phi_{\mathsf{T}}(\mathbf{x},\mathbf{x}') \rightarrow \psi_{\mathsf{T}}(\mathbf{x}),$

where $\phi_T(\mathbf{x},\mathbf{x'})$ and $\psi_T(\mathbf{x})$ are conjunctions of target atoms.

Acyclic sets of inclusion dependencies

Large class of dependencies occurring in practice.

Weakly Acyclic Sets of Tgds: Definition

Position graph of a set Σ of tgds:

- □ **Nodes:** R.A, with R relation symbol, A attribute of R
- □ **Edges:** for every $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$ in Σ , for every x in **x** occurring in ψ , for every occurrence of x in ϕ in R.A:
 - For every occurrence of x in ψ in S.B, add an edge R.A \longrightarrow S.B
- Σ is weakly acyclic if the position graph has no cycle containing a special edge.
- A tgd θ is weakly acyclic if so is the singleton set $\{\theta\}$.

Weakly Acyclic Sets of Tgds: Examples

Example 1: { D(e,m) → M(m), M(m) → ∃ e D(e,m) } is weakly acyclic, but cyclic.

Example 2: { $E(x,y) \rightarrow \exists z E(y,z)$ }

is not weakly acyclic.

Data Exchange with Weakly Acyclic Tgds

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

There is an algorithm, based on the chase procedure, so that:

- Given a source instance I, the algorithm determines if a solution for I exists; if so, it produces a canonical universal solution for I.
- The running time of the algorithm is polynomial in the size of I.
- Hence, the existence-of-solutions problem Sol(M) for M, is in PTIME.

Chase Procedure for Tgds and Egds

Given a source instance I,

- **1.** Use the naïve chase to chase I with Σ_{st} and obtain a target instance J*.
- **2.** Chase J * with the target tgds and the target egds in Σ_t to obtain a target instance J as follows:
 - **2.1.** For target tgds introduce new facts in J as dictated by the RHS of the s-t tgd and introduce new values (variables) in J each time existential quantifiers need witnesses.
 - **2.2.** For target egds $\phi(x) \rightarrow x_1 = x_2$
 - **2.2.1**. If a variable is equated to a constant, replace the variable by that constant;
 - **2.2.2.** If one variable is equated to another variable, replace one variable by the other variable.
 - **2.2.3** If one constant is equated to a different constant, stop and repor "failure".

The Existence of Solutions Problem

Summary: The existence-of-solutions problem

- is undecidable for schema mappings in which the target dependencies are arbitrary tgds and egds;
- is in PTIME for schema mappings in which the set of the target dependencies is the union of a weakly acyclic set of tgds and a set of egds.

Note:

- These are data complexity results.
- The combined complexity of the existence-of-solutions problem is 2EXPTIME-complete (weakly acyclic sets of target tgds and egds).

The Smallest Universal Solution

- **Fact:** Universal solutions need not be unique.
- **Question**: Is there a "best" universal solution?
- Answer: In joint work with R. Fagin and L. Popa, we took a "small is beautiful" approach:

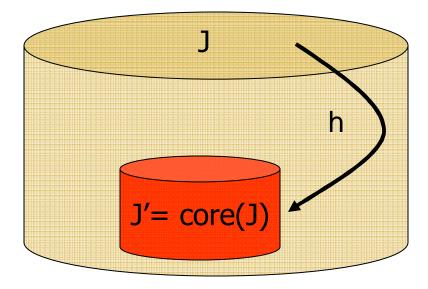
There is a smallest universal solution (if solutions exist); hence, the most compact one to materialize.

 Definition: The core of an instance J is the smallest subinstance J' that is homomorphically equivalent to J.

Fact:

- Every finite relational structure has a core.
- The core is unique up to isomorphism.

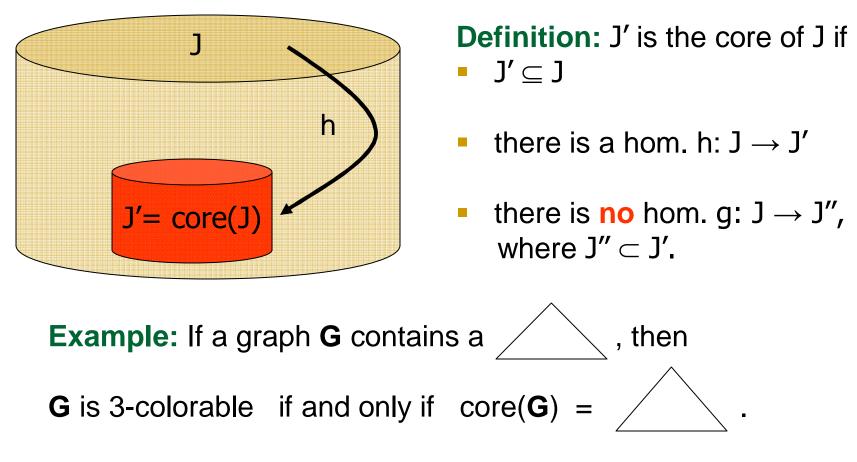
The Core of a Structure



Definition: J' is the core of J if $J' \subseteq J$

- there is a hom. h: $J \rightarrow J'$
- there is no hom. g: $J \rightarrow J''$, where $J'' \subset J'$.

The Core of a Structure



Fact: Computing cores of graphs is an NP-hard problem.

