Schema Mappings
and Data Examples

Balder ten Cate = Phokion Kolaitis Wang-Chiew Tan
UC Santa Cruz UC Santa Cruz UC Santa Cruz
and LogicBlox and IBM Research - Almaden

The Data Interoperability Challenge

* Data may be
distributed at several different locations.
heterogeneous in representation (relational, JSON, ...).

* How can we uniformly access and manipulate data from
these data sources?

* Two main approaches:
Data integration
Data exchange

Data Integration

[a f
]

Data Sources

Query heterogeneous data in different
sources via a global schema.

Data Exchange

i >
J

Materialization

* Transform data structured under a source schema into data
structured under a different target schema.

* Query heterogeneous data in different sources via the target
schema.

Key challenge behind Data Interoperability

Key challenge behind data integration or data exchange:
specify the relationships between schemas.

The relationships between schemas are typically
specified as data transformations.

Data transformation: (S, T, €)
Source schema S, target schema T.

¢ specifies how an instance that conforms to S is to be
transformed to an instance that conforms to T.

Deriving a correct data transformation can be a difficult
task.

Schemas can be large and complex.

Schemas can be large and complex

graph_path2term graph_path term2term_| d, ins _data source_audit
graph_path_id INTEGER —— id INTEGER — id INTEGER release_name VARCHAR(255) source_id VARCHAR(255)
term_id INTEGER — termi_id INTEGER — relationship_type_id INTEGER release type VARCHAR(255) source_fullpath VARCHAR(255)
rank INTEGER term2_id INTEGER — termi_id INTEGER release_notes TEXT source_path VARCHAR(255)
relationship_type _id INTEGER — term2_id INTEGER UNIQUE(release_name) source_type VARCHAR(255)
distance INTEGER UNIQUE(term1 _id,term2_id) source_md5 CHAR(32)
relation_distance INTEGER source_parsetime INTEGER
term2term source_mtime INTEGER
relation_composition id INTEGER
id INTEGER assoc_rel relationship_type_id INTEGER [— term_audit
relation1_id INTEGER id INTEGER term1_id INTEGER term_id INTEGER
relation2_id INTEGER from_id INTEGER term2_id INTEGER 11 term_loadtime INTEGER
inferred_relation_id INTEGER to_id INTEGER complete INTEGER UNIQUE(term_id)
UNIQUE(relation1_id,relation2_id,inferred_relation_id) relationship_type_id INTEGER UNIQUE(term1_id,term2_id relationship_type_id,complete)
term_property
relation_properties association_property term term_synonym |— term_id INTEGER
relationship_type_id INTEGER id INTEGER { id INTEGER NP term_id INTEGER property_key VARCHAR(64)
is_transitive INTEGER association_id INTEGER name VARCHAR(255) term_synonym VARCHAR(996) property_val VARCHAR(255)
is_symmetric INTEGER relationship_type_id INTEGER term_type VARCHAR(55) acc_synonym VARCHAR(255)
is_anti_symmetric INTEGER term_id INTEGER acc VARCHAR(255) — synonym_type_id INTEGER
is_cyclic INTEGER 1 is_obsolete INTEGER —{ synonym_category_id INTEGER
is_reflexive INTEGER association is_root INTEGER UNIQUE(term_id term_synonym)
is_metadata_tag INTEGER id INTEGER ' is_relation INTEGER
UNIQUE(relationship_type_id) term_id INTEGER UNIQUE(acc) term_defini term_dbxref
gene_product_id INTEGER N, — term_id INTEGER — term_id INTEGER
is_not INTEGER term_definition TEXT dbxref_id INTEGER E—
association_species_qualifier role_group INTEGER dbxref_id INTEGER — is_for_definition INTEGER
id INTEGER INTEGER id: term MEDIUMTEXT UNIQUE(term_id,dbxref_id,is_for_definition)
association_id INTEGER source_db_id INTEGER @ id INTEGER G SH reference VARCHAR(255)
species species_id INTEGER F code VARCHAR(8) UNIQUE(term_id)
id INTEGER _qualifier L+ association_id INTEGER
ncbi_taxa_id INTEGER | id INTEGER dbxref_id INTEGER G —t term_subset
common_name VARCHAR(255) db association_id INTEGER seq_acc VARCHAR(255) —H term_id INTEGER
lineage_string TEXT id INTEGER term_id INTEGER UNIQL _id,dbxref_id,code) | —H subset id INTEGER dbxref
genus VARCHAR(55) name VARCHAR(55) value VARCHAR(255) I T I id INTEGER ¢ D @—
species VARCHAR(255) fullname VARCHAR(255) id _dbxref gene_product_count xref_dbname VARACHAR(55)
parent_id INTEGER datatype VARCHAR(255) evidence_id INTEGER 3 term_id INTEGER xref_key VARCHAR(255) N
left_value INTEGER generic_url VARCHAR(255) dbxref_id INTEGER code VARCHAR(8) xref_keytype VARCHAR(32)
right_value INTEGER url_syntax VARCHAR(255) gene_product speciesdbname VARCHAR(55) xref_desc VARCHAR(255)
taxonomic_rank VARCHAR(255) url_example VARCHAR(255) id INTEGER D species_id INTEGER UNIQUE(xref_keyxref dbname)
UNIQUE(ncbi_taxa_id) uri_prefix VARCHAR(255) symbol VARCHAR(128) product_count INTEGER
UNIQUE(name) dbxref_id INTEGER gene_product_seq -
H species_id INTEGER gene_product_id INTEGER
homolset gene_product_h I type_id INTEGER B seq_id INTEGER seq_dbxref
id INTEGER gene_product!_id INTEGER mE full_name TEXT is_primary_seq INTEGER seq_id INTEGER
symbol VARCHAR(128) gene_product2_id INTEGER - UNIQL _id) ! dbxref_id INTEGER
dbxref_id INTEGER — relationship_type_id INTEGER I seq UNIQUE(seq_id,dbxref_id)
target_gene_product_id INTEGER } I gene_product_synonym id INTEGER
taxon_id INTEGER gene_product_h I gene_product_id INTEGER — display_id VARCHAR(64) seq_property
type_id INTEGER id INTEGER B product_synonym VARCHAR(255) description VARCHAR(255) id INTEGER
description TEXT gene_product_id INTEGER H— UNIQUE(gene_product_id,product_synonym) seq MEDIUMTEXT seq_id INTEGER
UNIQUE(dbxref_id) homoiset_id INTEGER seq_len INTEGER property_key VARCHAR(64)
gene_product_property md5checksum VARCHAR(32) property_val VARCHAR(255)
gene_product_subset gene_product_ancestor gene_product_id INTEGER — moltype VARCHAR(25) UNIQUE(seq_id,property_key,property_val)
gene_product_id INTEGER gene_product_id INTEGER H— property_key VARCHAR(64) timestamp INTEGER
subset_id INTEGER ancestor_id INTEGER H— property_val VARCHAR(255) UNIQL i id,md5checksum)

Specifying a data transformation

* Data transformations can be specified:

directly as executable code in some programming
language. E.g., SQL, Java, or Pig.

Time-consuming, costly.

through a visual interface, where executable code can
be generated from the visual specification.

~ | | SPSehmnn Laplorer (I3 Class View

101

VA EBA-.

cat

fi

1

i

#0000
_J _ “ ¥ zuzuz«:zubw«zb._=“

T

41257
V4%

7
J

bk

A visual spec

w

:
:
3

9470

I umm....u,

A% u

a
dq:
du

BusdActon

19999199

Screenshot from Bernstein and Haas 2008 CACM article.

2 Gevor Lisa | 25 Task List| (1) Ovepunt|) Find Ressinn 1 3 Fund Symbel Rasuits|

Remix) Seved

”

Information Integration in the Enterprise

11

Basic architecture behind
“mapping systems”

o A s e ks by eswt i icsaxme®

f"x — User

Code generati

Altova Mapforce

Stylus Studio
MS Biztalk Mapper Java code E] SQL code E] +++ | XQuery code E

Problems?

* (Generated) executable code of different runtime platforms
tends to be complex and difficult to reason about.

* Need for higher-level abstraction of data transformations.

Independent of different runtime platforms.

Specify what is the relationship between the source and
target schema instead of how data is transformed from

the source to the target.

Schema Mapping

2

— JE—
/SchemaS/ /Schema T/

* Schema Mapping M = (S, T, %)
Source schema S, Target schema T

High-level, declarative assertions % that specify the
relationship between S and T.

Typically, 2 is a finite set of formulas in some suitable
logical formalism (much more on this later).

* Schema mappings are the essential building blocks in
formalizing data integration and data exchange.

Schema-Mapping
Specification Languages

* Question:
What is a good language for specifying schema mappings?

* Preliminary Attempt:
Use a logic-based language to specify schema mappings.
In particular, use first-order logic.

* Warning:

Unrestricted use of first-order logic as a schema-mapping
specification language gives rise to undecidability of basic
algorithmic problems about schema mappings.

Schema-Mapping
Specification Languages

Let us consider some simple tasks that every schema-mapping
specification language should support:

Copy (Nicknaming):
Copy each source table to a target table and rename it.
Projection:

Form a target table by projecting on one or more
columns of a source table.

Column Augmentation:

Form a target table by adding one or more columns to a
source table.

Decomposition:

Decompose a source table into two or more target
tables.

Join:
Form a target table by joining two or more source
tables.

