
Schema'Mappings'

and'Data'Examples'

Balder ten Cate 
UC Santa Cruz  
and LogicBlox 

Phokion Kolaitis 
UC Santa Cruz  
and IBM Research - Almaden 

Wang-Chiew Tan 
UC Santa Cruz 



The'Data'Interoperability'Challenge'

•  Data$may$be$$
•  distributed)at$several$different$loca3ons.$
•  heterogeneous)in$representa3on$(rela3onal,$JSON,$…).$

$
•  How$can$we$uniformly$access$and$manipulate$data$from$
these$data$sources?$

•  Two$main$approaches:$
1. $Data$integra3on$$
2. $Data$exchange$
$

2 



Data'Integration'

3 

I1$

I2$

I3$

S2#

Data$Sources$

Query$heterogeneous$data$in$different$
sources$via$a$global)schema.$

Query$Q$

S1#

S2#

S3#

Global$Schema$G#



Data'Exchange'

•  Transform$data$structured$under$a$source$schema$into$data$
structured$under$a$different$target$schema.$

•  Query$heterogeneous$data$in$different$sources$via$the$target)
schema.$

4 

$$$$$Σ$

I$ J$Materializa3on$

Source$Schema$S# Target$Schema$T#

Query$Q$



Key'challenge'behind'Data'Interoperability'

•  Key$challenge$behind$data$integra3on$or$data$exchange:$
specify$the$rela3onships)between)schemas.$

•  The$rela3onships$between$schemas$are$typically$
specified$as$data)transforma3ons.$

•  Data$transforma3on:$(S,$T,$ξ$)$
•  Source$schema$S,#target$schema$T.$$
•  ξ$specifies$how$an$instance$that$conforms$to$S$is$to$be$
transformed$to$an$instance$that$conforms$to$T.$

•  Deriving$a$correct$data$transforma3on$can$be$a$difficult$
task.$
•  Schemas$can$be$large$and$complex.$

5 



Schemas'can'be'large'and'complex'

'

6 



Specifying'a'data'transformation'

•  Data$transforma3ons$can$be$specified:$

•  directly$as$executable$code$in$some$programming$
language.$E.g.,$SQL,$Java,$or$Pig.$$
•  TimeYconsuming,$costly.$

•  through$a$visual$interface,$where$executable$code$can$
be$generated$from$the$visual$specifica3on.$$

7 



A'visual'speci@ication'

8 Screenshot$from$Bernstein$and$Haas$2008$CACM$ar3cle.$$
�Informa3on)Integra3on)in)the)Enterprise��$

Source$schema$ Target$schema$Value$
correspondences$



Basic'architecture'behind'

�mapping'systems�'

9 

Java$code$E$

I J 

Code generation 

Altova$Mapforce$
Stylus$Studio$
MS$Biztalk$Mapper$

Apply E on I 

SQL$code$E$ XQuery$code$E$… 

User 



Problems?'

•  (Generated)$executable$code$of$different$run3me$plaaorms$
tends$to$be$complex$and$difficult$to$reason$about.$

•  Need$for$higherYlevel$abstrac3on$of$data$transforma3ons.$
•  Independent$of$different$run3me$plaaorms.$
•  Specify$what)is$the$rela3onship$between$the$source$and$
target$schema$instead$of$how)data$is$transformed$from$
the$source$to$the$target.$

10 



Schema'Mapping'

•  Schema$Mapping$M$=$(S,$T,$Σ)$
•  Source$schema$$S,$Target$schema$T$
•  High:level,)declara3ve)asser3ons)Σ$that$specify$the$
rela3onship$between$S$and$T.$$

•  Typically,$Σ$is$a$finite$set$of$formulas$in$some$suitable$
logical$formalism$(much)more)on)this)later).$

•  Schema$mappings$are$the$essen3al$building$blocks$in$
formalizing$data$integra3on$and$data$exchange.$

11 

Schema S Schema T 

Σ 



12 

SchemaDMapping''

Speci@ication'Languages'
•  Ques,on:##
$$$$What$is$a$good$language$for$specifying$schema$mappings?$
$
•  Preliminary#A8empt:$$
$$$$Use$a$logicYbased$language$to$specify$schema$mappings.$$$
$$$$In$par3cular,$use$firstYorder$logic.$$

• Warning:###
$$$$Unrestricted$use$of$firstYorder$logic$as$a$schemaYmapping$
specifica3on$language$gives$rise$to$undecidability#of$basic$
algorithmic$problems$about$schema$mappings.$



13 

SchemaDMapping''

Speci@ication'Languages'
Let$us$consider$some$simple$tasks$that$every$schemaYmapping$
specifica3on$language$should$support:$
•  Copy$(Nicknaming):$