Example - continued

Source relation E(A,B), target relation H(A,B)

 $\Sigma: (\mathsf{E}(\mathsf{x},\mathsf{y}) \to \exists \mathsf{z} (\mathsf{H}(\mathsf{x},\mathsf{z}) \land \mathsf{H}(\mathsf{z},\mathsf{y})))$

Source instance $I = \{E(a,b)\}$.

Solutions: Infinitely many universal solutions exist.

•
$$J_3 = \{H(a,X), H(X,b)\}$$
 is the core.

- J₄ = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not the core.
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal.

Core: The smallest universal solution

Theorem (FKP 2003): $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ a schema mapping: a All universal solutions have the same core.

- The core of the universal solutions is the smallest universal solution.
- If every target constraint is an egd, then the core is polynomial-time computable.

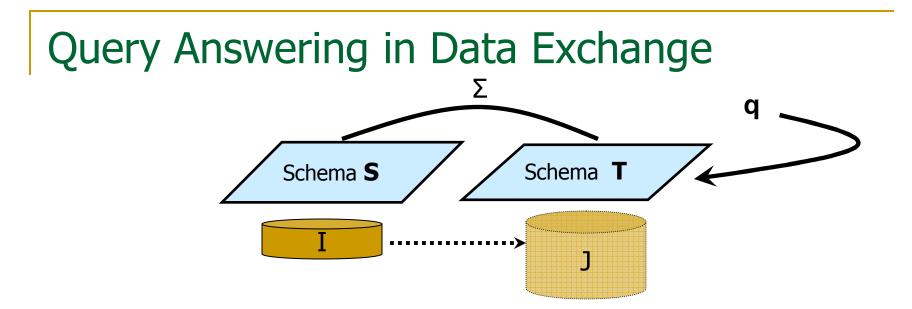
Theorem (Nash & Gottlob 2006): Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ be such that Σ_t is the union of a set of weakly acyclic target tgds with a set of target egds. Then the core is polynomial-time computable.

Outline of the Tutorial

Schema Mappings and Data Exchange

✓ Solutions in Data Exchange

- ✓ Universal Solutions
- ✓ The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing and Inverting Schema Mappings.



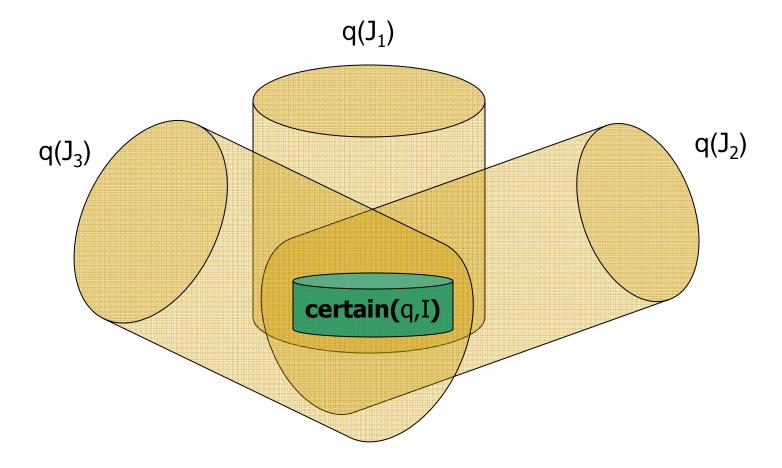
Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

certain(q,I) =
$$\bigcap \{ q(J) : J \text{ is a solution for I} \}.$$

Note: It is the standard semantics in data integration.

Certain Answers Semantics



certain(q,I) = $\bigcap \{ q(J): J \text{ is a solution for I} \}.$

Computing the Certain Answers

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$ such that:

- \Box Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries over **T**.

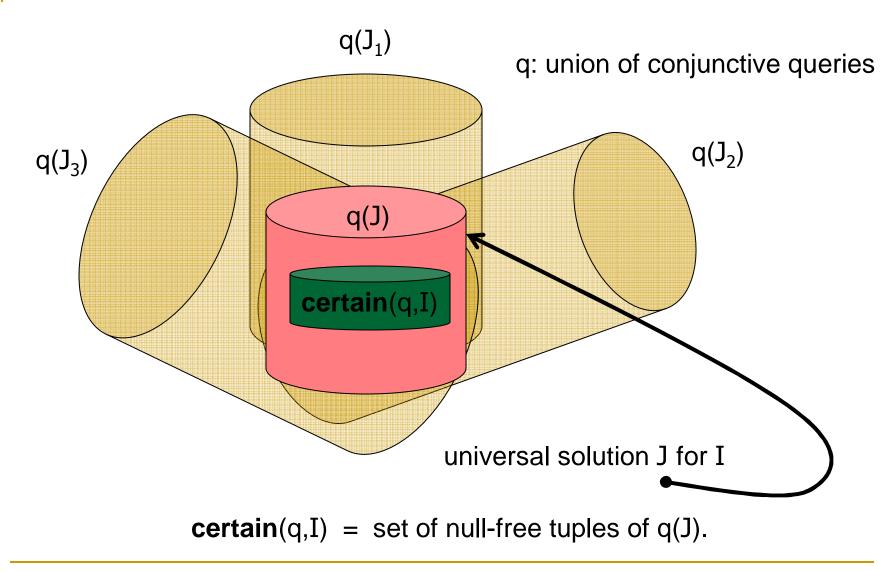
If I is a source instance and J is a universal solution for I, then

certain(q,I) = the set of all "null-free" tuples in q(J).

