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The Data Interoperability Problem

� Data may reside

� at several different sites

� in several different formats (relational, XML, …).

� Applications need to access all these data.

� Two different, but closely related, facets of data 
interoperability:

� Data Integration (aka Data Federation):

� Data Exchange    (aka Data Translation):
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Data Integration
Query heterogeneous data in different sources via a virtual 

global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q



4

Data Exchange

Transform data structured under a source schema into data 
structured under a different target schema.
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Source Schema Target Schema
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Data Exchange

Data Exchange is an old, but recurrent, database problem

� Phil Bernstein – 2003                                                    

“Data exchange is the oldest database problem”

� EXPRESS:  IBM San Jose Research Lab – 1977

EXtraction, Processing, and REStructuring System 

for transforming data between hierarchical databases. 

� Data Exchange underlies:

� Data Warehousing, ETL (Extract-Transform-Load) tasks;

� XML Publishing, XML Storage, …
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Challenges in Data Interoperability

Fact:

� Data interoperability tasks require expertise, effort, and time.

� Human experts have to generate complex transformations that 
specify the relationship between schemas written as programs  
(e.g., in Java) or as SQL/XSLT scripts.

� At present, there is relatively little automation.

Question: How can we address these challenges?

Answer: Introduce a higher level of abstraction that makes it possible

to separate the design of the relationship between schemas from its 

implementation. 
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Schema Mappings

� Schema mappings:

High-level, declarative assertions that specify  the 
relationship between two database schemas.

� Schema mappings constitute the essential building blocks in 
formalizing and studying data interoperability tasks, including 
data integration and data exchange.

� Schema mappings help with the development of tools:

� Are easier to generate and manage (semi)-automatically;

� Can be compiled into SQL/XSLT scripts automatically.
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Outline of the Tutorial

� Schema Mappings as a framework for formalizing and 
studying data interoperability tasks.

� Data Exchange and Solutions in Data Exchange

� Universal Solutions and the Core.

� Query Answering in Data Exchange.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants
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Schema Mappings 

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S-instances and T-instances. 

� Inst(M) = { (I, J):  I is an S-instance, J is a T-instance, 
and (I, J) � Σ }.

I
J

Σ
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Schema Mappings & Data Exchange

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S and T. 

� Data Exchange via the schema mapping M = (S, T, Σ)

Transform a given source instance I to a target instance J, 
so that (I, J) satisfy the specifications Σ of M.

I
J

Σ
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Solutions in Schema Mappings

Definition: Schema Mapping M = (S, T, Σ)

If I is a source instance, then a solution for I is a

target instance J such that  (I, J) satisfy Σ.

Fact: In general, for a given source instance I,

� No solution for I may exist

or

� Multiple solutions for I may exist; in fact, infinitely many 
solutions for I may exist.
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Schema Mappings:  Basic Problems

Definition: Schema Mapping M = (S, T, Σ)

� The existence-of-solutions problem Sol(M):    (decision problem)

Given a source instance I, is there a solution J for I?

� The data exchange problem associated with M:  (function problem)

Given a source instance I,  construct a solution J for I, provided a 
solution exists.

Schema  S Schema  T

I J

Σ
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Schema Mapping Specification Languages

� Ideally, schema mappings should be
� expressive enough to specify data interoperability tasks;
� simple enough to be efficiently manipulated by tools.

� Question: How are schema mappings specified?

� Answer:  Use logic. In particular, it is natural to try to use
first-order logic as a specification language for schema mappings.

� Fact: There is a fixed first-order sentence specifying a schema 
mapping M* such that Sol(M*) is undecidable.

� Hence, we need to restrict ourselves to well-behaved fragments of 
first-order logic.
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Embedded Implicational Dependencies

� Dependency Theory: extensive study of constraints in 
relational databases in the 1970s and 1980s.

� Embedded Implicational Dependencies: Fagin, Beeri-Vardi, …

Class of constraints with a balance between high expressive 
power and good algorithmic properties:

� Tuple-generating dependencies (tgds)

Inclusion and multi-valued dependencies are a special case.

� Equality-generating dependencies (egds)

Functional dependencies are a special case.
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Schema Mapping Specification Language

The relationship between source and target is given by formulas of 
first-order logic, called 

Source-to-Target Tuple Generating Dependencies (s-t tgds)

ϕ(x) → ∃y ψ(x, y), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

Example:

(Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))
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Schema Mapping Specification Language

� s-t tgds assert that: some conjunctive query over the source is 
contained in some other conjunctive query over the target.

(Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

� s-t tgds generalize the main specifications used in data integration:

� They generalize LAV (local-as-view) specifications:

P(x)  → ∃y ψ(x, y), where P is a source schema.