•  Copy$each$source$table$to$a$target$table$and$rename$it.$
•  Projec3on:$

•  Form$a$target$table$by$projec3ng$on$one$or$more$
columns$of$a$source$table.$

•  Column$Augmenta3on:$
•  Form$a$target$table$by$adding$one$or$more$columns$to$a$
source$table.$



•  Decomposi3on:$
•  Decompose$a$source$table$into$two$or$more$target$
tables.$

•  Join:$
•  Form$a$target$table$by$joining$two$or$more$source$
tables.$

•  Combina3ons$of$the$above$(e.g.,$join$+$column$
augmenta3on)$

14 



15 

SchemaDMapping''

Speci@ication'Languages'

•  Copy$(Nicknaming):$�x1,$…,xn(P(x1,…,xn)$→$R(x1,…,xn))$

•  Projec3on:$�x,y,z(P(x,y,z)$→$R(x,y))$

•  Column$Augmenta3on:$�x,y$(P(x,y)$→$�z$R(x,y,z))$

•  Decomposi3on:$�x,y,z$(P(x,y,z)$→$R(x,y)$�$T(y,z))$

•  Join:$�x,y,z(E(x,z)$�$F(z,y)$→$R(x,z,y))$

•  Combina3ons$of$the$above$(e.g.,$join$+$column$
augmenta3on$+$…)$

• �x,y,z(E(x,z)$�$F(z,y)$→$�w$(R(x,y)$�$T(x,y,z,w)))$

$



Language'for'specifying''

Schema'Mappings'

All$preceding$tasks$can$be$specified$using:$

Source'to'target+tuple+genera/ng+dependencies+(sAt#tgds):$

$∀x$(φS(x)$→$∃y$ψT(x,y))$

•  φS(x)$is$a$conjunc3on$of$atoms$over$the$source$
schema.$

•  ψT(x,y)$is$a$conjunc3on$of$atoms$over$the$target$
schema.$

16 



Example'

#S$=$Student(studen3d),$Enrolls(studen3d,$courseid)$
#T$=$Grade(studen3d,$courseid,$grade),$$
$ $$$$$$Teaches(instructerid,$courseid)$

$∀s∀c$Student(s)$∧$Enrolls(s,c)$→$∃g$Grade(s,c,g))$
$
$
$$

17 

We$omit$all$universal$quan3fiers$
for$the$rest$of$this$talk.$

∀s∀c Student(s)$∧$Enrolls(s,c)$→$∃t$∃g$(Teaches(t,c)$∧$Grade(s,c,g)))$



sDt'tgds'

• Widely$used$for$rela3onal$schema$mappings$in$data$
exchange$and$data$integra3on.$

•  sYt$tgds$are$also$known$as$Global:Local:As:View)(GLAV))
constraints.$They$contain:$
•  LocalYAsYView$(LAV)$constraints$
•  GlobalYAsYView$(GAV)$constraints$

$$$$as$special$cases.$

18 



GLAV,'GAV,'LAV''

Schema'Mappings'

GAV$mappings:$φS(x)$→$R(x)$
•  φS(x)$is$a$conjunc3on$of$atoms$over$the$source$schema.$
•  R(x)$is$an$atom$of$the$target$schema.$

Example:$Copy,$Projec3on,$Join,$…$

LAV$mappings:$R(x)$→$∃y$ψT(x,y)$
•  R(x)$is$an$atom$of$the$source$schema.$
•  ψT(x,y)$is$a$conjunc3on$of$atoms$over$the$target$schema.$

Example:$Copy,$Decomposi3on,$Add$an$ajribute$to$a$rela3on$…$

$

$

$

19 



Basic'architecture'behind''

�mapping'systems�'

20 

Java$code$E$

I J 

Code generation 

Altova$Mapforce$
Stylus$Studio$
MS$Biztalk$Mapper$

Apply E on I 

SQL$code$E$ XQuery$code$E$… 

User 



Basic'architecture'behind''

schemaDmapping'design'systems'

21 

Java$code$E$

I J 

Code generation Clio$
HepTox$
Spicy++$

Apply E on I 

SQL$code$E$ XQuery$code$E$… 

Schema$mappings$

Extension$of$sYt$tgds$to$
handle$data$exchange$of$
hierarchical$data$(e.g.,$
Popa$et)al.$2002$
�Transla3ng)Web)Data�).$

User 



A'visual'speci@ication'
•  How$can$we$understand$what$gets$generated$from$this?$

22 

Fact: Different visual mapping systems may generate data 
transformation rules of different semantics from the same 
visual specification.    [Alexe, Tan, Velegrakis 08] 



Schema'Mappings'

•  To$understand$the$precise$seman3cs$of$what$gets$
generated,$the$user$will$have$to$inspect$the$generated$
schema$mapping$or$executable$code.$

$

•  However,$schema$mappings$and$executable$code$can$be$
complex#…$

$
$

23 



24 

Schema'Mappings'(one'of'several'pages)'