Combinations of the above (e.g., join + column
augmentation)

Schema-Mapping
Specification Languages

Copy (Nicknaming): ¥V xy, ...,X(P(Xy,---,X,,) = R(Xy,...,X,,))
Projection: ¥V x,y,z(P(x,y,z) = R(x,y))

Column Augmentation: Vx,y (P(x,y) = 3z R(x,y,z))
Decomposition: VY x,y,z (P(x,y,z) = R(x,y) A T(y,z))
Join: V' x,y,z(E(x,z) A\ F(z,y) = R(x,z,y))

Combinations of the above (e.g., join + column

augmentation + ...)

v x,v,z(E(x,z) A F(z,y) = I w (R(x,y) A T(x,y,z,w)))

Language for specifying
Schema Mappings

All preceding tasks can be specified using:

Source-to-target tuple generating dependencies (s-t tgds):

Vx (Ps(x) — dy Pr(x,y))

ds(X) is a conjunction of atoms over the source
schema.

W.(x,y) is a conjunction of atoms over the target
schema.

Example

S = Student(studentid), Enrolls(studentid, courseid)
T = Grade(studentid, courseid, grade),
Teaches(instructerid, courseid)

VsV c Student(s) A Enrolls(s,c) — dg Grade(s,c,g))
VsVc Student(s) A Enrolls(s,c) — dt dg (Teaches(t,c) A Grade(s,c,

We omit all universal quantifiers
for the rest of this talk.

s-t tgds

* Widely used for relational schema mappings in data
exchange and data integration.

s-t tgds are also known as Global-Local-As-View (GLAV)
constraints. They contain:

Local-As-View (LAV) constraints
Global-As-View (GAV) constraints
as special cases.

GLAV, GAV, LAV
Schema Mappings

GAV mappings: ¢s(x) — R(x)
ds(X) is a conjunction of atoms over the source schema.
R(x) is an atom of the target schema.

Example: Copy, Projection, Join, ...
LAV mappings: R(x) — Jy y(x,y)

R(x) is an atom of the source schema.
P+(x,y) is a conjunction of atoms over the target schema.

Example: Copy, Decomposition, Add an attribute to a relation ...

Basic architecture behind
“mapping systems”

- o L L - e by o s cmem— oeaxme-s

o< |
——— N X
i - = User
i N 3
2 A\ =L .
~\ —

Code generati

Altova Mapforce
Stylus Studio
MS Biztalk Mapper

Java code E] SQL code E] ... | XQuery code E

Basic architecture behind

schema-mapping design systems

Extension of s-t tgds to

handle data exchange of

hierarchical data (e.g.,
Popa et al. 2002

[CL O TCC 1 T

“Translating Web Data”). |~ :

T G

—T S s

N =% Fe=—" B .
= ==
Nl = = _'
= e —/—/—/—— s
- X, ———————==
SN [
SN
S

== User

Clio

Schema mappings

Code generation

HepTox

Java code E]

SQLcode E | ...

Spicy++

XQuery code E

A visual specification

* How can we understand what gets generated from this?

Ble Ede Yew Project Build Debug Opta Jooks Teg Agshae Nindow LHep
@-H- G HdP s .Y = -85 | b Daug - MET - testemap - S A EBA-.
W BapeojOldToBtprejilew.btm 2 Sehsion Explorer - Schsion MapperBVTHL -
£ i\um MapperBVTHL
i ~_1§”.'f.;..... \\\\\\ ~ f....E 2 Reterences
e Schema Verson PrecenyGrao = BrpeeyNew xsd
§ 3“‘ \\\\4 -s.u-amg imw
AL \ Z st \\\'q‘ -
=) EdterCommen \ == - NS ey gy
: I “"'/'/ 3 \ \\’§ ——t
: £ ‘\ﬂ‘\:\ =z
X
g R NN ===

Fact: Different visual mapping systems may generate data

transformation rules of different semantics from the same
[Alexe, Tan, Velegrakis 08]

Fie

D RePuh [N
4 BusdActon Forter
3 S
- &

4) Degerdertlpon -

o Folder i~
3!\-—‘ -
Wt Pabarar e LM k"

A MBeharver el]
A) Web Raterences P
ook
&
AseGen 2
Owegr Tome [
Ot Upor [~
Coreert Gu
‘G
-
il e ProgetyCeme A - = | IPsenmnn taplorer [T Class View

2 Grron Lisa | 3 Task List| T) Ovagen |] Find Resuis L gD Fund Symibel Raswits
Remix) Seved

Schema Mappings

* To understand the precise semantics of what gets
generated, the user will have to inspect the generated
schema mapping or executable code.

* However, schema mappings and executable code can be
complex ...

Schema Mappings (one of several pages)

Map 2:
for sm2x0 in SO.dummy_COUNTRY_4
exists tm2x0 in S27.dummy_country_ 10, tm2xl in S27.dummy_organiza_13
where tm2x0.country.membership=tm2xl.organization.id,
satisf sm2x0.COUNTRY.AREA=tm2x0.country.area, sm2x0.COUNTRY.CAPITAL=tm2x0.country.capital,
sm2x0 .COUNTRY .CODE=tm2x0.country.id, sm2x0.COUNTRY .NAME=tm2x0.country.name,
sm2x0 .COUNTRY .POPULATION=tm2x0.country.population, (

Map 3:
for sm3x0 in SO.dummy_GEO_RIVE_23, sm3xl in SO.dummy_RIVER_24,
sm3x2 in SO.dummy_PROVINCE_5
where sm3x0.GEO_RIVER.RIVER=sm3x1l.RIVER.NAME, sm3x2.PROVINCE.NAME=sm3x0.GEO_RIVER.PROVINCE,
sm3x2 .PROVINCE .COUNTRY=sm2x0 .COUNTRY .CODE,
exists tm3x0 in S27.dummy_river_24, tm3xl in tm3x0.river.dummy_located_ 23,
tm3x4 in S27.dummy_country_ 10, tm3x5 in tm3x4.country.dummy_province_9,
tm3x6 in S27.dummy_organiza_13
where tm3x4.country.membership=tm3x6.organization.id, tm3x5.province.id=tm3xl.located.province,
tm2x0.country.id=tm3x1l.located.country,
satisf sm2x0.COUNTRY.AREA=tm3x4.country.area, sm2x0.COUNTRY.CAPITAL=tm3x4.country.capital,
sm2x0 .COUNTRY .CODE=tm3x4 .country.id, sm2x0.COUNTRY.NAME=tm3x4.country.name,
sm2x0 .COUNTRY .POPULATION=tm3x4.country.population, sm3x1l.RIVER.LENGTH=tm3x0.river.length,
sm3x0.GEO_RIVER.COUNTRY=tm3xl.located.country, sm3x0.GEO_RIVER.PROVINCE=tm3xl.located.province,
sm3x1.RIVER.NAME=tm3x0.river.name), (
Map 4:
for sm4x0@ in SO.dummy_GEO_ISLA_ 25, sm4xl in SO.dummy_ISLAND_26,
sm4x2 in SO.dummy_PROVINCE_5
where sm4x0.GEO_ISLAND.ISLAND=sm4x1.ISLAND.NAME, sm4x2.PROVINCE.NAME=sm4x0.GEO_ISLAND.PROVINCE,
sm4x2 .PROVINCE .COUNTRY=sm2x0 .COUNTRY .CODE,
exists tmd4x0 in S27.dummy_island_26, tmd4xl in tmd4x0.island.dummy_located_25,
tmd4x4 in S27.dummy_country_10, tm4x5 in tm4x4.country.dummy_province_9,
tmd4x6 in S27.dummy_organiza_13
where tmé4x4.country.membership=tm4x6.organization.id, tm4x5.province.id=tm4xl.located.province,
tm2x0.country.id=tm4xl.located.country,
satisf sm2x0.COUNTRY.AREA=tm4x4.country.area, sm2x0.COUNTRY.CAPITAL=tm4x4.country.capital,
sm2x0 .COUNTRY .CODE=tm4x4 .country.id, sm2x0.COUNTRY.NAME=tm4x4.country.name,
sm2x0 .COUNTRY .POPULATION=tm4x4.country.population, sm4xl.ISLAND.AREA=tm4x0.island.area,
sm4x1 .ISLAND.COORDINATESLAT=tm4x0.island.latitude, sm4x0.GEO_ISLAND.COUNTRY=tm4xl.located.country,
sm4x0 .GEO_ISLAND.PROVINCE=tm4xl.located.province, sm4xl.ISLAND.COORDINATESLONG=tm4x0.island.longitude,
sm4x1.ISLAND .NAME=tm4x0.island.name), (
Map 5:

for sm5x0@ in SO.dummy_GEO_SEA_19, sm5x1l in SO.dummy_SEA_ 20,
sm5x2 in SO.dummy_PROVINCE_5
where sm5x2.PROVINCE.NAME=sm5x0.GEO_SEA.PROVINCE, sm5x0.GEO_SEA.SEA=sm5x1.SEA.NAME,
sm5x2 .PROVINCE .COUNTRY=sm2x0 .COUNTRY .CODE,
exists tm5x0 in S27.dummy_sea_19, tm5xl in tm5x0.sea.dummy_located_18,
tm5x4 in S27.dummy_country_10, tm5x5 in tm5x4.country.dummy_province_9,
tm5x6 in S27.dummy_organiza_13
where tm5x4.country.membership=tm5x6.organization.id, tmS5x5.province.id=tm5xl.located.province,
tm2x0.country.id=tm5xl.located.country,
satisf sm2x0.COUNTRY.AREA=tm5x4.country.area, sm2x0.COUNTRY.CAPITAL=tm5x4.country.capital,
sm2x0 .COUNTRY .CODE=tm5x4 .country.id, sm2x0.COUNTRY.NAME=tm5x4.country.name,
sm2x0 .COUNTRY .POPULATION=tm5x4 .country.population, sm5x1l.SEA.DEPTH=tm5x0.sea.depth,
sm5x0.GEO_SEA.COUNTRY=tm5x1 .located.country, sm5x0.GEO_SEA.PROVINCE=tm5x1l.located.province,
bmel.SEA.NAME=tm5xO.Sea.name). (

Schema mappings can be complex

* Additional tools are needed (beyond the inspection of the
visual specification and code) to design, understand, and
refine schema mappings.