� They generalize GAV (global-as-view) specifications:

ϕ(x)  → R(x),  where R is a target relation

(they are equivalent to full tgds:   ϕ(x)  → ψ(x), 

where ϕ(x) and ψ(x) are    conjunctions of atoms).
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Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies: 

� Target Tgds :    ϕT(x)  → ∃y ψT(x, y)

Dept (did, dname, mgr_id, mgr_name)  → Mgr (mgr_id, did) 
(a target inclusion dependency constraint)

� Target Equality Generating Dependencies (egds):
ϕT(x)  → (x1=x2) 

(Mgr (e, d1) ∧ Mgr (e, d2)) → (d1 = d2)
(a target key constraint) 
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Data Exchange Framework

Schema Mapping M = (S, T, Σst , Σt ), where

� Σst is a set of source-to-target tgds

� Σt  is a set of target tgds and target egds

Source 
Schema  S

Target 
Schema  T

Σst

I J

Σt
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Underspecification in Data Exchange

� Fact: Given a source instance, multiple solutions may exist.

� Example: 

Source relation E(A,B), target relation H(A,B)

Σ:  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1  =  {H(a,b), H(b,b)}                                    constants:

� J2  =  {H(a,a), H(a,b)}                                        a, b, …

� J3  =  {H(a,X), H(X,b)}                                    variables (labelled nulls):         

� J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}               X, Y, …

� J5  =  {H(a,X), H(X,b), H(Y,Y)}
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Main issues in data exchange

For a given source instance, there may be multiple target 
instances satisfying the specifications of the schema mapping. 
Thus,

� When more than one solution exist, which solutions are 
“better” than others?

� How do we compute a “best” solution?

� In other words, what is the “right” semantics of data 
exchange?
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Universal Solutions in Data Exchange

Definition (FKMP 2003):  A solution is universal if it has 

homomorphisms to all other solutions 

(thus, it is a “most general” solution).

� Constants: entries in source instances

� Variables (labeled nulls): other entries in target instances

� Homomorphism h: J1 → J2 between target instances:

� h(c) = c, for constant c

� If P(a1,…,am) is in J1,, then P(h(a1),…,h(am)) is in J2.

Claim: Universal solutions are the preferred solutions in 

data exchange.
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Universal Solutions in Data Exchange

Schema  S Schema  T

I
J

Σ

J1
J2

J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms
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Example - continued

Source relation S(A,B), target relation T(A,B)

Σ :  E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {H(a,b)}

Solutions: Infinitely many solutions exist

� J1  =  {H(a,b), H(b,b)}    is not universal

� J2  =  {H(a,a), H(a,b)}    is not universal

� J3  =  {H(a,X), H(X,b)}   is universal

� J4  =  {H(a,X), H(X,b), H(a,Y), H(Y,b)}   is universal

� J5  =  {H(a,X), H(X,b), H(Y,Y)}               is not universal
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Structural Properties of Universal Solutions

� Universal solutions are analogous to most general unifiers in logic 
programming.

� Uniqueness up to homomorphic equivalence: 
If J and J’ are universal for I, then they are homomorphically
equivalent.

� Representation of  the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’.
Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent. 
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The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions 

problem Sol(M) for a fixed schema mapping M = (S, T, Σst,Σt) 

specified by s-t tgds and target tgds and egds?

Answer:  Depending on the target constraints in Σt:

� Sol(M) can be trivial (solutions always exist).

…

� Sol(M) can be in PTIME.

…

� Sol(M) can be undecidable.
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Algorithmic Problems in Data Exchange

Proposition: If M = (S, T, Σst, Σt) is a schema mapping such that Σt is 
a set of full target tgds, then:

� Solutions always exist; hence, Sol(M) is trivial.

� There is a Datalog program π over the target T that can be 
used to compute universal solutions as follows: 
Given a source instance I,
1. Compute a universal solution J* for I w.r.t. the schema 

mapping M* = (S, T, Σst) using the naïve chase algorithm.
2. Run the Datalog program π on J* to obtain a universal 
solution J for I w.r.t. M.

� Consequently, universal solutions can be computed in 
polynomial time.
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Algorithmic Problems in Data Exchange

Naïve Chase Algorithm for M* = (S, T, Σst) : given a source 

instance I, build a target instance J* that satisfies each s-t tgd in Σst
� by introducing new facts in J as dictated by the RHS of the s-t tgd

and

� by introducing new values (variables) in J each time existential
quantifiers need witnesses.  

Example: M = (S, T, Σst, Σt) 

Σst:  E(x,y)  → ∃ z(F(x,z)Æ F(z,y))

Σt:   F(u,w) Æ F(w,v)  → F(u,v)

1. The naïve chase returns a relation F* obtained from E by adding a

new node between every edge of E.

2. The Datalog program π computes the transitive closure of F*. 
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Algorithmic Problems in Data Exchang

Proposition : If M = (S, T, Σst,Σt) is a schema mapping such 

that Σt is a set of full target tgds and target egds, then:

� Solutions need not always exist.