- Hence, **certain**(q,I) is computable in time polynomial in |I|:
 - 1. Compute a canonical universal J solution in polynomial time;
 - 2. Evaluate q(J) and remove tuples with nulls.

Note: This is a data complexity result (**M** and q are fixed).

Certain Answers via Universal Solutions



Computing the Certain Answers

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ such that:

- \Box Σ_{st} is a set of source-to-target tgds, and
- \Box Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (\neq) .

- If q has at most one inequality per conjunct, then certain(q,I) is computable in time polynomial in |I| using a disjunctive chase.
- If q is has at most two inequalities per conjunct, then
 certain(q,I) can be coNP-complete, even if Σ_t = Ø.

Alternative Semantics for Query Answering

Open-World Assumption Semantics

- **certain**(q,I) = \cap { q(J): J is a solution for I } (FKMP) The possible worlds for I are the solutions for I.
- **ucertain**(q,I) = \cap { q(J): J is a universal solution for I } (FKP) The possible worlds for I are the universal solutions for I.

Closed-World Assumption Semantics

- Libkin 2006: CWA-Solutions
 The possible worlds for I are the members of Rep(CanSol(I)).
- Afrati and K ... 2008: Semantics of aggregate queries The possible worlds for I are the members of End(CanSol(I)).

Closed / Open - World Assumption Semantics

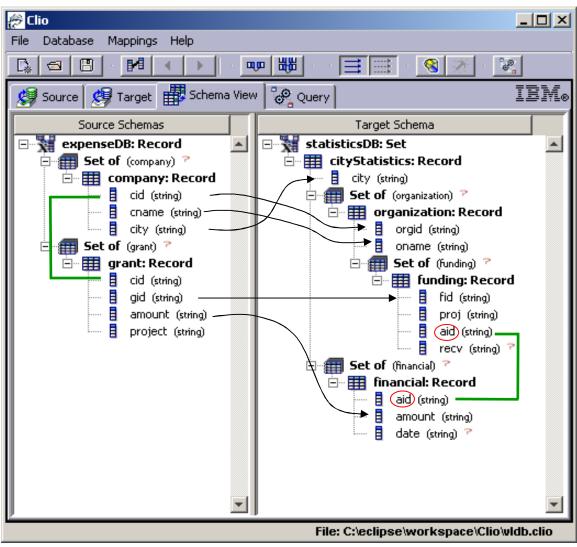
Libkin and Sirangelo 2008

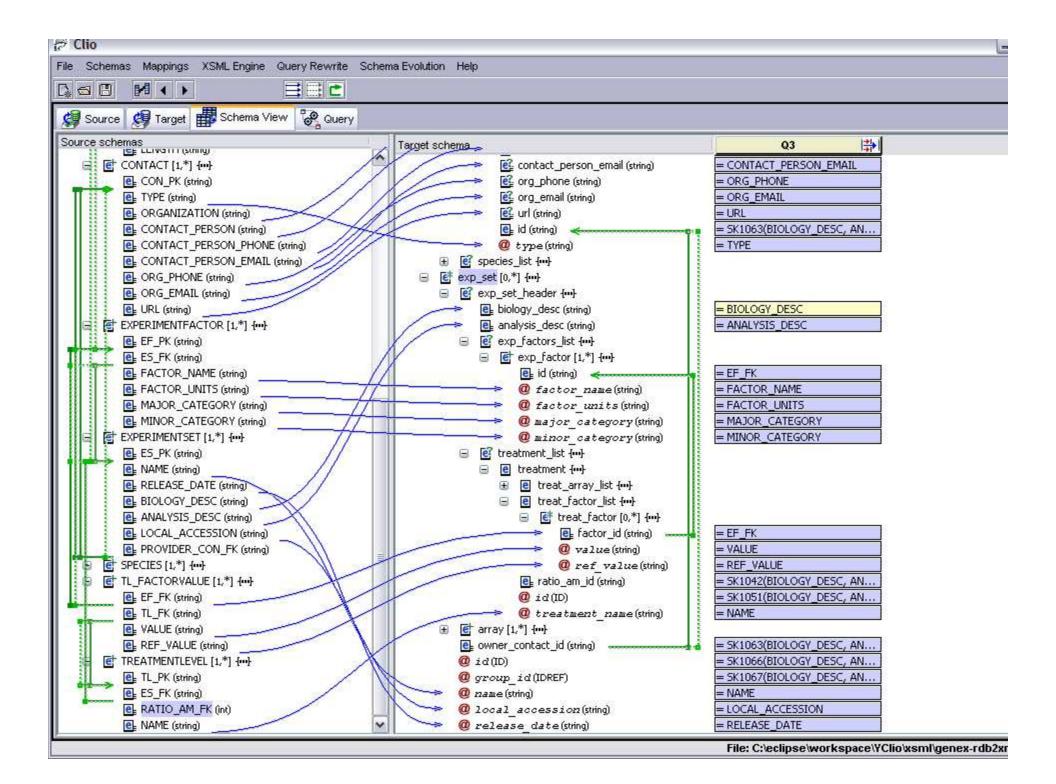
From Theory to Practice

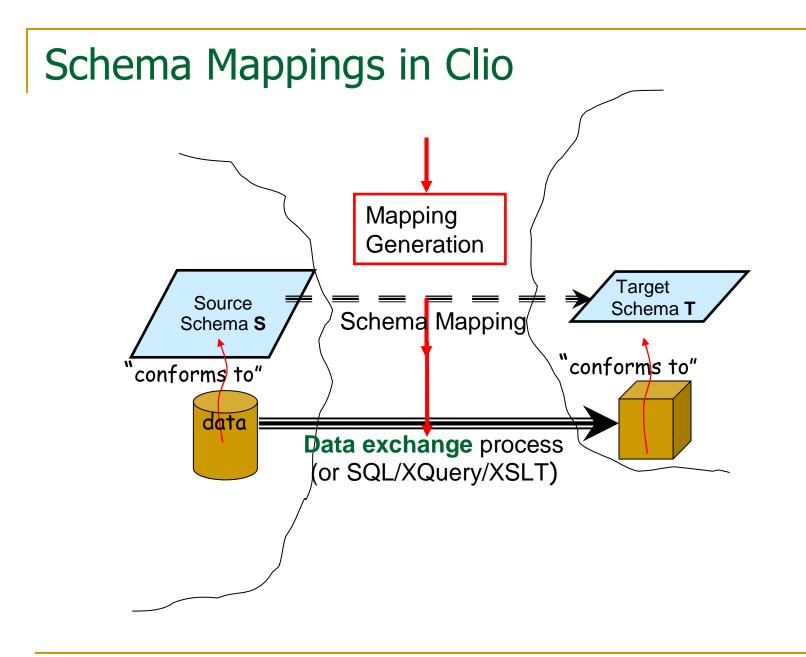
- Clio Project at IBM Almaden managed by Howard Ho.
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.