- Idea: Use “good” data examples.

Analogous to using test cases in understanding/debugging
programs.

Earlier work by the database community includes:
Yan, Miller, Haas, Fagin — 2001

“Understanding and Refinement of Schema Mappings’
Gottlob, Senellart — 2008

“Schema mapping discovery from data instances”
Olston, Chopra, Srivastava — 2009

“Generating Example Data for Dataflow Programs”. .

The rest of this tutorial

Schema Mappings and Data Examples:

* Develop a framework for the systematic use of data
examples for designing schema mappings.

* Understand both the capabilities and limitations of data
examples in capturing, deriving, and designing schema

mappings.

Roadmap for tutorial

First half of tutorial:
v/ ° Background and Motivation
* Semantics of Schema Mappings
* From Schema Mappings to Data Examples

Second half of tutorial:
* From Data Examples to Schema Mappings
The Eirene and Muse Systems

Gottlob and Senellart’s framework for discovering schema
mappings

Learning schema mappings

Schema Mappings
and
Data Examples

EDBT 2013 Tutorial
Genoa, Italy
March 21, 2013

Schema Mappings

el N
/ Source S / / Target T /

Schema MappingM = (S, T, 2)
o Source schema S, Target schema T

o High-level, declarative constraints 2 that specify the
relationship between S and T.

GLAV Schema MappingM = (S, T, 2)
o 2 is a finite set of GLAV constraints (s-t tgds)
GAV and LAV Schema Mappings defined in a similar way.

Semantics of Schema Mappings
3

.

/ Source S / / Target T /

M= (S, T, 2) a GLAV schema mapping.

® Such a schema mapping M is a syntactic object.

" From a semantic point of view, M can be identified with
the set of all positive data examples for M, i.e.,
all data examples that satisfy (the constraints of) M.

Data Examples
3

.

/ Source S / / Target T /

M= (S, T, 2) a GLAV schema mapping

= Data Example: A pair (I,]J) where I is a source instance
and J is a target instance.

® Positive Data Example for M:
= A data example (I,]) that satisfies 2, i.e., (I,]) F Z

= In this case, we say that J is a solution for I w.r.t. M.

Data Examples

Consider the schema mapping M = ({E}, {F}, 2), where

2 ={ E(xy) — 3z (F(x,2) A F(z)y)) }
Positive Data Examples (I,]J) (J a solution for I w.r.t. M)

0 I'={E®12)} J={F{1,3), FG,2) }
0 I'={E®12)} J ={F(1,X), F(X,2) }
o I'={E1,2)} J ={F(1,3), F3,2), F(3,4) }

o I={E(1,2),EG4) } J={F{1,3), F(3,2), F3,Y), F(Y,4) }
X and Y are labelled nulls

Negative Data Examples (I,J) (J not a solution for I w.r.t. M)

o I'={E1,2)} J={F1,3)}
0 I={E1,2)} J ={F(®1,3), F4,2) }

Schema Mappings and Data Examples

"= M=(S, T, 2) GLAV schema mapping
= Sem(M) = { (I,J): (I,])is a positive data example for M }

Fact: Sem(M) is an infinite set
Reason:
If (I,]) is a positive data example for M and if J C J,

then (1,]) is a positive data example for M.

Question:
Can M be “characterized” using finitely many data examples?

Goals

Formalize what it means for a schema mapping to be
“characterized” using finitely many data examples.

Obtain technical results that shed light on both the
capabilities and limitations of data examples in
characterizing schema mappings.

Types of Data Examples

M=(S, T, 2) a GLAV schema mapping

So far, we have encountered two types of examples:
Positive Data Example:

A data example (I,]) such that (I,]) satisfies 2, i.e., a

J is a solution for I w.r.t. M.

Negative Data Example:

A data example (I,]) such that (I,J) does not satisfy 2, i.e.,
J is not a solution for I w.r.t. M.

A third type of example will play an important role here:
Universal Data Example:

A data example (I,]) such that J is a universal solution for I
w.r.t. M.

Universal Solutions

Definition: M = (S, T, 2) schema mapping, I source instance.
A target instance J is a universal solution for I w.r.t. M if
J is a solution for I w.r.t. M.

If J' is a solution for I w.r.t. M, then there is a homomorphism
h: J — J that is constant on adom(I), which means that:
o If P(ay, ..,a) € J, then P(h(a,),...h(a)) € ¥
(h preserves facts)
a h(c)=c, for c € adom(I).

Note: Intuitively, a universal solution for I is a most general
(= least specific) solution for I.

Universal Solutions in [%ata Exchange

T~
s St T

Universal Solution

Homomorphisms

LN I
..........
...............
lll

10

Universal Solutions and Examples

Consider the schema mapping M = ({E}, {F}, 2), where
2 ={ E(xy) — 3z (F(x,2) A F(z,y)) }

Source instance I = { E(1,2) }

Solutions for I : Data Examples:
o J; = {F{1,2), F(2,2) } (I,J;) positive, not universal
o J, = {F(1,X), F(X,2) } (I,J,) universal (and positive)
o J; = {F(1,X), F(X,2), F(1,Y), F(Y,2) } (I,J5) universal (and positive)
o J, = {F(1,X), F(X,2), F(3,3) } (1,J,) positive, not universal

(where X and Y are labeled null values)

11

Universal Solutions and Schema Mappings

Note: A key property of GLAV schema mappings is the
existence of universal solutions.

Theorem (FKMP 2003) M = (S, T, 2) a GLAV schema mapping.
Every source instance I has a universal solution J w.r.t. M,

Moreover, the chase procedure can be used to construct,
given a source instance I, a canonical universal solution
chasey(I) for I in polynomial time.

Note: Universal solutions have become the preferred semantics
in data exchange (the preferred solutions to materialize).

12

The Chase Procedure

Chase Procedure for GLAVM = (S, T, 2): Given a source
instance I, build a target instance chasey(I) that satisfies
every s-t tgd in 2 as follows.

Whenever the LHS of some s-t tgd in 2 evaluates to true:

Introduce new facts in chasey(I) as dictated by the RHS of
the s-t tgd.

In these facts, each time existential quantifiers need

witnesses, introduce new variables (labeled nulls) as values.

13

The Chase Procedure

Example: Transforming edges to paths of length 2
M= (S, T, 2) schema mapping with
2 . W WY(E(x,y) — 3 z(F(x,2)A F(z,y)))

The chase returns a relation obtained from E by adding a new
node between every edge of E.

If I = { E(1,2) }, then chasey(I) = { F(1,X), F(X,2) }
If I = { E(1,2), E(2,3), E(1,4) }, then

chasey(I) = { F(1,X), F(X,2), F(2,Y), F(Y,3), F(1,2), F(Z,4) }

14

The Chase Procedure

Example : Collapsing paths of length 2 to edges
M=(S, T, 2) GAVschema mapping with
2. W Wy Vvz(E(x,2) A E(z,y) — F(x,y))

If I = { E(1,3), E(2,4), E(3,4) }, then
chasey(I) = { F(1,4) }.

IfI= {E(1,3), E(2,4), E(3,4), E(4,3) }, then
chasey(I) = {F(1,4), F(2,3), F(3,3), F(4,4) }.

Note: No new variables are introduced in the GAV case.

15

Characterizing Schema Mappings

"= M=(S, T, 2) GLAV schema mapping
= Sem(M) = { (I,J): (I,])is a positive data example for M }

Question:
Can M be “characterized” using finitely many data examples?

More formally, this asks:

Is there is a finite set D of data examples such that M is the only
(up to logical equivalence) schema mapping for which every
example in D is of the same type as it is for M?

16

Warm-up: The Copy Schema Mapping

Let M be the binary copy schema mapping specified by the constraint
vx vy (E(x,y) — F(X,y)).

Question: Which is the "most representative” data example for
M, hence a good candidate for “characterizing” it?

Intuitive Answer: (I,J,) withI, = {E(a,b) }, J; ={F(a,b) }

Facts: It will turn out that:
(I,,J,) “characterizes” M among all LAV schema mappings.

(I,,J,) does not “characterize” M among all GLAV schema mappings;
in fact, not even among all GAV schema mappings.

Reason: (I;,],) is also a universal example for the GAV schema
mapping specified by vx vy vu vv (E(x,y) A E(u,v) — F(x,v)).

17

Notions of Unique Characterizability

Definition: M = (S, T, %) a GLAV schema mapping, € a class of
GLAV constraints.