� The existence-of-solutions problem Sol(M) is in PTIME, 
and may be PTIME-complete.

Proof: Reduction from Horn 3-SAT.
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Algorithmic Problems in Data Exchange

Reducing Horn 3-SAT to the Existence-of-Solutions Problem Sol(M)
� Σst: U(x) → U’(x)

P(x,y,z) → P’(x,y,z)
N(x,y,z) → N’(x,y,z)
V(x) → V’(x)

� Σt: U’(x) → M’(x)
P’(x,y,z) Æ M’(y) Æ M’(z) → M’(x)
N’(x,y,z) Æ M’(x) Æ M’(y) Æ M’(z) Æ V’(u) → W’(u)
W’(u) Æ W’(v) → u = v

� U(x) encodes the unit clause x
P(x,y,z) encodes the clause (¬ y Ç ¬ z Ç x)
N(x,y,z) encodes the clause (¬ x Ç¬ y Ç ¬ z) 
V = {0, 1}
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Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?
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Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan - 2006): 

There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single source-to-target tgd; 

� Σ*t consists of one egd, one full target tgd, and one 

(non-full) target tgd;

� The existence-of-solutions problem Sol(M) is undecidable. 

Hint of Proof: 

Reduction from the

Embedding Problem for Finite Semigroups:

Given a finite partial semigroup, can it be embedded to a 
finite semigroup?
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The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst:   R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))
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The Existence-of-Solutions Problem

Summary: The existence-of-solutions problem

� is undecidable for schema mappings in which the target 
dependencies are arbitrary tgds and egds;

� is in PTIME for schema mappings in which the target 
dependencies are full tgds and egds. 

Question: Are there classes of target tgds richer than full tgds

and egds for which the existence-of-solutions problem is in

PTIME?
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Algorithmic Properties of Universal Solutions

Theorem (FKMP 2003): Schema mapping M= (S, T, Σst, Σt) 
such that:

� Σst is a set of source-to-target tgds; 

� Σt is the union of a weakly acyclic set of  target tgds with 
a set of  target egds. 

Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M) is in PTIME.

� A canonical universal solution (if a solution exists) can be 
produced in polynomial time using the chase procedure.
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Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

� Sets of full tgds

ϕT(x,x’)  → ψT(x),

where ϕT(x,x’)  and ψT(x) are conjunctions of target atoms.

� Acyclic sets of inclusion dependencies

Large class of dependencies occurring in practice.
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Weakly Acyclic Sets of Tgds:  Definition

� Position graph of a set Σ of tgds:

� Nodes: R.A, with R relation symbol, A attribute of R

� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ,  for every x in x 
occurring in ψ,  for every occurrence of x in ϕ in R.A:

� For every occurrence of x in ψ in S.B, 

add an edge   R.A             S.B

� In addition, for every existentially quantified y that occurs in ψ

in T.C, add a special edge R.A              T.C

� Σ is weakly acyclic if the position graph has no cycle 
containing a special edge.

� A tgd θ is weakly acyclic if so is the singleton set {θ} .
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Weakly Acyclic Sets of Tgds: Examples

� Example 1: { D(e,m) → M(m),  M(m) → ∃ e D(e,m) } 

is weakly acyclic, but cyclic.

D.1                 M.1                 D.2 

� Example 2: { E(x,y) → ∃ z E(y,z) } 

is not weakly acyclic.

E.1             E.2
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Data Exchange with Weakly Acyclic Tgds

Theorem (FKMP):  Schema mapping M= (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds; 

� Σt is the union of a weakly acyclic set of  target tgds with a set 
of  target egds. 

There is an algorithm, based on the chase procedure, so that:

� Given a source instance I, the algorithm determines if a solution for 
I exists; if so, it produces a canonical universal solution for I.

� The running time of the algorithm is polynomial in the size of I.

� Hence, the existence-of-solutions problem Sol(M) for M, is in 
PTIME.
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Chase Procedure for Tgds and Egds

Given a source instance I,

1. Use the naïve chase to chase I with Σst and obtain a 

target instance J*.

2. Chase J * with the target tgds and the target egds in Σt to obtain a target 
instance J as follows:

2.1. For target tgds introduce new facts in J as dictated by the RHS of the 

s-t tgd and introduce new values (variables) in J each time existential

quantifiers need witnesses. 

2.2. For target egds φ(x) → x1 = x2
2.2.1. If a variable is equated to a constant, replace the variable by 

that constant;

2.2.2. If one variable is equated to another variable, replace one

variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and 
repor “failure”.
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The Existence of Solutions Problem

Summary: The existence-of-solutions problem

� is undecidable for schema mappings in which the target 
dependencies are arbitrary tgds and egds;

� is in PTIME for schema mappings in which the set of the 
target dependencies is the union of a weakly acyclic set of 
tgds and a set of egds.

Note: 

� These are data complexity results.