- Universal solutions used as the semantics of data exchange.
- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.
- Clio technology is now part of IBM Rational® Data Architect.

Some Features of Clio

- Supports nested structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semiautomatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange







Outline of the Tutorial

Schema Mappings and Data Exchange

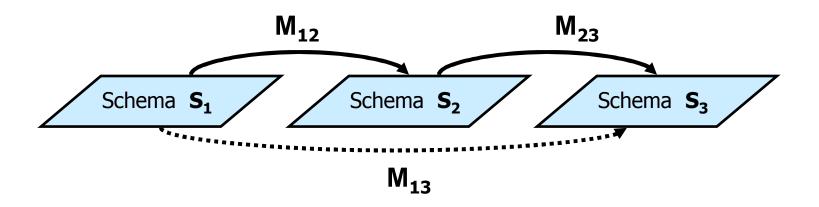
✓ Solutions in Data Exchange

- ✓ Universal Solutions
- ✓ The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing and Inverting Schema Mappings

Managing Schema Mappings

- Schema mappings can be quite complex.
- Methods and tools are needed to automate or semi-automate schema-mapping management.
- Metadata Management Framework Bernstein 2003 based on generic schema-mapping operators:
 - Match operator
 - Merge operator
 - •••••
 - Composition operator
 - Inverse operator

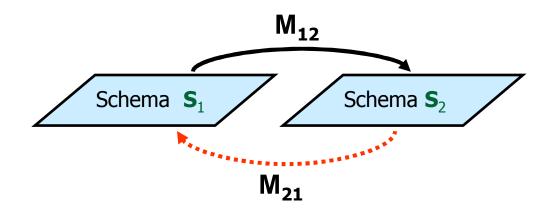
Composing Schema Mappings



- Given $\mathbf{M_{12}} = (\mathbf{S_1}, \mathbf{S_2}, \Sigma_{12})$ and $\mathbf{M_{23}} = (\mathbf{S_2}, \mathbf{S_3}, \Sigma_{23})$, derive a schema mapping $\mathbf{M_{13}} = (\mathbf{S_1}, \mathbf{S_3}, \Sigma_{13})$ that is "equivalent" to the sequential application of $\mathbf{M_{12}}$ and $\mathbf{M_{23}}$.
- M₁₃ is a composition of M₁₂ and M₂₃

$$\mathbf{M_{13}} = \mathbf{M_{12}} \circ \mathbf{M_{23}}$$

Inverting Schema Mapping

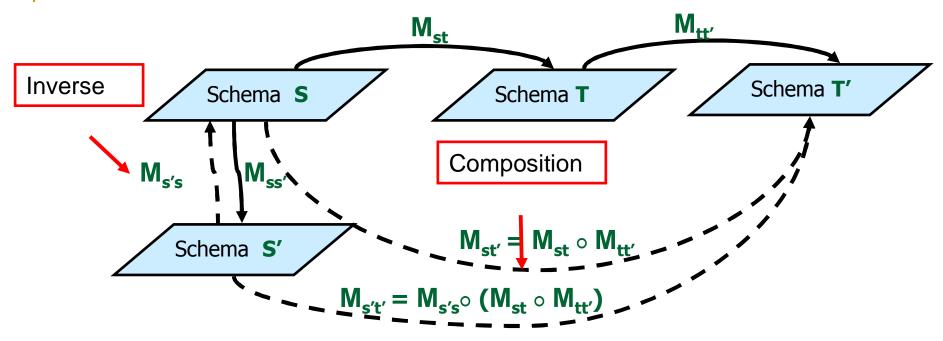


Given M₁₂, derive M₂₁ that "undoes" M₁₂

 M_{21} is an inverse of M_{12}

Composition and inverse can be applied to schema evolution.