Let P and N be two finite sets of positive and negative examples for
M. We say that P and N uniquely characterize M w.r.t. C if

for every finite set ' C € such that P and N are sets of positive
and negative examples for M’ = (S, T, '), we have that >~ = %/,

Let U be a finite set of universal examples for M.

We say that U uniquely characterizes M w.r.t. C if

for every finite set 2" C € such that U is a set of universal
examples for M = (S, T, 2), we have that 2 = 2".

18

Relationships between Unique Characterizability Notions

Proposition: M = (S, T, 2) a GLAV schema mapping, C a
class of GLAV constraints.
If M is uniquely characterizable w.r.t. € by two finite sets of
positive and negative examples, then M is also uniquely
characterizable w.r.t. € by a finite set of universal examples.
Proof Idea: Uniquely characterizing

positive examples: (I*1, J*1), (I*2, J*2), ... and

negative examples: (I3, J1), (I2, J2), ...

give rise to uniquely characterizing

universal examples: (I*1, chasey(I*1)), (I*2, chasey (I*2)), ...
(I'1, chasey (I'1), (I*2, chasey (I72)), ...

19

Relationships between Unique Characterizability Notions

So, unique characterizability via positive and negative
examples implies unique characterizability via universal
examples.

The converse, however, is not always true.

For this reason, we will focus on unique characterizability via
universal examples.

20

Unigue Characterizations via Universal Examples

Reminder -
Definition: LetM = (S, T, 2) be a GLAV schema mapping.

A universal example for M is a data example (I,]) such that J is a
universal solution for I w.r.t. M.

Let U be a finite set of universal examples for M, and let C be a
class of GLAV constraints.

We say that U uniquely characterizes M w.r.t. C if

for every finite set 2" C € such that U is a set of universal
examples for the schema mapping M’ = (S, T, %),

we have that 2 = 2.

21

Unigue Characterizations via Universal Examples

Question:

Which GLAV schema mappings can be uniquely
characterized by a finite set of universal examples and
w.r.t. to what classes of constraints?

22

Unique Characterizations Warm-Up

Theorem: Let M be the binary copy schema mapping specified
by the constraint vx vy (E(x,y) — F(x,y)).

ThesetU={ (I,], }with I, ={E(a,b }, J, = {F(a,b) }
uniquely characterizes M w.r.t. the class of all LAV
constraints.

There is a finite set U’ consisting of three universal examples
that uniquely characterizes M w.r.t. the class of all GAV
constraints.

There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GLAV constraints.

23

Unique Characterizations Warm-Up

The set U" = { (I;,J,), (1,,35), (I5,35) } uniquely characterizes the
copy schema mapping w.r.t. to the class of all GAV constraints.

[o o o -0 I
d b a b

I J

I

3 (% (% J;

24

Uniqgue Characterizations of LAV Mappings

Theorem: If M = (S, T, 2) is a LAV schema mapping,
then there is a finite set U of universal examples that

uniquely characterizes M w.r.t. the class of all LAV
constraints.

Hint of Proof:
Let dy, d,, ..., d, be k distinct elements, where
k = maximum arity of the relations in S.
U consists of all universal examples (I, J) with

I = {R(cy,...,C,) } and J = chasey({ R(cy,...,C) }),
where each ¢ is one of the d;’s.

25

Illustration of Unique Characterizability

Let M be the binary projection schema mapping specified by
vx vy (P(x,y) — Q(x))

The following set U of universal examples uniquely
characterizes M w.r.t. the class of all LAV constraints:

U= {(,Jy), Iy J,) }, where
o I ={P(c,c) } Ji={Q(c) }
o I, ={P(c,cy) }, I, ={Q(c) }.

26

Illustration of Unique Characterizability

Let M be the schema mapping specified by
vx vy (P(x,y) — Q(x)) and Vvx (P(x,x) — 3y R(x,y))

The following set U of universal examples uniquely
characterizes M w.r.t. the class of all LAV constraints:

U= {(,Jy), Iy J,) }, where
o I ={P(c,c) } Ji={Q(c) }
= Iz = { P(C]_IC]_) }I J2 = { Q(C]_)I R(C]_IY) }

27

Number of Uniquely Characterizing Examples

Note:

The number of universal examples needed to uniquely
characterize a LAV schema mapping is bounded by an

exponential in the maximum arity of the relations in the
source schema.

This bound turns out to be tight.

Theorem: For n > 3, let M, be the n-ary copy schema mapping
specified by the constraint

VX1 oo IXG(P(Xqyee X)) = Q(XqyeerX0))-
If U is a set of universal examples that uniquely characterizes
M_ w.r.t. the class of LAV constraints, then |U| > 2" - 2.

28

Unique Characterizations of GAV Mappings

Note: Recall that for the schema mapping specified by the
binary copy constraint vx Vy (E(x,y)— F(Xx,y)), there is a finite
set of universal examples that uniquely characterizes it w.r.t. the
class of all GAV constraints.

In contrast,

Theorem: Let M be the GAV schema mapping specified by
vx vy Yu vv vYw (E(x,y)A E(u,v) A E(v,w)A E(w,u) — F(X,y)).
There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GAV constraints.

29

Unique Characterizations of GAV Mappings

Theorem: Let M be the GAV schema mapping specified by
VX Yy Yu v vw (E(x,y)A E(u,v) A E(v,w)A E(w,u) — F(X,y)).
There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GAV constraints.

Note:
Extends to every GAV schema mapping specified by
vx vy (E(x,y) A Qg — F(x,y)), where Qg is the
canonical conjunctive query of a graph G containing a cycle.

This will be a consequence of more general results to be
discussed in what follows.

30

(Non)-Characterizable GAV Schema Mappings

In summary, we have that

vx vy (E(X,y)— F(X,y))
is uniquely characterizable by finitely many (in fact, three)
universal examples w.r.t. the class of all GAV constraints.

vx vy vu v Yw (E(x,y)A E(u,v) A E(v,w)A E(w,u) — F(X,y))
is not uniquely characterizable by finitely many universal
examples w.r.t. the class of all GAV constraints.

Question: How can this difference be explained?

31

Characterizing GAV Schema Mappings

Question:

o What is the reason that some GAV schema mappings are
uniquely characterizable w.r.t. the class of all GAV
constraints while some others are not?

a Is there an algorithm for deciding whether or not a given
GAV schema mapping is uniquely characterizable w.r.t. the
class of all GAV constraints?

Answer:

a The answers to these questions are closely connected to
database constraints and homomorphism dualities.

32

Homomorphisms

Notation: A, B relational structures (e.g., graphs)
A — B means there is a homomorphism h from A to B,

i.e., a function h from the universe of A to the universe of B
such that if P(ay,...,a,) is a fact of A, then

P(h(a,), ..., h(a,,)) is a fact of B.
o Example: G — K, if and only if G is 2-colorable

—A ={B:B— A}
o Example: —K, = Class of 2-colorable graphs

A— ={B: A — B}
o Example: K,— = Class of graphs with at least one edge.

33

Homomorphism Dualities

Definition: Let D and F be two relational structures
o (F,D) is a duality pair if for every structure A

A — D if and only if (F+» A).

In symbols, —D = F»
o In this case, we say that F is an obstruction for D.

Examples:
o For graphs, (K,, K,) is a duality pair, since

G — K, ifand only if K, » G.

o Gallai- -Roy-Vitaver Theorem (~1965) for directed graphs

Let T, be the linear order with k elements, P, be the path with
k+1 elements. Then (P,,,, T,) is a duality pair, since for every H

H—- T, ifandonly if P, - H.

34

Homomorphism Dualities

Theorem (Konig 1936): A graph is 2-colorable if and only if it
contains no cycle of odd length.

In symbols, —K, = iz (C2i+1+).

Definition: Let F and D be two sets of structures. We say that
(F, D) is a duality pair if for every structure A, TFAE

o There is a structure D in D such that A — D.

a For every structure F in F, we have F » A.

Insymbols, Up . p (—D) =g g (F»).

In this case, we say that F is an obstruction set for D.

35

Homomorphism Dualities

Duality Pair (F,D),where

F={F,F,..} DD

D={D.,D,,.}

FIFz

The Yang

“Fears”: U, (F,—)

The Yin

“Dreams”: U, (—D;)

36

Unique Characterizations and
Homomorphism Dualities

Theorem: Let M = (S, T, 2) be a GAV mapping.
Then the following statements are equivalent:

M is uniquely characterizable via universal examples
w.r.t. the class of all GAV constraints.

For every target relation symbol R, the set F(M,R) of
the canonical structures of the GAV constraints in 2
with R as their head is the obstruction set of some finite

set D of structures.

37

Canonical Structures of GAV Constraints

Definition:
The canonical structure of a GAV constraint
VX ((PI(X) Ao A (pK(X) — R(Xill"'lxim))
is the structure consisting of the atomic facts ¢,(x), ..., ¢(X)

and having constant symbols c,,...,C,, interpreted by the
variables x; ,...,x;_in the atom R(X; ,...,X;).

Let M = (S, T, 2) be a GAV schema mapping.

For every relation symbol R in T, let F(M,R) be the set of all

canonical structures of GAV constraints in 2 with the target
relation symbol R in their head.

38

Canonical Structures

Examples:

GAV constraint o
vx vy vz (E(x,y) A E(y,2) — F(Xx,z2))
o Canonical structure: A, = ({x,y,z}, {(E(X,y),E(Y,2)},X,2)

o Constants ¢; and ¢, interpreted by the distinguished elements x
and z.