� The combined complexity of the existence-of-solutions

problem is 2EXPTIME-complete

(weakly acyclic sets of target tgds and egds).
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The Smallest Universal Solution

� Fact: Universal solutions need not be unique.

� Question: Is there a “best” universal solution?

� Answer: In joint work with R. Fagin and L. Popa, we took a 

“small is beautiful” approach:

There is a smallest universal solution (if solutions exist); hence, 

the most compact one to materialize.

� Definition: The core of an instance J is the smallest subinstance J’
that is homomorphically equivalent to J.

� Fact:

� Every finite relational structure has a core.

� The core is unique up to isomorphism.
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The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h
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The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h

Example: If a graph G contains a                , then

G is 3-colorable   if and only if   core(G)  =                  .

Fact: Computing cores of graphs is an NP-hard problem.
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Example - continued

Source relation E(A,B), target relation H(A,B)

Σ :  (E(x,y) → ∃z (H(x,z) ∧ H(z,y)))

Source instance I = {E(a,b)}.

Solutions: Infinitely many universal solutions exist.

� J3 =  {H(a,X), H(X,b)}   is the core.

� J4 =  {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not 

the core.

� J5 =  {H(a,X), H(X,b), H(Y,Y)}   is not universal.
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Core: The smallest universal solution

Theorem (FKP 2003): M = (S, T, Σst , Σt )  a schema mapping:

� All universal solutions have the same core.

� The core of the universal solutions is the smallest universal 
solution.

� If every target constraint is an egd, then the core is 
polynomial-time computable.

Theorem (Nash & Gottlob 2006): Let M = (S, T, Σst , Σt ) be

such that Σt is the union of a set of weakly acyclic target tgds

with a set of target egds. Then the core is polynomial-time 

computable.
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Outline of the Tutorial

� Schema Mappings and Data Exchange

� Solutions in Data Exchange

� Universal Solutions

� The Core of the Universal Solutions

� Query Answering in Data Exchange

� Composing and Inverting Schema Mappings.
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Query Answering in Data Exchange

Schema S Schema  T

I
J

Σ
q

Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I 

certain(q,I) =  ∩ { q(J):  J is a solution for I }.

Note: It is the standard semantics in data integration.
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Certain Answers Semantics

certain(q,I)

q(J1)

q(J2)q(J3)

certain(q,I)  =   ∩ { q(J):  J is a solution for I }.
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Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds, and 

� Σt    is the union of a weakly acyclic set of tgds with a set of 
egds.

Let q be a union of conjunctive queries over T.

� If I is a source instance and J is a universal solution for I, then 

certain(q,I) = the set of all “null-free” tuples in q(J).

� Hence,  certain(q,I) is computable in time polynomial in |I|:

1. Compute a canonical universal J solution in polynomial time;

2. Evaluate q(J) and remove tuples with nulls. 

Note: This is a data complexity result  (M and q are fixed).
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Certain Answers via Universal Solutions

q(J1)

q(J2)q(J3)

certain(q,I)  =  set of null-free tuples of q(J).

q(J)certain(q,I)

q(J)

universal solution J for I

q: union of conjunctive queries
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Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt)  such that:

� Σst is a set of source-to-target tgds, and 

� Σt    is the union of a weakly acyclic set of tgds with a set of egds. 

Let q be a union of conjunctive queries with inequalities (gggg).

� If q has at most one inequality per conjunct, then

certain(q,I) is computable in time polynomial in |I|

using a disjunctive chase.

� If q is has at most two inequalities per conjunct, then

certain(q,I) can be coNP-complete, even if Σt  =  π.
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Alternative Semantics for Query Answering

Open-World Assumption Semantics
� certain(q,I) = ∩ { q(J):  J is a solution for I }          (FKMP)
The possible worlds for I are the solutions for I.

� ucertain(q,I) = ∩ { q(J):  J is a universal solution for I }   (FKP)
The possible worlds for I are the universal solutions for I.

Closed-World Assumption Semantics
� Libkin 2006:  CWA-Solutions
The possible worlds for I are the members of Rep(CanSol(I)).

� Afrati and K … 2008:  Semantics of aggregate queries
The possible worlds for I are the members of End(CanSol(I)).

Closed / Open - World Assumption Semantics
� Libkin and Sirangelo 2008
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From Theory to Practice

� Clio Project at IBM Almaden managed by Howard Ho.

� Semi-automatic schema-mapping generation tool;

� Data exchange system based on schema mappings.

� Universal solutions used as the semantics of data exchange.

� Universal solutions are generated via SQL queries extended 
with Skolem functions (implementation of chase procedure), 
provided there are no target constraints.

� Clio technology is now part of IBM Rational® Data Architect.
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� Supports nested structures

� Nested Relational 

Model

� Nested Constraints

� Automatic & semi-

automatic discovery of 

attribute correspondence.

� Interactive derivation of 

schema mappings.