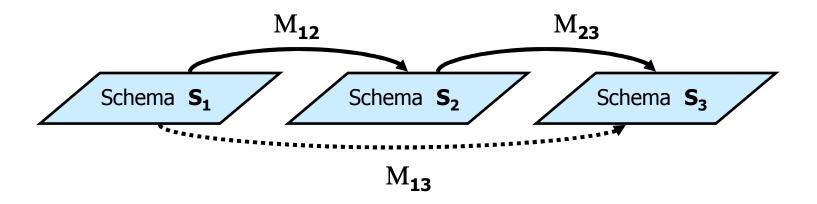
Applications to Schema Evolution



Fact:

Schema evolution can be analyzed using the composition operator and the inverse operator.

Composing Schema Mappings



• Given $M_{12} = (\mathbf{S}_1, \mathbf{S}_2, \Sigma_{12})$ and $M_{23} = (\mathbf{S}_2, \mathbf{S}_3, \Sigma_{23})$, derive a schema mapping $M_{13} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$ that is "equivalent" to the sequence M_{12} and M_{23} .

What does it mean for M_{13} to be "equivalent" to the composition of M_{12} and M_{23} ?

Earlier Work

- Metadata Model Management (Bernstein in CIDR 2003)
 - Composition is one of the fundamental operators
 - □ However, no precise semantics is given
- Composing Mappings among Data Sources (Madhavan & Halevy in VLDB 2003)
 - □ First to propose a semantics for composition
 - However, their definition is in terms of maintaining the same certain answers relative to a class of queries.
 - Their notion of composition *depends* on the class of queries; it may *not* be unique up to logical equivalence.

Semantics of Composition

 Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M) between instances:

Inst(**M**) = { (I,J) | (I,J) $\models \Sigma$ }.

• **Definition:** (FKPT 2004)

A schema mapping \mathbf{M}_{13} is a composition of \mathbf{M}_{12} and \mathbf{M}_{23} if

Inst(
$$\mathbf{M}_{13}$$
) = Inst(\mathbf{M}_{12}) ° Inst(\mathbf{M}_{23}), that is,
(I_1, I_3) $\models \Sigma_{13}$
if and only if
there exists I_2 such that (I_1, I_2) $\models \Sigma_{12}$ and (I_2, I_3) $\models \Sigma_{23}$

• Note: Also considered by S. Melnik in his Ph.D. thesis

The Composition of Schema Mappings

Fact: If both $M = (S_1, S_3, \Sigma)$ and $M' = (S_1, S_3, \Sigma')$ are compositions of M_{12} and M_{23} , then Σ are Σ' are logically equivalent. For this reason:

We say that M (or M') is *the* composition of M₁₂ and M₂₃.
 We write M₁₂ ° M₂₃ to denote it

Definition: The composition query of M_{12} and M_{23} is the set Inst $(M_{12}) \circ Inst(M_{23})$ (this is the model checking problem for composition)

Issues in Composition of Schema Mappings

The semantics of composition was the first main issue.

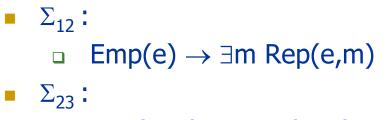
Some other key issues:

- Is the language of s-t tgds *closed under composition*?
 If M₁₂ and M₂₃ are specified by finite sets of s-t tgds, is
 M₁₂ ° M₂₃ also specified by a finite set of s-t tgds?
- If not, what is the "right" language for composing schema mappings?

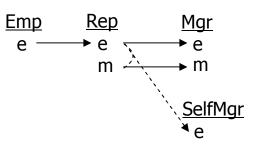
Composition: Expressibility & Complexity

M ₁₂	M ₂₃	$M_{12}^{\circ} M_{23}$	Composition
Σ ₁₂	Σ ₂₃	Σ_{13}	Query
finite set of GAV	finite set of	finite set of	in PTIME
(full) s-t tgds	s-t tgds	s-t tgds	
$\phi(\mathbf{x}) \rightarrow \psi(\mathbf{x})$	$\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	φ (x) →∃ y ψ(x , y)	
finite set of s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	finite set of (full) s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	may not be definable: by any set of s-t tgds; in FO-logic; in Datalog	in NP; can be NP-complete

Employee Example



- □ Rep(e,m) \rightarrow Mgr(e,m)
- $\square Rep(e,e) \rightarrow SelfMgr(e)$



- Theorem: This composition is not definable by any finite set of s-t tgds.
- Fact: This composition is definable in a well-behaved fragment of second-order logic, called SO tgds, that extends s-t tgds with Skolem functions.

Employee Example - revisited

$$Σ_{12}$$
:
□ \forall e (Emp(e) → \exists m Rep(e,m))
 $Σ$.

 Σ_{23} :

- □ $\forall e \forall m(\text{Rep}(e,m) \rightarrow Mgr(e,m))$
- □ $\forall e (\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e))$

Fact: The composition is definable by the SO-tgd Σ_{13} : $\exists \mathbf{f} (\forall e(\text{Emp}(e) \rightarrow \text{Mgr}(e, \mathbf{f}(e)) \land \forall e(\text{Emp}(e) \land (\mathbf{e}=\mathbf{f}(e)) \rightarrow \text{SelfMgr}(e)))$

Second-Order Tgds

Definition: Let **S** be a source schema and **T** a target schema. A second-order tuple-generating dependency (SO tgd) is a formula of the form:

 $\exists f_1 \ ... \ \exists f_m(\ (\forall \textbf{x_1}(\phi_1 \rightarrow \psi_1)) \land ... \land (\forall \textbf{x_n}(\phi_n \rightarrow \psi_n)) \), \ \text{where}$

- Each f_i is a function symbol.
- Each ϕ_i is a conjunction of atoms from **S** and equalities of terms.
- Each ψ_i is a conjunction of atoms from **T**.