GAV constraint 6
vx vy Vz(E(x,y) A E(y,z) — F(X,X))
o Canonical structure: A_= ({Xx,y,z}, {E(X,y),E(Yy,z)},X,X)

o Constants ¢; and ¢, both interpreted by the distinguished
element x.

39

Unique Characterizations and
Homomorphism Dualities

Theorem: Let M = (S, T, 2) be a GAV mapping.
Then the following statements are equivalent:

M is uniquely characterizable via universal examples w.r.t. the
class of all GAV constraints.

For every target relation symbol R, the set F(M,R) of the
canonical structures of the GAV constraints in 2 with R as
their head is the obstruction set of some finite set D of
structures.

40

I[llustration

Let M be the GAV schema mapping specified by
VX (R(X,X) — P(x)).
o Canonical structure F = ({x}, {R(x,x)}, X)
a Consider D = ({a,b}, {R(a,b), R(b,a), R(b,b)}, a})

Fact: (F,D) is a duality pair, because it is easy to see that for
every structure G=(V,R,d), we have that

G — Difand only if F » G.

Consequently, M is uniquely characterizable via universal
examples w.r.t. the class of all GAV constraints.

41

Unique Characterizations and
Homomorphism Dualities
Question:

a Is there an algorithm to decide when a GAV mapping is
uniquely characterizable via a finite set of universal
examples w.r.t. to the class of all GAV constraints?

o If so, what is the complexity of this decision problem?

42

c-Acyclicity

Definition: Let A = (A, R,,...,R,C,,...C,) be a relational structure with
constants cq,...,C,.

The incidence graph inc(A) of A is the bipartite graph with
o hodes the elements of A and the facts of A

o edges between elements and facts in which they occur

The structure A is c-acyclic if

o Every cycle of Inc(A) contains at least one constant ¢, and
o Only constants may occur more than once in the same fact.

Example:
A= ({11213}1 {R((11213)I Q(llz)}l 1) IS C'aCYCIiC
= thecyclel,R(1,2,3), 2, Q(1,2), 1 contains the constant 1,
and it is the only cycle of inc(A).

A = ({1,2,3}, {R((1,2,3), Q(1,2)}, 3) is not c-acyclic
= thecyclel,R(1,2,3), 2, Q(1,2), 1 contains no constant.

43

When do Homomorphism Dualities Exist?

Theorem:

Let F be a finite set of relational structures with constants
consisting of homomorphically incomparable core structures.

The following statements are equivalent:

o F is an obstruction set of some finite set D of structures.
o Each structure F in F is c-acyclic.

Moreover, there is an algorithm that, given such a set F
consisting of c-acyclic structures, computes a finite set D of

structures such that (£, D) is a duality pair.

Note: Extends results of Foniok, NeSetril, and Tardif — 2008.

44

Normal Forms

Definition: A GAV schema mapping is in normal form if for
every target relation symbol R, the set F(M,R) of the canonical
structures of the GAV constraints in Z with R as their head
consists of homomorphically incomparable cores.

Fact:

Every GAV schema mapping is logically equivalent to a GAV
schema mapping in normal form.

There is an algorithm based on conjunctive-query
containment that transforms a given GAV schema mapping to
a GAV schema mapping in normal form.

45

Unique Characterizations and
Homomorphism Dualities

Theorem: Let M = (S, T, 2) be a GAV schema mapping in
normal form. Then the following statements are equivalent:

M is uniquely characterizable via universal examples
w.r.t. the class of all GAV constraints.

For every target relation symbol R, the set F(M,R) is the
obstruction set of some finite set of structures.

For every target relation symbol R, the set F(M,R) consists
entirely of c-acyclic structures.

46

Complexity of Unique Characterizations of
GAV Mappings

Theorem:
This following problem is in LOGSPACE:

Given a GAV mapping M in normal form, is it uniquely
characterizable via universal examples w.r.t. the class of all GAV
constraints?

The following problem is NP-complete:

Given a GAV mapping M, is it uniquely characterizable via universal
examples w.r.t. the class of all GAV constraints?

Note:

Recall that every GAV mapping can be transformed to a logically
equivalent one in normal form.

47

Applications

The GAV schema mapping M specified by

v x Vy (E(xy) — F(X,y))
is uniquely characterizable (the canonical structure is c-acyclic).

More generally, if M is a GAV schema mapping specified by a tgd in which all
variables in the LHS are exported to the RHS, then M is uniquely characterizable
(reason: cycles in incidence graph contain constants).

The GAV schema mapping M specified by

vx vy Yu v Yw (E(x,y)A E(u,v) A E(v,w)A E(w,u) — F(X,y)).

is not uniquely characterizable:

the canonical structure contains a cycle with no constant on it, namely,
u, E(u,v), v, E(v,w), w, E(w,u), u

The GAV schema mapping M specified by

VxVyVu(E(xy) A E(uu) — F(xy))
is not uniquely characterizable.

48

More Applications

The GAV schema mapping specified by the constraint
VxVyVz(EXxy) A E(y,z) — F(x,2))
IS uniquely characterizable via universal examples.

Let M be the GAV schema mappings specified by the constraints
o. VxVyVz(EXy) A E(y,z) A E(z,x) — F(x,2))
T vx Yy (E(Xy) A E(y,x) = F(x,x))
The canonical structures of these constraints are
A, = ({xy.x}; {E(x,y), E(y,2), E(zX)}, X, 2)
A, = ({xyh {EXY), E(y.x)} X, X)

Both are c-acyclic; hence {As, At} is an obstruction set of a finite set
of structures.

Therefore, M is uniquely characterizable via universal examples.

49

Synopsis

Introduced and studied the notion of unique characterization
of a schema mapping by a finite set of universal examples.

Every LAV schema mapping is uniquely characterizable via
universal examples w.r.t. the class of all LAV constraints.

Necessary and sufficient condition, and an algorithmic
criterion for a GAV schema mapping to be uniquely
characterizable via universal examples w.r.t. the class of all
GAV constraints.

o Tight connection with homomorphism dualities.

50

Open Problems

When is a LAV schema mapping uniquely characterizable by a
“small” number of universal examples w.r.t. to the class of all
LAV constraints?

o Same question for GAV schema mappings.

When is a GLAV schema mapping uniquely characterizable by

finitely many universal examples w.r.t. to the class of all GLAV
constraints?

o We do not even know whether this problem is decidable.

51

References

This part of the tutorial is based mainly on the paper
“Characterizing Schema Mappings via Data Examples”
by B. Alexe, B. ten Cate, Ph. Kolaitis, W.-C. Tan
in ACM TODS 2011.
o Earlier versions appeared in PODS 2010 and CP 2011.

For an introduction on homomorphism dualities, see the book
“Graphs and Homomorphisms”
by P. Hell and J. NeSetril, Cambridge University Press 2004.

52

Roadmap

This tutorial is about schema mappings and data examples.

This part of the tutorial focused on the direction
o From schema mappings to data examples:

Given a schema mapping, how can we characterize it using
finitely many “good” data examples?

The next part of the tutorial will focus on the other direction:
o From data examples to schema mappings.

53

Back-up Slides

54

Armstrong Bases and Armstrong Databases

Definition: (Fagin - 1982; implicit in Armstrong - 1974)
> and C two sets of constraints over the same schema. An

Armstrong database for 2 w.r.t. C is a database D such that
for every o0 € C, we havethat ZEF o ifandonly if D F o.

Note: Armstrong databases were extensively studied in the
context of the implication problem for database constraints.

Definition: Z and C two sets of constraints over the same
schema. An Armstrong basis for 2 w.r.t. C is a finite set D

of databases such that for every ¢ € C, we have that
> Eo ifandonly if D E o, for every D € D.

55

Armstrong Databases vs. Armstrong Bases

Example: 2 ={PX)— P(x), Q(x) — Q'(x) }

There is no Armstrong database for 2 w.r.t. the class of all
LAV constraints.

There is an Armstrong basis for Z w.r.t. the class of all LAV
constraints, namely, D = { D,, D, } with

D, ={P(@), P(a) }» D, ={Q(a), Q@) }.

Note:
Armstrong bases do not seem to have been studied earlier.

Much of the earlier work on Armstrong bases focused on
unirelational databases and typed constraints; in this case,
an Armstrong basis exists if and only if an Armstrong
database exists.

56

Universal Examples and Armstrong Bases

Theorem: Let M = (S, T, 2) be a GLAV schema mapping, and
let C be a set of GLAV constraints. The following are equivalent:

1. There is a finite set U of universal examples that uniquely
characterizes M w.r.t. C.

2. There is an Armstrong basis D for 2 w.r.t. C.

Note: The above result:
= Reinforces the “goodness” of universal examples.

= Reveals an a priori unexpected connection between a key
notion in data exchange and (a relaxation of) a key notion in
database dependency theory.

57

Schema Mappings and Data
Examples

Earlier part of this tutorial:
* From schema mappings to data examples:

Given a schema mapping, how can we characterize it
using finitely many “good” data examples?

This part of the tutorial will focus on the other direction:
* From data examples to schema mappings.

The Eirene and Muse Systems

Use data examples to derive and understand
schema mappings.