� Performs data exchange

Some Features of Clio
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Source 
Schema S 

“conforms to”

data
Data exchange process
(or SQL/XQuery/XSLT)

“conforms to”

Schema Mappings in Clio

Mapping 
Generation

Schema Mapping

Target 
Schema T
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Outline of the Tutorial

� Schema Mappings and Data Exchange

� Solutions in Data Exchange

� Universal Solutions

� The Core of the Universal Solutions

� Query Answering in Data Exchange

� Composing and Inverting Schema Mappings
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Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to automate or semi-automate 
schema-mapping management.

� Metadata Management Framework – Bernstein 2003

based on generic schema-mapping operators:

� Match operator

� Merge operator

� …

� Composition operator

� Inverse operator
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Composing Schema Mappings

� Given M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), derive 

a schema mapping M13 = (S1, S3, Σ13) that is “equivalent”

to the sequential application of M12 and M23.

� M13 is a composition of M12 and M23

M13 = M12 ◦ M23

Schema  S1 Schema  S2 Schema  S3

M12 M23

M13
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Inverting Schema Mapping

� Given M12, derive M21 that “undoes” M12

M21 is an inverse of M12

� Composition and inverse can be applied to schema evolution.

Schema  S1 Schema S2

M12

M21
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Applications to Schema Evolution

Schema  S Schema T

Mst

Schema T’

Mtt’

Mst’ = Mst ◦◦◦◦ Mtt’

Composition

Schema  S’

Mss’Ms’s

Inverse

Ms’t’ = Ms’s◦◦◦◦ (Mst ◦◦◦◦ Mtt’)

Fact:

Schema evolution can be analyzed using the composition operator and 

the inverse operator.



63

Composing Schema Mappings

� Given ΜΜΜΜ12 = (S1, S2, Σ12) and ΜΜΜΜ23 = (S2, S3, Σ23), derive a 

schema mapping ΜΜΜΜ13 = (S1, S3, Σ13) that is “equivalent”

to the sequence ΜΜΜΜ12 and ΜΜΜΜ23.

Schema  S1 Schema  S2 Schema  S3

ΜΜΜΜ12 ΜΜΜΜ23

ΜΜΜΜ13

What does it mean for ΜΜΜΜ13 to be “equivalent” to the 
composition of ΜΜΜΜ12 and ΜΜΜΜ23?
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Earlier Work

� Metadata Model Management (Bernstein in CIDR 2003)

� Composition is one of the fundamental operators

� However, no precise semantics is given

� Composing Mappings among Data Sources

(Madhavan & Halevy in VLDB 2003)

� First to propose a semantics for composition

� However, their definition is in terms of maintaining the 
same certain answers relative to a class of queries. 

� Their notion of composition depends on the class of 
queries; it may not be unique up to logical equivalence. 
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Semantics of Composition

� Every schema mapping M = (S, T, Σ) defines a binary relationship 

Inst(M) between instances:

Inst(M) = { (I,J) |  (I,J) ~ Σ }.

� Definition: (FKPT 2004)

A schema mapping M13 is a composition of M12 and M23 if 

Inst(M13) = Inst(M12) ° Inst(M23),  that is,

(I1,I3)  ~ Σ13
if and only if 

there exists I2 such that  (I1,I2)  ~ Σ12 and  (I2,I3)  ~ Σ23.

� Note: Also considered by S. Melnik in his Ph.D. thesis
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The Composition of  Schema Mappings

Fact: If  both ΜΜΜΜ = (S1, S3, Σ) and ΜΜΜΜ’ = (S1, S3, Σ’) are     

compositions of ΜΜΜΜ12 and ΜΜΜΜ23, then Σ are Σ’ are logically 

equivalent. For this reason:

� We say that  ΜΜΜΜ (or ΜΜΜΜ’) is the composition of ΜΜΜΜ12 and ΜΜΜΜ23.

� We write ΜΜΜΜ12 ° ΜΜΜΜ23 to denote it

Definition: The composition query of ΜΜΜΜ12 and ΜΜΜΜ23 is the set 

Inst(ΜΜΜΜ12) ° Inst(ΜΜΜΜ23)

(this is the model checking problem for composition)
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Issues in Composition of Schema Mappings

� The semantics of composition was the first main issue.

Some other key issues:

� Is the language of s-t tgds closed under composition?  

If ΜΜΜΜ12 and ΜΜΜΜ23 are specified by finite sets of s-t tgds, is  

ΜΜΜΜ12 ° ΜΜΜΜ23 also specified by a finite set of s-t tgds? 