Example: $\exists f (\forall e(Emp(e) \rightarrow Mgr(e, f(e)) \land \forall e(Emp(e) \land (e=f(e)) \rightarrow SelfMgr(e)))$

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

- □ The composition of two SO-tgds is definable by a SO-tgd.
- There is an algorithm for composing SO-tgds.
- The chase procedure can be extended to SO-tgds;
 it produces universal solutions in polynomial time.
- Every SO tgd is the composition of finitely many finite sets of s-t tgds. Hence, SO tgds are the "right" language for the composition of s-t tgds

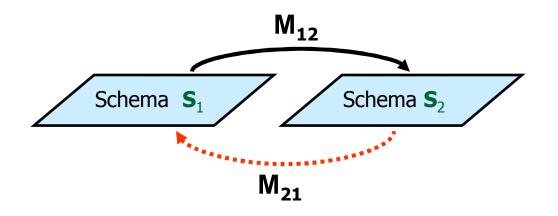
Synopsis of Schema Mapping Composition

- s-t tgds are not closed under composition.
- SO-tgds form a well-behaved fragment of second-order logic.
 - SO-tgds are closed under composition; they are the "right" language for composing s-t tgds.
 - SO-tgds are "chasable":

Polynomial-time data exchange with universal solutions.

 SO-tgds and the composition algorithm have been incorporated in Clio's Mapping Specification Language (MSL).

Inverting Schema Mapping



Given M₁₂, derive M₂₁ that "undoes" M₁₂

 M_{21} is an inverse of M_{12}

What is the "right" semantics of the inverse operator?

Approaches to Inverting Schema Mappings

- Inverses of Schema Mappings
 Fagin PODS 2006
- Quasi-inverses of Schema Mappings
 FKPT PODS 2007
- Maximum Recoveries of Schema Mappings Arenas, Pérez, Riveros -- PODS 2008

Semantics of the Inverse Operator

Fagin - 2006

Motivation: an inverse of a function f is a function f' s.t.
 f o f' = id,

where id is the **identity function** f(x)=x.

Idea:

- Define first the identity schema mapping Id
- Call a schema mapping M' an inverse of M if Inst(M o M') = Inst(Id).

Identity and Inverse

Definition: Let **S** be a schema.

Let $S^* = \{ R^* : R \in S \}$, where R^* is a replica of R.

The **identity schema mapping on S** is the schema mapping

$$\begin{split} \textbf{Id} &= (\textbf{S}, \, \textbf{S^*}, \, \boldsymbol{\Sigma}_{Id}(\textbf{S})), \\ \text{where } \boldsymbol{\Sigma}_{Id}(\textbf{S}) \text{ consists of the dependencies} \\ R(x) &\rightarrow R^*(x), \, \text{for every relation symbol } R \in \textbf{S}. \end{split}$$

Definition: (Fagin) Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a schema mapping. A schema mapping $\mathbf{M}' = (\mathbf{T}, \mathbf{S}^*, \Sigma')$ is an **inverse** of \mathbf{M} if $Inst(\mathbf{M} \circ \mathbf{M}') = Inst(\mathbf{Id})$. (there is J such that $(I,J) \models \Sigma$ and $(J,I') \models \Sigma'$ iff $I \subseteq I'$).

Inverting Schema Mappings

Example: Let **M** be the schema mapping specified by the tgd $P(x) \rightarrow Q(x,x)$.

Then:

• The schema mapping **M'** specified by the tgd $Q(x,y) \rightarrow P^*(x)$ is an inverse of **M**.

The schema mapping M" specified by the tgd $Q(x,y) \rightarrow P^*(y)$ is also an inverse of M.

Note:

Inverses need not be unique up to logical equivalence.

Inverting Schema Mappings

Good News:

Rigorous semantics for the inverse operator has been given.

Not-so-good News:

It is *rare* that a schema mapping has an inverse.

Theorem: Fagin – 2006

If a schema mapping M has an inverse, then M must have the **unique-solutions property**:

If I_1 and I_2 are source instances such that $I_1 \neq I_2$, then **Sol**(**M**, I_1) \neq **Sol**(**M**, I_2), where for a source instance I, **Sol**(**M**, I) = { J: (I, J) $\models \Sigma$ }. Non-invertible Schema Mappings

Fact: None of the following schema mappings is invertible, as none satisfies the unique-solutions property:

Projection:

 $\mathsf{P}(x,y)\to Q(x)$

• Union:

 $\begin{array}{ll} \mathsf{P}(x) \rightarrow & \mathsf{Q}(x) \\ \mathsf{R}(x) \rightarrow & \mathsf{Q}(x) \end{array}$

Decomposition: $P(x,y,z) \rightarrow Q(x,y) \land T(y,z)$

Coping with Non-invertibility

Difficulty:

- □ It is rare that a schema mapping is invertible.
- The notion of an inverse is too restrictive to be useful in schema-mapping management.

Coping with non-invertibility (FKPT – 2007):

Introduce the notion of a **quasi-inverse** of a schema mapping.