Deriving, Understanding, and
Refining Schema Mappings

* Eirene: Derive, understand, and refine schema mappings
via data examples

[Alexe, ten Cate, Kolaitis, Tan, SIGMOD 2011]
[Alexe, ten Cate, Kolaitis, Tan, VLDB 2011 demo]

* Muse: Understand and refine certain components of a
given schema mapping via data examples

[Alexe, Chiticariu, Miller, Tan, ICDE 2008]

[Alexe, Chiticariu, Miller, Pepper, Tan, SIGMOD 2008
Demo]

Data Examples

* Recall: A data example is a pair (I, J) such that | is a
source instance over S and J is a target instance over T.

Why Data Examples?

* Natural way to provide partial specifications of the

semantics of the desired schema maiiini.

* User’s intention: J is a universal solution of | w.r.t. the
desired schema mapping.
* A universal solution is a most general solution.
* No extraneous or over-specified facts, unlike arbitrary
solutions.

* Contain just the right information needed to represent
the desired outcome of migrating data.

Fitting Schema Mappings

* A schema mapping M fits a data example (1,J) if) is a
universal solution for | w.r.t. M.

* A schema mapping M fits a set E of data examples if M fits
every data example (I,J) in E.

GLAV Fitting Generation Problem

Given a source schema S, a target schema T, and a finite set E
of data examples that conform to the schemas, can we
construct a GLAV schema mapping that fits E if possible?
Otherwise, report “none exists”.

Putting the human in the loop

* Interactive design of schema mappings via data
examples

User insert/delete/modify - —
L Jl] Ik] Jy Ls/Lx)
‘ | |

data examples
‘p 7 l
‘- Data Examples Source and Target Schemas

GLAV Fitting Algorithm

Fitting GLAV schema mapping or report “none exists”

An I[llustration

Source schema S Target schema T
Patient(pid, name, healthplan, date) History(pid, plan, date, docid)
Doctor(pid, docid) Physician(docid, name, office)

! Ji:
(R 1
QE Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, Anna)
Doctor(123, Anna) ‘

[GLAV Fitting Algorithm j

Patient(x,y,z,u) /A Doctor(x,v) — History(x,z,u,v)

An [llustration

Source schema S Target schema T
Patient(pid, name, healthplan, date) History(pid, plan, date, docid)
Doctor(pid, docid) Physician(docid, name, office)

> L J,:
(= 2
LE Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1)
Doctor(123, Anna) Physician(N1, Anna, N2)

4

E GLAV Fitting Algorithm]

$

Patient(x,y,z,u) /A Doctor(x,v) —
dw,w’ (History(x,z,u,w) A Physician(w,v,w "))

“Canonical GLAV schema mapping” — based on data examples .

An I[llustration

Source schema S Target schema T
Patient(pid, name, healthplan, date) History(pid, plan, date, docid)
Doctor(pid, docid) Physician(docid, name, office)
L3: J5:
v, Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1)
CE Doctor(123, Anna) Physician(N1, Anna, N2)
Doctor(392, Bob) . Physician(Bob, 392, N3)

E GLAV Fitting Algorithm]

|

No fitting schema mapping exists!
Intuition: The way Anna gets mapped from I, to J; contradicts the
way Bob gets mapped from I, to J,.

An [llustration

Source schema S Target schema T

Patient(pid, name, healthplan, date) History(pid, plan, date, docid)

Doctor(pid, docid) Physician(docid, name, office)
Iy: Js:

v, Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1)
C& Doctor(123, Anna) Physician(N1, Anna, N2)

I Jo:
Doctor(392, Bob) Physician(N3, Bob, N4)
I J:
Patient(653, Cathy, Basic, Feb) History(653, Basic, Feb, N5)

Patient(x,),z,u) A Doctor(x,v) — Iw,w’ (History(x,z,u,w) APhysician(w,y,w "))
Doctor(x,) — Iw,w’ Physician(w,y,w)
Patient(x,),z,u) — Jdw History(x,z,u,w)

GLAV Fitting Algorithm

Input:S, T, E
Output: A fitting GLAV schema mapping or “none exists

1. Perform homomorphism extension test on every pair (I,,J,),
(1,,J,) of data examples in E.

If the test fails, return “none exists”.

2. Construct a fitting canonical GLAV schema mapping M.
Return M.

Homomorphism Extension

* A homomorphism h: 1, - |, between instances is function
from adom(l,) to adom(l,) s.t. for every fact P(a,,...,a,) in |,
we have that P(h(a,),...,h(a,;)) is a factin L,.

|5: Js:

Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1)
Doctor(123, Anna) Physician(N1, Anna, N2)
lg: T T Je: T T T
Doctor(392, Bob) Physician(N3, Bob, N4)

The source homomorphism can be extended.

Homomorphism Extension

* A homomorphism h: 1, - |, between instances is function
from adom(l,) to adom(l,) s.t. for every fact P(a,,...,a,) in |,
we have that P(h(a,),...,h(a,;)) is a factin L,.

|5 Js:

Patient(123, Joe, Plus, Jan) History(123, Plus, Jan, N1)
Doctor(123, Anna) Physician(N1, Anna, N2)
1, T T Jy: o %

Doctor(392, Bob) Physician(Bob, 392, N3)

The source homomorphism cannot be extended.

GLAV Fitting Algorithm: Properties

Correctness

Theorem: Let E be a finite set of data examples. TFAE:

1) The canonical GLAV schema mapping of E fits E.

2) There is a GLAV schema mapping that fits E.

3) Forall(l,]), (I',)) €EE, every homomorphismh: 1 > I’
extends to a homomorphismh’™ :J > 1J".

GLAV Fitting Algorithm: Properties

Most general fitting schema mapping

Theorem: Let E be a finite set of data examples. If there is a
GLAV schema mapping that fits E, then the canonical GLAV

schema mapping of E is the most general schema mapping
that fits E.

We say that a schema mapping M is more 3

general than M’ if ¥’ logically implies .
e |f for every data example (I, J) such that @
(1,]) satisfies 2" we have that (1, J) also
satisfies 2.

GLAV Fitting Algorithm: Properties

Completeness for GLAV Schema Mapping Design

Theorem: For every GLAV schema mapping M, there is a
finite set E,, of data examples, where M is the most general
GLAV schema mapping (up to logical equivalence) that fits E,,.

GLAV Fitting Algorithm: Properties

Complexity

* Step 1 of the GLAV fitting algorithm can take exponential time.

Number of homomorphisms between two database instances
can be exponential.

Every homomorphism extension must be verified in the
successful case.

Polynomial amount of memory (for storing homomorphisms).

Theorem
The GLAV Fitting Generation Problem is Hg—complete.

A further note

Input:S, T, E
Output: A fitting GLAV schema mapping or “none exists

1. Perform homomorphism extension test on every pair (I,,J,),
(1,,J,) of data examples in E.

If the test fails, return “none exists”.

2. Construct a fitting canonical GLAV schema mapping M.
Return M.

Fact: For any “consistent” set of data examples, a (canonical) fitting
GAV schema mapping can be computed in linear time.

Statistics of real-life mapping

SCENArios
#of |Avg. | #of [Avg. #of |Avg. # |Avg. #
source [source | target [target| GLAV jof LHS pof RHS
relations | arity [relations |arity [constraints [atoms | atoms
DBLP - Amalgam| 7 6.5 9 6.5 10 1.4 2.2
Amalgam S1-S2| 15 6.7 27 2.0 71 1.2 2.1
US - BioSQL 7 6.4 6 5.5 8 1.6 1.9
of Time to Avg. #of | Avg. #of | Avg. #of | Avg #of
canonical | generate | nonempty | tuples per | nonempty | tuples per
lexamples | canonical source source target target
examples (s)| relations relation relations relation
10 4.8 1.4 1.0 2.2 1.1
15 9 1.9 1.0 10.7 1.1
7 2.3 1.6 1.1 2.1 2.3

Experimental evaluation with real-

life mapping scenarios

* Canonical data examples

examples

Size of
each example
(# of source +
target tuples)

Initial
fitting
test

(s)

Fitting
test
per user

change (s)

DBLP - Amalgam 10 . : 0.2
Amalgam S1 - S2 15 13.4 3.6 0.3
GUS - BioSQL 7 . 6.5 1.2 0.2

Experimental evaluation with real-
life mapping scenarios

* Synthetic data examples

Number Size of Initial Fitting
of each example | fitting test
examples | (# of source + test per user
target tuples) (s) change (s)
DBLP - Amalgam 10 48 17.7 1.8
Amalgam S1 - S2 10 126 222.4 23.1

GUS - BioSQL 10 39 14.2 1.5

Implementation

* Implementation over DB2 shows promising results for
real schema mapping scenarios.

* Canonical Data Examples:
Initial execution of GLAV fitting algorithm: 1-4 secs

After modifications, time to refit a schema mapping, if
it exists: 8% to 17% of initial fitting time.

Intuition: only part of the homomorphism
extension test is recomputed.

* Synthetic Data Examples:
Initial execution of GLAV fitting algorithm: 14-222s

After modifications, time to refit a schema mapping, if
it exists: about 10% of initial fitting time.

As part of existing
Schema-Mapping Design Systems

Visual spec.

Source schema S >< Target schema T/
>

GLAV Schema Mapping

@ Canonical Data Examples

User insert/delete/modify
I Jl] ij Jk] s (1)

2 data examples ,
Data Examples Source and Target Schemas

\ 4 \ 4

GLAV Fitting Algorithm

$

Fitting GLAV schema mapping or report “none exists” .