� If not, what is the “right” language for composing schema 
mappings?
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Composition: Expressibility & Complexity

in NP;

can be 

NP-complete

may not be 
definable:

by any set of 

s-t tgds;

in  FO-logic;

in  Datalog

finite set of (full)

s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of 

s-t tgds

ϕ(x) → ∃y ψ(x,y)

in PTIMEfinite set of 

s-t tgds

ϕ(x)→∃yψ(x,y)

finite set of 

s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of GAV

(full) s-t tgds

ϕ(x) → ψ(x)

Composition

Query

ΜΜΜΜ12 ° ΜΜΜΜ23

Σ13

ΜΜΜΜ23

Σ23

ΜΜΜΜ12

Σ12
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Employee Example

� Σ12 :

� Emp(e) → ∃m Rep(e,m) 

� Σ23 :

� Rep(e,m) → Mgr(e,m) 

� Rep(e,e) → SelfMgr(e) 

� Theorem: This composition is not definable by any finite set 
of s-t tgds.

� Fact:  This composition is definable in a well-behaved 
fragment of second-order logic, called SO tgds, that extends 
s-t tgds with Skolem functions.

Emp
e

Rep
e 
m

Mgr
e
m

SelfMgr
e
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Employee Example - revisited

Σ12 :

� ∀e ( Emp(e) → ∃m Rep(e,m) )

Σ23 :

� ∀e∀m( Rep(e,m) → Mgr(e,m) )

� ∀e ( Rep(e,e) → SelfMgr(e) )

Fact: The composition is definable by the SO-tgd

Σ13 :

� ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧
∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) )
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Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a 
formula of the form:

∃f1 … ∃fm( (∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn)) ), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of 

terms.

� Each ψi is a conjunction of atoms from T.

Example:   ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧

∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) )
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Composing SO-Tgds and Data Exchange

Theorem (FKPT):

� The composition of two SO-tgds is definable by a SO-tgd.

� There is an algorithm for composing SO-tgds.

� The chase procedure can be extended to SO-tgds; 

it produces universal solutions in polynomial time.

� Every SO tgd is the composition of finitely many finite sets of 
s-t tgds. Hence, SO tgds are the “right” language for the 
composition of s-t tgds
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Synopsis of Schema Mapping Composition

� s-t tgds are not closed under composition.

� SO-tgds form a well-behaved fragment of second-order logic.

� SO-tgds are closed under composition; they are

the “right” language for composing s-t tgds.

� SO-tgds are “chasable”:

Polynomial-time data exchange with universal solutions.

� SO-tgds and the composition algorithm have been 
incorporated in Clio’s Mapping Specification Language (MSL). 
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Inverting Schema Mapping

� Given M12, derive M21 that “undoes” M12

M21 is an inverse of M12

� What is the “right” semantics of the inverse operator?

Schema  S1 Schema S2

M12

M21
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Approaches to Inverting Schema Mappings

� Inverses of Schema Mappings 

Fagin – PODS 2006

� Quasi-inverses of Schema Mappings

FKPT – PODS 2007

� Maximum Recoveries of Schema Mappings

Arenas, Pérez, Riveros -- PODS 2008



76

Semantics of the Inverse Operator

Fagin - 2006

� Motivation: an inverse of a function f is a function f’ s.t. 

f ◦ f’ = id, 

where id is the identity function f(x)=x.

� Idea:

� Define first the identity schema mapping Id

� Call a schema mapping M’ an inverse of  M if

Inst(M ◦◦◦◦ M’) = Inst(Id).
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Identity and Inverse

Definition: Let S be a schema.

Let S* = { R*: R ∈ S }, where R* is a replica of R.

The identity schema mapping on S is the schema mapping 

Id = (S, S*, Σ
Id
(S)),

where Σ
Id
(S) consists of the dependencies

R(x) → R*(x), for every relation symbol R ∈ S.

Definition: (Fagin) Let M = (S, T, Σ) be a schema mapping. 

A schema mapping M’ = (T, S*, Σ’) is an inverse of M if

Inst(M ◦◦◦◦ M’) = Inst(Id).

(there is J such that (I,J) � Σ and (J,I’) � Σ’ iff I ⊆ I’).
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Inverting Schema Mappings

Example: Let M be the schema mapping specified by the tgd
P(x) → Q(x,x).

Then:

� The schema mapping M’ specified by the tgd
Q(x,y) → P*(x)

is an inverse of M.

� The schema mapping M’’ specified by the tgd
Q(x,y) → P*(y)

is also an inverse of M.

Note: 
Inverses need not be unique up to logical equivalence.
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Inverting Schema Mappings

� Good News:  

Rigorous semantics for the inverse operator has been given.

� Not-so-good News:

It is rare that a schema mapping has an inverse.

� Theorem: Fagin – 2006

If a schema mapping ΜΜΜΜ has an inverse, then ΜΜΜΜ must have 

the unique-solutions property:

If I1 and  I2 are source instances such that  I1 gggg I2,

then Sol(M, I1) gggg Sol(M, I2), 
where for a source instance I,  Sol(M, I) = { J:  (I, J) � Σ }.
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Non-invertible Schema Mappings

Fact: None of the following schema mappings is invertible, as 

none satisfies the unique-solutions property:

� Projection:

P(x,y) → Q(x)

� Union:

P(x) → Q(x)

R(x) → Q(x)

� Decomposition:

P(x,y,z) → Q(x,y) Æ T(y,z)



81

Coping with Non-invertibility

� Difficulty:

� It is rare that a schema mapping is invertible.