Schema'mappings'can'be'complex'

• Addi3onal$tools$are$needed$(beyond$the$inspec3on$of$the$
visual$specifica3on$and$code)$to$design,$understand,$and$
refine$schema$mappings.$

•  Idea:$$Use$�good�$data$examples.$
•  Analogous$to$using$test#cases$in$understanding/debugging$
programs.$

•  Earlier$work$by$the$database$community$includes:$
•  Yan,$Miller,$Haas,$Fagin$–$2001$$
$$�Understanding)and)Refinement)of)Schema)Mappings�$
•  Gojlob,$Senellart$–$2008$$
$$�Schema)mapping)discovery)from)data)instances�$
•  Olston,$Chopra,$Srivastava$–$2009$
$$�Genera3ng)Example)Data)for)Dataflow)Programs�.$

25 



The'rest'of'this'tutorial'

Schema$Mappings$and$Data$Examples:$
#
•  Develop$a$framework$for$the$systema3c$use$of$data$
examples$for$designing$schema$mappings.$

$
•  Understand$both$the$capabili,es$and#limita,ons$of$data$
examples$in$capturing,$deriving,$and$designing$schema$
mappings.$

26 



Roadmap'for'tutorial'

First$half$of$tutorial:$
•  Background$and$Mo3va3on$
•  Seman3cs$of$Schema$Mappings$
•  From$Schema$Mappings$to$Data$Examples$
$
Second$half$of$tutorial:$
•  From$Data$Examples$to$Schema$Mappings$

•  The$Eirene$and$Muse$Systems$
•  Gojlob$and$Senellart’s$framework$for$discovering$schema$
mappings$

•  Learning$schema$mappings$

27 

✔ 



Schema Mappings
and 

Data Examples

EDBT 2013 Tutorial
Genoa, Italy

March 21, 2013



2

Schema Mappings

Source  S Target  T

 Schema Mapping M = (S, T, Σ)
 Source schema  S, Target schema T
 High-level, declarative constraints Σ that specify the 

relationship between S and T. 
 GLAV Schema Mapping M = (S, T, Σ)

 Σ is a finite set of GLAV constraints (s-t tgds)
 GAV and LAV Schema Mappings defined in a similar way.

Σ



3

Semantics of Schema Mappings 

Source  S Target  T

M = (S, T, Σ) a GLAV schema mapping.

 Such a schema mapping M is a syntactic object.

 From a semantic point of view, M can be identified with
the set of all positive data examples for M, i.e., 
all data examples that satisfy (the constraints of) M. 

I
J

Σ



4

Data Examples

Source  S Target  T

M = (S, T, Σ) a GLAV schema mapping 

 Data Example: A pair (I,J) where I is a source instance 
and J is a target instance.

 Positive Data Example for M:
 A data example (I,J) that satisfies Σ, i.e., (I,J)  Σ

 In this case, we say that J is a solution for I w.r.t. M.

I
J

Σ



5

Data Examples

 Consider the schema mapping M = ({E}, {F}, Σ), where  
Σ = { E(x,y) → 䳭z (F(x,z) 䴑 F(z,y)) }

 Positive Data Examples (I,J)   (J a solution for I w.r.t. M)
 I = { E(1,2) }             J = { F(1,3), F(3,2) }
 I = { E(1,2) }             J = { F(1,X), F(X,2) }  
 I = { E(1,2) }             J = { F(1,3), F(3,2), F(3,4) }
 I = { E(1,2), E(3,4) }  J = { F(1,3), F(3,2), F(3,Y), F(Y,4) }  

X and Y are labelled nulls
 Negative Data Examples (I,J) (J not a solution for I w.r.t. M)

 I = { E(1,2) }             J = { F(1,3) }
 I = { E(1,2) }             J = { F(1,3), F(4,2) }



6

Schema Mappings and Data Examples

 M = (S, T, Σ)  GLAV schema mapping
 Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

Fact: Sem(M) is an infinite set
Reason:
If (I,J) is a positive data example for M and if J ⊆ J’, 
then (I,J’) is a positive data example for M.

Question: 
Can M be “characterized” using finitely many data examples?



7

Goals

 Formalize what it means for a schema mapping to be 
“characterized” using finitely many data examples.

 Obtain technical results that shed light on both the 
capabilities and limitations of data examples in 
characterizing schema mappings.



8

Types of Data Examples

M = (S, T, Σ) a GLAV schema mapping
So far, we have encountered two types of examples:

 Positive Data Example:
A data example (I,J) such that (I,J) satisfies Σ, i.e., a
J is a solution for I w.r.t. M.

 Negative Data Example:
A data example (I,J) such that (I,J) does not satisfy Σ, i.e.,
J is not a solution for I w.r.t. M.