MUSE

Muse

* A mapping design wizard that uses data examples to
assist designers in understanding and refining a schema

mapping.
* Use of data examples was advocated in
[Yan, Miller, Haas, Fagin SIGMOD 01]

Data examples are used to resolve ambiguities in
visual specification, and refine mappings (SQL).
* Focus on two important components of a mapping
design:

the specification of the desired grouping semantics for
sets of data, and

the choice among alternative interpretations for
semantically ambiguous mappings.

Ambiguous Mappings

CompDB: Rcd OrgDB: Rcd for
Projects: Set of Projects: Set of p in CompDB.Projects
Project: Rcd Pro_iect: Rcd elin CompDB_Emp'oyeeS
pid —> phame e2 in CompDB.Employees
phame = supe.rws‘or satisfy
manager G el.eid = p.manager
tech-lead A/ _
Iy e2.eid = p.tech-lead
Employees: Set of I
/ exists
Employee: Rcd 1y
> eid I/ pl in OrgDB.Projects
ename — where
contact Ambiguous p.pname = pl.pname
Elements pl.supervisor =
el.ename or e2.enam
pl.email =
* This mapping is ambiguous. el.contact or e2.conta

 There are four alternative interpretations.

el.ename el.ename e2.ename e2.ename

el.contact | e2.contact |el.contact |e2.contact .

Muse-D: Disambiguating Mappings

= Key idea: provide a data example that

illustrates the alternative interpretations in a Designer makes
compact way. two choices
Projects Projects /\

P1 DB ed e> DB John Qohn@ibm >

Employees anna@ibm

e4 John john@ibm
e5 Anna anna@ibm

 The mapping designer makes one choice for each ambiguous element
 Each decision removes one ambiguity.

e E.g., choosing “Anna” as the supervisor and “john@ibm” as the em

pl.supervisor = pl.email =
el-ehamme-g-e2.ename el.contact or e2-contact—

Obtaining Source Examples

Running queries over the real

source instance. Real Example:
Projects
Non-empty P1 DB e4
Query: Employees

result _
e4 John johnC

eb Anna anna

Projects(p1,pn1,e1,e2) and
Employees(e1,en1,cn1) and
Employees(e2,en2,cn2) and

Synthetic Example:
en1 !=en2 and y P

Empty Projects
cn1 1= cn2 result pl pnl el €2
Employees

el enl c¢cnl
e2 en2 c¢n2

Muse-D: Properties

" For each ambiguous mapping, the designer is presented with
a single compact data example.

" Proposition (Completeness).

The single data example differentiates among all the
alternative interpretations of the ambiguous mapping.

The number of choices a mapping designer has to make is
equal to the number of ambiguous elements.

* Proposition (Small examples). The number of tuples in the
example source instance is the number of conjuncts in the
for clause of the mapping.

MUSE Worktlow

Mapping
Real Source Specification

Instance Grouping Semantic

Reﬁnement<

(if available) Disambiguation
~

~
~
~ \‘\
MUSE Essentially
Generation Yes/No Answers
Pad
Real/Synthetic Examination Mapping designer
Data inspects

data examples
Examples

Schema Mappings and
Data Examples

Part IV: More Approaches to Deriving
Schema Mappings from Examples

EDBT’13 tutorial
Balder ten Cate, Phokion Kolaitis and Wang-Chiew Tan

Where are we?

® Two aspects of the use of data examples in schema mapping design:

I.

Using data examples to illustrate (candidate) schema mappings

I[I. Deriving schema mappings from data examples

® Three approaches to deriving schema mappings from data examples:

1.

Fitting approach (EIRENE): Construct a (most general) fitting schema
mapping (if it exists) [Alexe - ten Cate - Kolaitis - Tan SIGMOD’11]

Gottlob-Senellart approach: computing a schema mapping of
“optimal cost” [Gottlob - Senellart JACM'10]

Learning Schema Mappings: computational learning approach
[ten Cate - Dalmau - Kolaitis ICDT’12]

2

The Fitting Approach

® We want to derive a GLAV schema mapping on the basis of a
collection of (universal) data examples (I, J1), ..., (In,Jn)

— Case 1: There is a unique fitting GLAV schema mapping
— Case 2: There are multiple fitting GLAV schema mappings

~ Case 3: There is no fitting GLAV schema mapping

Multiple Fitting Schema Mappings
3 5

® Schema mapping M:
R(a, b), S(a, b), Vay(R(z,y) = S(z,y))
P(a) Q(a) Vo (P(z) — Q(x))

N~ 7 N

® Schema mapping My:
Vay(R(z,y) A P(z) = Sz, y)
Vry(R(z,y) A P(r) = Q(x)

sSource Target

Most general fitting ¢ Schema mapping Ms:
GLAYV schema mappin
PP Vry(R(x,y) — S(z,y) A Q(z)

smallest fitting GLAV
schema mapping

4

No Fitting Schema Mapping

Q_D <
R, B, | | S o)

R(a, b2), S(az, c2),
R(as, bs) S(as, c3)

Rlagyby) J
Source Target

The Fitting Approach (Summary)

® Input: a finite collection of data examples (typically small; hand-
crafted or system-generated; possibly containing labeled null values)

® Method: Test if a fitting GLAV schema mapping exists
(homomorphism extension test, IT,P-complete)

- Yes? Produce most general fitting GLAV schema mapping (PTIME)

—~ No? show user where the homomorphism extension test fails, so
that they can correct the examples.

® (Similarly for GAV.)

The “Gottlob-Senellart” Model

® Input: single data example (large; no labeled nulls; for example
(DBLP,GoogleScholar))

® Method: find a schema mapping of “optimal cost”

~ Cost model (intuitively): takes into account size of the schema
mapping and how well it fits the data example.

—~ Cost model (more formally): the cost of a schema mapping is the
size of the smallest “repair” that fits the given data example.

® Two-layered approach:
-~ The basic language of GLAV schema mapping (as usual)

— Aricher language of “repaired GLAV schema mappings”

7

® GLAV Schema Mapping:

Example

R(xz,y) — 325(x, 2)

R(az, 1
R(as, |

02),
b3)

\R(a4, |

1)

Source

)

S(all Cl)/
S(az,),
S(as, 3)

Slde)
Target

® Repaired GLAV Schema Mapping (which fits the data example):

R(z,y) Nx # ays — 325(x, 2) /\/\(:E =a; = 2 = ¢;)

S(d,e)

1

A Note on Terminology

® G&S speak of “a schema mapping M that is valid and fully
explaining for (I,J)”. Since (I,]) is assumed to be a ground data
example, we can equivalently say that “M fits (L,])".

Gottlob-Senellart Cost Model

® Repair of a GLAV schema mapping M is obtained by

- extending left-hand sides of GLAV constraints with additional
conjuncts of the form x=c and x=c

- extending right-hand side of GLAV constraints with additional
conjuncts of the form (xi=c1 A ... A Xp=Cn) — y=d

- adding ground facts to the schema mapping

® The size of a repaired GLAV schema mapping is the total number
of occurrences of variables and constant symbols, where ground
facts R(ai, ..., an) count as having size 3n.

® The cost of a GLAV schema mapping M w.r.t. a data example (I,])
is the size of the smallest repair of M that fits (I,]).

10

Example (Revisited)

R(a1, b1), S(ai, ¢1),

R(az, b2), S(az,),
R(a3, b3) S(as, c3)
\R(a4/ 1% \S(d/ e‘)/
® GLAV Sch M ing M:
e APPHS Source Target

R(z,y) — 325(z, z)
® Repaired GLAV Schema Mapping M’ (which fits the data example):

- R(x,y)/\:v;rém%EIZS(:):,Z)/\/\(:C:ai%z:ci)
- S(d,e) i

COS’((L])(M) = Size(M’) =24
11

Optimization Problem

® the problem of deriving a schema mapping from a data example
becomes an optimization problem:

- find a GLAV schema mapping M such that costq(M) is mimimal.

Such a schema mapping M is said to be “optimal” for (I,]).

12

Justification of the Cost Model

® Recall that GLAV schema mappings allow us to “express” the basic
relation algebraic operations such as selection, projection, and join
(e.g., the projection 71 is naturally “expressed” by R(x) — S(x;)).

® Let y be the (binary) relational algebra operator of
selection, projection, union, intersection, product, or join

and let M, be the schema mapping that “expresses” y. Then, for all
“sufficiently rich” instances I, we have that M, is optimal for (I, y(I)).

13

Selected Complexity Results

® Computing the cost of a schema mapping;:

- Testing if Cost((M) < k is in L3P and I'ToP-hard.

- For schema mappings without 3-quantifiers, it is in X,P and DP-hard.
® Finding schema mappings of a given cost:

- Testing if there is an M with Cost(I,])(M) < k is in X3P and NP-hard.

- For schema mappings without 3-quantifiers, it is in X,P and NP-hard.
® Testing optimality:

— Testing if a given schema mapping M is optimal is in I14? and DP-hard.

- For schema mappings without 3-quantifiers, it is in T3P and DP-hard.

14

Pros and Cons of the GS Model

® (Gottlob-Senellart Model:
-~ Pro: always results in a schema mapping (in the worst case, M=)
- Pro: tolerant to noise in the data example
- Con: sensitive to precise definition of cost function

-~ Con: may produce a non-fitting schema mapping even when a fitting
schema mapping exists.

® Sece [Gottlob - Senellart JACM 2010] for more details.

15

Where are we?

® Two aspects of the use of data examples in schema mapping design:

I.