� The notion of an inverse is too restrictive to be useful in 
schema-mapping management.

� Coping with non-invertibility (FKPT – 2007):

Introduce the notion of a quasi-inverse of a schema 
mapping.

� This is a relaxation of the notion of an inverse.

� Many non-invertible schema mappings turn out to have 
“natural” quasi-inverses.

� Quasi-inverses are shown to be useful in data exchange.
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Quasi-inverses: Intuition

� Question: How can we relax the notion of an inverse in a 
principled way?

� Key Idea: Relax the defining equation 

Inst(M ◦◦◦◦ M’) = Inst(Id).

by not differentiating between instances that are 

equivalent for data-exchange purposes.

� Schema mapping M = (S, T, Σ) 

Equivalence relation ~M on S-instances:

� I ~M I’ if Sol(M, I) =  Sol(M, I’).

(i.e., for all T-instances J, we have that
(I,J) � Σ if and only if (I’,J)� Σ.)
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Quasi-inverses: Definition

Definition: Schema mapping M = (S, T, Σ)

A schema mapping M’ = (T, S*, Σ’) is an inverse of M if

Inst(M ◦ M’ ) = Inst(Id)

Definition: Schema mapping M = (S, T, Σ)

A schema mapping M’ = (T, S*, Σ’) is a quasi-inverse of M if

~M ◦ Inst(M ◦ M’ ) ◦ ~M = ~M ◦ Inst(Id) ◦◦◦◦~M

(intuitively, Inst(M ◦ M’ ) = Inst(Id)modulo ~M).
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Quasi-inverse: Definition

Definition: Schema mapping M = (S, T, Σ)

A schema mapping M’ = (T, S*, Σ’) is a quasi-inverse of M if

~M ◦ Inst(M ◦ M’ ) ◦ ~M = ~M ◦ Inst(Id) ◦◦◦◦~M

This means that the following are equivalent for I1 and I2:

1) There are I1’, I2’,  and J such

� I1 ~M I1 ’,  I2 ~M I2’ and
� (I1’,J) � Σ and (J,I2’) � Σ’.

2) There are I1” and I2” such that

� I1 ~M I1”,  I2 ~M I2” and

� I1”⊆ I2”.
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Quasi-inverses of Schema Mappings

Summary of main results:

� Exact structural criterion for the existence of quasi-
inverses.

� Complete characterization of the language needed to 
express quasi-inverses, if they exist.

� Algorithm for producing a “good” quasi-inverse, 

if one exists.

� Applications of quasi-inverses to data exchange.
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Criterion for the Existence of Quasi-inverses

Theorem : Let M = (S, T, Σ) be a schema mapping in which Σ

is a set of s-t tgds. The following statements are equivalent:

� M has a quasi-inverse.

� M has the subset-property: 

For every pair (I1, I2) of S-instances such that

Sol(M, I2) ⊆ Sol(M, I1), 

there is a pair (I1’, I2’) of S-instances such that

� I1 ~M I1’ and I2 ~M I2’

� I1’ ⊆ I2’.
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Applications of the Subset Property

Proposition:

� Every LAV mapping has a quasi-inverse.

� There is a GAV mapping that has no quasi-inverse.

Proof: 

� Show that every LAV mapping has the subset property.

� Show that the GAV mapping specified by the tgds

E(x,z) Æ E(z,y) → F(x,y) 

E(x,z) Æ E(z,y) → M(z)

does not have the subset property.
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Quasi-invertible, Non-invertible Mappings

� Projection:           P(x,y) → Q(x)

Quasi-inverse: Q(x) → ∃ y P(x,y)  

� Union:                    P(x) → Q(x)

R(x) → Q(x)

Quasi-inverse #1: Q(x) → P(x) Ç R(x)

Quasi-inverse #2: Q(x) → P(x)

Quasi-inverse #3:    Q(x) → R(x)

� Decomposition:   P(x,y,z) → Q(x,y) Æ T(y,z)

Quasi-inverse #1: Q(x,y) Æ T(y,z) → P(x,y,z)

Quasi-inverse #2: Q(x,y) → ∃ z P(x,y,z)

T(y,z) → ∃ x P(x,y,z)
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The Language of Quasi-inverses

Theorem: Let M = (S, T, Σ) be a schema mapping in which Σ
is a set of s-t tgds. Assume that M has a quasi-inverse. Then:
� M has a quasi-inverse M’ specified by a set of 

disjunctive tgds with constants and inequalities.