- This is a relaxation of the notion of an inverse.
- Many non-invertible schema mappings turn out to have "natural" quasi-inverses.
- Quasi-inverses are shown to be useful in data exchange.

Quasi-inverses: Intuition

- Question: How can we relax the notion of an inverse in a principled way?
- **Key Idea:** Relax the defining equation

 $Inst(\mathbf{M} \circ \mathbf{M}') = Inst(\mathbf{Id}).$

by not differentiating between instances that are

equivalent for data-exchange purposes.

Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$

Equivalence relation ~_M on **S**-instances:

•
$$I \sim_{M} I'$$
 if $Sol(M, I) = Sol(M, I')$.

(i.e., for all T-instances J, we have that $(I,J) \vDash \Sigma$ if and only if $(I',J) \vDash \Sigma$.)

Quasi-inverses: Definition

Definition: Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ A schema mapping $\mathbf{M}' = (\mathbf{T}, \mathbf{S}^*, \Sigma')$ is an **inverse** of \mathbf{M} if $Inst(\mathbf{M} \circ \mathbf{M}') = Inst(\mathbf{Id})$

Definition: Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ A schema mapping $\mathbf{M}' = (\mathbf{T}, \mathbf{S}^*, \Sigma')$ is a **quasi-inverse** of \mathbf{M} if $\sim_{\mathbf{M}} \circ \operatorname{Inst}(\mathbf{M} \circ \mathbf{M}') \circ \sim_{\mathbf{M}} = \sim_{\mathbf{M}} \circ \operatorname{Inst}(\mathbf{Id}) \circ \sim_{\mathbf{M}}$

(intuitively, $Inst(M \circ M') = Inst(Id) \mod \sim_{M}$).

Quasi-inverse: Definition

Definition: Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ A schema mapping $\mathbf{M}' = (\mathbf{T}, \mathbf{S}^*, \Sigma')$ is a **quasi-inverse** of \mathbf{M} if $\sim_{\mathbf{M}} \circ \operatorname{Inst}(\mathbf{M} \circ \mathbf{M}') \circ \sim_{\mathbf{M}} = \sim_{\mathbf{M}} \circ \operatorname{Inst}(\mathbf{Id}) \circ \sim_{\mathbf{M}}$

This means that the following are equivalent for I_1 and I_2 :

1) There are I_1' , I_2' , and J such

$$I_1 \sim_{\mathbf{M}} I_1', I_2 \sim_{\mathbf{M}} I_2' \text{ and }$$

•
$$(I_1',J) \vDash \Sigma$$
 and $(J,I_2') \vDash \Sigma'$.

2) There are I_1'' and I_2'' such that

I₁
$$\sim_{\mathbf{M}}$$
 I₁", I₂ $\sim_{\mathbf{M}}$ I₂" and
I " \subset I"

 $I_1 \subseteq I_2$

Quasi-inverses of Schema Mappings

Summary of main results:

- Exact structural criterion for the existence of quasiinverses.
- Complete characterization of the language needed to express quasi-inverses, if they exist.
- Algorithm for producing a "good" quasi-inverse, if one exists.
- **Applications** of quasi-inverses to data exchange.

Criterion for the Existence of Quasi-inverses

Theorem : Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a schema mapping in which Σ is a set of s-t tgds. The following statements are equivalent:

M has a quasi-inverse.

 M has the subset-property: For every pair (I₁, I₂) of S-instances such that Sol(M, I₂) ⊆ Sol(M, I₁), there is a pair (I₁', I₂') of S-instances such that
 I₁ ~_M I₁' and I₂ ~_M I₂'

•
$$I_1' \subseteq I_2'$$
.

Applications of the Subset Property

Proposition:

- Every LAV mapping has a quasi-inverse.
- There is a GAV mapping that has no quasi-inverse.

Proof:

- Show that every LAV mapping has the subset property.
- Show that the GAV mapping specified by the tgds $E(x,z) \land E(z,y) \rightarrow F(x,y)$

 $E(x,z) \land E(z,y) \rightarrow F(x,y)$ $E(x,z) \land E(z,y) \rightarrow M(z)$

does **not** have the **subset property**.

Quasi-invertible, Non-invertible Mappings

Projection: $P(x,y) \rightarrow Q(x)$

Quasi-inverse: $Q(x) \rightarrow \exists y P(x,y)$

Union:

Quasi-inverse #1: Quasi-inverse #2: Quasi-inverse #3:

$$P(x) \rightarrow Q(x)$$

 $R(x) \rightarrow Q(x)$
 $Q(x) \rightarrow P(x) \lor R(x)$
 $Q(x) \rightarrow P(x)$
 $Q(x) \rightarrow R(x)$

 \sim /)

Decomposition: $P(x,y,z) \rightarrow Q(x,y) \wedge T(y,z)$ Quasi-inverse #1: $Q(x,y) \land T(y,z) \rightarrow P(x,y,z)$ Quasi-inverse #2: $Q(x,y) \rightarrow \exists z P(x,y,z)$ $T(y,z) \rightarrow \exists x P(x,y,z)$

The Language of Quasi-inverses

Theorem: Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ be a schema mapping in which Σ is a set of s-t tgds. Assume that **M** has a quasi-inverse. Then:

- M has a quasi-inverse M' specified by a set of disjunctive tgds with constants and inequalities.
- There is an (exponential) algorithm QI for producing such an M'.
- No smaller language can express quasi-inverses.