Using data examples to illustrate (candidate) schema mappings

[I. Deriving schema mappings from data examples

® Three approaches to deriving schema mappings from data examples:

1.

Fitting approach: Computing a (most general) fitting schema
mapping (if it exists) [Alexe - ten Cate - Kolaitis - Tan SIGMOD’11]

Gottlob-Senellart approach: computing a schema mapping of
“optimal cost” [Gottlob - Senellart JACM'10]

Learning Schema Mappings: computational learning approach
[ten Cate - Dalmau - Kolaitis ICDT’12]

16

Learning Schema Mappings

® We now consider the problem of obtaining a schema mapping
from data examples from the perspective of computational
learning theory.

® Our aim: to leverage the rich body of work on learning theory in
order to develop a framework for exploring the power and the
limitations of the various algorithmic methods for obtaining
schema mappings from data examples.

® We restrict attention to GAV schema mappings.

17

GAV schema mappings

We consider a relational source schema S and target schema T.

A GAV schema mapping M is a schema mapping specified by a
finite set of GAV constraints Vx (¢p(x) — R(xi1,...,Xin))

We denote the set of GAV schema mappings over S and T by
GAV(S,T).

Our main question: under what standard models of learning are
GAV schema mappings learnable using data examples?

18

Types of data examples

® We focus on positive and negative examples for convenience of
exposition. All results also hold for universal examples.

- In the GAV setting (unlike in the GLAV setting), positive and
negative examples and universal examples are interchangeable
for present purposes.

® Recall:

- A positive example for M is a pair of instances (I,]) =M
- Anegative example for M is a pair of instances (I,]) ¥ M

~ A universal example for M is a pair of instances (I,]) such that]
is a universal solution for I w.r.t. M.

19

Computational learning theory

in time polynomial in the representation of
cs and the size of the examples returned by exactly or

the oracle \ f/ approximately

® Task: to efficiently identify an unknown “goal concept” c& : X—=1{0,1},
for instance

- aBoolean function (c8 : {0,1}*—{0,1}), specified by a DNF formula
- aformal language (c8 : X'—{0,1}), specified by a DFA

atter asking a number of queries about it to an oracle.

/

“Is it the case that c8(x)=1?" (membership query)
“Is it the case that c8 = ¢? Give me a counterexample.” (equivalence query)

“Give me a randomly generated labeled example (x,c8(x))” (random example query)

Well-known models of learning

® Efficient exact learnability with membership queries and /or equivalence
queries (Angluin)

(After asking polynomially many membership/equivalence queries, the
algorithm identifies the goal concept with certainty.)

- E.g., monotone DNF formulas are efficiently exactly learnable with
membership and equivalence queries. Both types of queries are needed.

® Efficient PAC (Probably-Approximately-Correct) learnability with random
example queries and possibly membership queries (Valiant)

(For all probability distributions D over the example space, when given labeled
random examples drawn from D, with high probability, the algorithm produces a
hypothesis that has a small expected error on random examples drawn from D.)

- E.g., monotone DNF formulas are efficiently PAC learnable with

membership queries. Membership queries are needed (assuming RP=NP).
21

Exact learning vs PAC learning

® References for the (non)-learnability results for Monotone DNF:
[Angluin ‘87; ‘90, Alekhnovich et al. ‘08].

® Relationship between exact learnability and PAC learnability
|Angluin‘87]:

® Efficient exactly learnability with equivalence queries implies
etficient PAC learnability

® Efficient exact learnability with equivalence queries and

membership queries implies efficient PAC learnability with
membership queries

® Caveat: this assumes that the evaluation problem is in PTime (i.e.,
given a concept c and an example x, we can efficiently test if c(x)=1).

22

Our main results

Exact learning models

® GAV(S,T) s efficiently exactly learnable with membership queries
and equivalence queries.

® Both types of queries are needed, unless S has only unary relations.

Approximate learning models

® GAV(S,T) is not efficiently PAC learnable (assuming RP = NP),
unless S has only of unary relations.

® GAV(S,T) is efficiently PAC learnable with membership queries and
an oracle for NP.

Computing a fitting GAV schema mapping of near minimal length

® One cannot approximate efficiently, up to a polynomial, the shortest

GAV schema mapping fitting a given set of data examples.
23

® All (non-)learnability continue to hold if we consider only
uniquely characterizable GAV schema mappings.

24

Exact learnability

® Theorem: GAV(S,T) is efficiently exactly learnable with
membership and equivalence queries.

® Proof sketch:
® Let M3 to be the (unknown) goal GAV schema mapping.

® Our algorithm will work by maintaining a hypothesis GAV
schema mapping M" such that Mg = M". Initially, Mh = &, and
after polynomially many iterations, provably Mh=Ms.

® NB: the algorithm cannot even evaluate a hypothesis M"on an
example, as the evaluation problem is coNP-hard. On the other
hand, the algorithm can evaluate M8 on an example
(membership query).

25

® Definition: For two GAV constraints C, C’, we write C — C’ if the left-

and right-hand side of C can be homomorphically mapped into the left-
and right-hand side of C'.

Example:
C RxyARyz — Txz
N K \ 4

C’ Rxx A Sx — Txx

® Lemma: Let M,M’ be sets of GAV constraints and C,C” GAV constraints.
Then

(i) ME Cifand only if C" — C for some C' € M.

(ii) M =M’ if and only VC'eM’ ICEM . (C — ')
26

current

hypothesis

goal schema

mapping

Idea 1: maintain an “under-approximation” of the goal schema
mapping (the initial hypothesis is the empty schema mapping)

Idea 2: any counterexample to an equivalence query can be
efficiently transformed (using membership queries) into new
constraint C’i+1 that we add to the current hypothesis.

Idea 3: in polynomialsmany steps, we arrive at c.

Exact learnability (summary)

Theorem (stated again): GAV(S,T) is efficiently exactly learnable
with membership and equivalence queries.

Theorem: GAV(S,T) is not efficiently exactly learnable with
membership queries, unless S contains only unary predicates.

(Combinatorial argument: exponentially many data examples may be
needed in order to identify the goal schema mapping with certainty.)

Theorem: GAV(S,T) is not efficiently exactly learnable with
equivalence queries, unless S contains only unary predicates.

(Reduction from the analogous problem for Monotone DNF formulas

[Angluin “87; 90].)

28

PAC learnability

® PAC (Probabilistically Approximately Correct) learning algorithm:

® Input: a natural number n bounding the size of the goal concept,
and rationals 0>0 and &>0.

® Algorithm has access to an oracle that generates labeled random
examples according to some probability distribution.

® For every goal concept of size at most n, and for every probability
distribution D, the algorithm, when given labeled random
examples drawn from D, produces with high probability (1-0), a
hypothesis that has a small expected error (¢) on random
examples drawn from D.

® The algorithm terminates in time polynomial in /g, /¢, n, and

the maximal size of a 1abe1e2c91 example returned by the oracle.

PAC learnability

® Theorem: GAV(S,T) is not efficiently PAC learnable, unless S
contains only unary relations.

The proof is based on a reduction from non-PAC learnability of
monotone DNF formulas [Alekhnovich et al. “08]

® Theorem: GAV(S,T) is efficiently PAC learnable with membership
queries and an oracle for NP

Obtained as a consequence of the exact learnability result (the need
for an NP oracle reflects the hardness of checking whether a
candidate schema mapping fits a given data example)

30

Approximating the Smallest
Fitting Schema Mapping

Call a set of labeled examples consistent if a fitting GAV schema
mapping exists.

Recall: For any consistent set of labeled examples, a canonical
fitting GAV schema mapping can be computed in linear time.

The canonical fitting GAV schema mapping has the same order of
size as the input examples. Much shorter fitting GAV schema
mappings may exist.

Can we do better? Can we compute a fitting GAV schema mapping
whose size is close to minimal?

31

Approximating the Smallest
Fitting Schema Mapping

® Theorem: there is no polynomial time algorithm that, given a
consistent set of data examples, produces a fitting GAV schema
mapping of size less than n*, for fixed k, where # is the size of the
smallest fitting GAV schema mapping (assuming RP=NP)

® Obtained as a corollary of our non-etfficient PAC learnability result
(in fact we obtain a slightly stronger non-approximability result.)

® The same result holds when the input is a single universal example.

32

Conclusion on Learning Schema
Mappings
® We studied the problem of obtaining a schema mapping from data
examples from the lens of computational learning theory.
® We obtained both positive and negative results.

- GAV schema mappings are efficiently exactly learnable, but only if
both membership and equivalence queries are allowed.

- GAV schema mappings are not PAC learnable, but they are PAC
learnable with membership queries and access to an NP-oracle.

® Open questions:

- are GAV schema mappings efficiently PAC learnable with
membership queries (and without an NP-oracle)?

- What about LAV schema mappings, and GLAV schema mappings?
33

Deriving Schema Mappings from
Data Examples

® Further open question

- Richer schema mapping languages (including, e.g., target
constraints, data value transformation, ...)

— Suitable definitions of “approximate fitting” for data examples,
for which no fitting schema mapping exists.

34

Final Words

® Data example are useful in schema mapping design, understanding,
refinement.

® Two main thrusts:
~ lustrating/ characterizing a (candidate) schema via data examples
- Deriving schema mappings from examples

® The research we presented draws from different areas, such as
databases, constraint satisfaction, logic, and computational learning.

® Schema mapping design can be a difficult task, and data examples
constitute a helpful tool.

35