� There is an (exponential) algorithm QI for producing such an M’.

� No smaller language can express quasi-inverses.

Disjunctive tgds with constants and inequalities:

φ(x) → Çi ∃ yiψi(x, yi), where 

� φ(x) is a conjunction of 
� T-atoms;
� Formulas of the form Constant(x), where x is a variable in x;
� Inequalities x gggg x’, where x, x’ are variables in x.

� Each ψi(x, yi) is a conjunction of S-atoms.
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The Language of Quasi-inverses

Theorem: Every LAV schema mapping has a quasi-inverse 

specified by a set of tgds with constants and inequalities.

Thus, disjunctions are not needed.

Theorem: Every quasi-invertible GAV schema mapping has a 

quasi-inverse specified by a set of disjunctive tgds with

inequalities.  Thus, constants are not needed.
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Necessity of the Language – Sample Results

Necessity of Constants: 
LAV Schema Mapping M: E(x,y) → ∃ z (F(x,z) Æ F(z,y))
� Quasi-inverse M’: 

F(x,z) Æ F(z,y) Æ Constant(x) Æ Constant(y) → E(x,y)
� M has no quasi-inverse specified by disjunctive tgds with 

inequalities.

Necessity of Disjunctions:
GAV Schema Mapping M:
P1(x) → S1(x), P2(x) → S1(x)
P3(x) → S2(x), P4(x) → S2(x)
Pi(x) Æ Pi(x) → Rij(x), i = 1,2 and j = 3,4
� M has a quasi-inverse
� M has no quasi-inverse specified by tgds with constants and 

inequalities. 
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The Language of Quasi-inverses: Summary

YesYesYesMappings 
specified by 
arbitrary tgds

YesNoYesGAV Mappings

NoYesYesLAV Mappings

Disjunctions 
needed?

Çi ∃ψi(x,yi)

Constants 
needed?

Constant(x)

Inequalities 
needed?

x g x’
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Quasi-inverses in Data Exchange

Theorem: Let M be a quasi-invertible schema mapping and let

M’ be the schema mapping produced by the QI-algorithm.

Then M’ can be used to produce source instances that are 

“data exchange equivalent” to a given source instance.

More formally, for every S-instance I, we have that

chaseM(chaseM’(chaseM(I))) 

contains a T-instance J that is homomorphically equivalent

to chaseM(I). 
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Synopsis of Results about Quasi-inverses 

� Quasi-inverses are a useful relaxation of inverses.

� Exact combinatorial criterion for the existence of quasi-
inverses.

� Complete characterization of the language of quasi-inverses.

� Quasi-inverses are useful in data exchange.
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Maximum Recoveries of Schema Mappings

Definition (Arenas, Pérez, Riveros – 2008):

M = (S, T, Σ) a schema mapping

� M’ = (T, S, Σ’) is a recovery of M if for every source instance I, we 
have that (I,I) ∈ Inst(M◦◦◦◦M’).

� M’ = (T, S, Σ’) is a maximum recovery of M if it is a recovery and 
there is no recovery M’’ of M such that  

Inst(M◦◦◦◦M’’) ⊂ Inst(M◦◦◦◦M’).

Summary of Main Results

� Exact criterion for the existence of maximum recoveries.

� Characterization of the language for expressing maximum recoveries 
of schema mappings specified by s-t tgds.

� Algorithm for constructing a maximum recovery of a schema 
mapping specified by s-t tgds.



96

Maximum Recoveries vs. Quasi-inverses

Theorem (Arenas, Pérez, Riveros – 2008):

M = (S, T, Σ) a schema mapping specified by s-t tgds.

� M has a maximum recovery.

� If M is invertible, then M’ is a maximum recovery of M if and 
only if M’ is an inverse of M.

� If M is quasi-invertible, then M is a maximum recovery of M if 
and only if M’ is both a recovery and a quasi-inverse of M.    
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Some Directions of Research

� Inverting schema mapings requires further study.

� Detailed study of other schema mapping operators (Diff, 
Merge, …) remains to be carried out.

� Applications of schema-mapping operators to: 

� Study of schema evolution;

� Modeling and analysis of ETL via schema mappings. 
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Related Work (very partial list)

� XML Data Exchange 

(Arenas and Libkin – 2005).

� Schema mappings with arithmetic comparisons 

(Afrati, Li, Pavlaki – 2008).

� Composing richer schema mappings

(Nash, Bernstein, Melnik – 2007)

� Peer data exchange

(Fuxman, K …, Miller, Tan – 2007)

� Schema-mapping optimization

(FKNP – 2008)
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Data Interoperability:
The Elephant and the Six Blind Men

� Data interoperability remains a 
major challenge:

“Information integration is a 
beast.” (L. Haas – 2007)

� Schema mappings specified by 
tgds offer a formalism that 
covers only some aspects of 
data interoperability.

� However, theory and practice 
can inform each other.