Disjunctive tgds with constants and inequalities:

 $\phi(\mathbf{x}) \rightarrow \bigvee_i \exists \mathbf{y}_i \psi_i(\mathbf{x}, \mathbf{y}_i)$, where

- (x) is a conjunction of
 - **T**-atoms;
 - Formulas of the form Constant(x), where x is a variable in x;
 - Inequalities $x \neq x'$, where x, x' are variables in x.
- Each $\psi_i(\mathbf{x}, \mathbf{y}_i)$ is a conjunction of **S**-atoms.

The Language of Quasi-inverses

Theorem: Every LAV schema mapping has a quasi-inverse specified by a set of **tgds with constants and inequalities**. Thus, **disjunctions** are **not** needed.

Theorem: Every quasi-invertible GAV schema mapping has a quasi-inverse specified by a set of **disjunctive tgds with inequalities**. Thus, **constants** are **not** needed.

Necessity of the Language – Sample Results

Necessity of Constants:

LAV Schema Mapping M: $E(x,y) \rightarrow \exists z (F(x,z) \land F(z,y))$

- Quasi-inverse M': $F(x,z) \land F(z,y) \land Constant(x) \land Constant(y) \rightarrow E(x,y)$
- M has no quasi-inverse specified by disjunctive tgds with inequalities.

Necessity of Disjunctions:

GAV Schema Mapping M: $P_1(x) \rightarrow S_1(x), P_2(x) \rightarrow S_1(x)$ $P_3(x) \rightarrow S_2(x), P_4(x) \rightarrow S_2(x)$ $P_i(x) \wedge P_i(x) \rightarrow R_{ii}(x), i = 1,2 \text{ and } j = 3,4$

- M has a quasi-inverse
- M has no quasi-inverse specified by tgds with constants and inequalities.

The Language of Quasi-inverses: Summary

	Inequalities needed? X ≠ X'	Constants needed? Constant(x)	Disjunctions needed? $\lor_i \exists \psi_i(\mathbf{x}, \mathbf{y}_i)$
LAV Mappings	Yes	Yes	No
GAV Mappings	Yes	No	Yes
Mappings specified by arbitrary tgds	Yes	Yes	Yes

Quasi-inverses in Data Exchange

Theorem: Let M be a quasi-invertible schema mapping and let M' be the schema mapping produced by the QI-algorithm.
Then M' can be used to produce source instances that are
"data exchange equivalent" to a given source instance.

More formally, for every **S**-instance I, we have that chase_M(chase_M(chase_M(I))) contains a **T**-instance J that is **homomorphically equivalent** to chase_M(I).

Synopsis of Results about Quasi-inverses

- Quasi-inverses are a useful relaxation of inverses.
- Exact combinatorial criterion for the existence of quasiinverses.
- Complete characterization of the language of quasi-inverses.
- Quasi-inverses are useful in data exchange.

Maximum Recoveries of Schema Mappings

Definition (Arenas, Pérez, Riveros – 2008):

- $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ a schema mapping
- $\mathbf{M'} = (\mathbf{T}, \mathbf{S}, \Sigma')$ is a recovery of **M** if for every source instance I, we have that $(I,I) \in \text{Inst}(\mathbf{M} \circ \mathbf{M'})$.
- M' = (T, S, Σ') is a maximum recovery of M if it is a recovery and there is no recovery M" of M such that Inst(M∘M") ⊂ Inst(M∘M').

Summary of Main Results

- Exact criterion for the existence of maximum recoveries.
- Characterization of the language for expressing maximum recoveries of schema mappings specified by s-t tgds.
- Algorithm for constructing a maximum recovery of a schema mapping specified by s-t tgds.

Maximum Recoveries vs. Quasi-inverses

Theorem (Arenas, Pérez, Riveros – 2008):

 $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ a schema mapping specified by s-t tgds.

- **M** has a maximum recovery.
- If M is invertible, then M' is a maximum recovery of M if and only if M' is an inverse of M.
- If M is quasi-invertible, then M is a maximum recovery of M if and only if M' is both a recovery and a quasi-inverse of M.

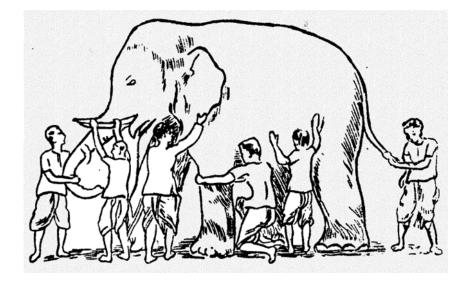
Some Directions of Research

- Inverting schema mapings requires further study.
- Detailed study of other schema mapping operators (Diff, Merge, ...) remains to be carried out.
- Applications of schema-mapping operators to:
 - Study of schema evolution;
 - Modeling and analysis of ETL via schema mappings.

Related Work (very partial list)

- XML Data Exchange (Arenas and Libkin – 2005).
- Schema mappings with arithmetic comparisons (Afrati, Li, Pavlaki – 2008).
- Composing richer schema mappings (Nash, Bernstein, Melnik – 2007)
- Peer data exchange (Fuxman, K ..., Miller, Tan – 2007)
- Schema-mapping optimization (FKNP – 2008)

Data Interoperability: The Elephant and the Six Blind Men



- Data interoperability remains a major challenge: "Information integration is a beast." (L. Haas – 2007)
- Schema mappings specified by tgds offer a formalism that covers only some aspects of data interoperability.
- However, theory and practice can inform each other.