A third type of example will play an important role here:
 Universal Data Example:

A data example (I,J) such that J is a universal solution for I 
w.r.t. M.



9

Universal Solutions

Definition:  M = (S, T, Σ) schema mapping, I source instance.
A target instance J is a universal solution for I w.r.t. M if
 J is a solution for I w.r.t. M.
 If J’ is a solution for I w.r.t. M, then there is a homomorphism 

h: J → J’ that is constant on adom(I), which means that:
 If P(a1, …,ak) ∈ J, then P(h(a1),…h(ak)) ∈ J’

(h preserves facts)
 h(c)=c, for c ∈ adom(I).

Note: Intuitively, a universal solution for I is a most general 
(= least  specific) solution for I.



10

Universal Solutions in Data Exchange

Schema  S Schema  T

I
J

Σ

J1

J2
J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms



11

Universal Solutions and Examples

 Consider the schema mapping M = ({E}, {F}, Σ), where  
Σ = { E(x,y) → 䳭z (F(x,z) 䴑 F(z,y)) }

 Source instance I = { E(1,2) }

 Solutions for I :                                Data Examples:
 J1 =  { F(1,2), F(2,2) }                      (I,J1)  positive, not universal
 J2  =  { F(1,X), F(X,2) }                      (I,J2)  universal (and positive)
 J3 =  { F(1,X), F(X,2), F(1,Y), F(Y,2) } (I,J3)  universal (and positive)
 J4  =  { F(1,X), F(X,2), F(3,3) }            (I,J4)  positive, not universal

(where X and Y are labeled null values)
 …



12

Universal Solutions and Schema Mappings

Note:  A key property of GLAV schema mappings is the
existence of universal solutions.

Theorem (FKMP 2003) M = (S, T, Σ) a GLAV schema mapping. 
 Every source instance I has a universal solution J w.r.t. M,
 Moreover, the chase procedure can be used to construct, 

given a source instance I, a canonical universal solution 
chaseM(I) for I in polynomial time.

Note: Universal solutions have become the preferred semantics 
in data exchange (the preferred solutions to materialize).



13

The Chase Procedure

Chase Procedure for GLAV M = (S, T, Σ):  Given a source 
instance I, build a target instance chaseM(I) that satisfies
every s-t tgd in Σ as follows.

Whenever the LHS of some s-t tgd in Σ evaluates to true:

 Introduce new facts in chaseM(I) as dictated by the RHS of 
the s-t tgd. 

 In these facts, each time existential quantifiers need 
witnesses,  introduce new variables (labeled nulls) as values.



14

The Chase Procedure

Example: Transforming edges to paths of length 2
M = (S, T, Σ)  schema mapping with
Σ :  ∀x ∀y(E(x,y)  → ∃ z(F(x,z)Æ F(z,y)))

The chase returns a relation obtained from E by adding a new
node between every edge of E.

 If I = { E(1,2) }, then chaseM(I) = { F(1,X), F(X,2) } 

 If I = { E(1,2), E(2,3), E(1,4) }, then
chaseM(I) = { F(1,X), F(X,2), F(2,Y), F(Y,3), F(1,Z), F(Z,4) }  



15

The Chase Procedure

Example : Collapsing paths of length 2 to edges
M = (S, T, Σ)   GAV schema mapping with
Σ :    ∀x ∀y ∀z (E(x,z) Æ E(z,y) → F(x,y))

 If I = { E(1,3), E(2,4), E(3,4) }, then 
chaseM(I) = { F(1,4) }.

 If I =   { E(1,3), E(2,4), E(3,4), E(4,3) }, then 
chaseM(I) =  { F(1,4), F(2,3), F(3,3), F(4,4) }.

Note: No new variables are introduced in the GAV case.



16

Characterizing Schema Mappings

 M = (S, T, Σ)  GLAV schema mapping
 Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

Question: 
Can M be “characterized” using finitely many data examples?

More formally, this asks:
Is there is a finite set D of data examples such that M is the only
(up to logical equivalence) schema mapping for which every
example in D is of the same type as it is for M?



17

Warm-up: The Copy Schema Mapping

Let M be the binary copy schema mapping specified by the constraint
∀x ∀y (E(x,y) → F(x,y)).

Question: Which is the “most representative” data example for
M, hence a good candidate for “characterizing” it?

Intuitive Answer: (I1,J1) with I1 = { E(a,b) },  J1 = { F(a,b) } 

Facts: It will turn out that:
 (I1,J1) “characterizes” M among all LAV schema mappings.
 (I1,J1) does not “characterize” M among all GLAV schema mappings; 

in fact, not even among all GAV schema mappings.
Reason: (I1,J1) is also a universal example for the GAV schema
mapping specified by ∀x ∀y ∀u ∀v (E(x,y) Æ E(u,v) → F(x,v)).



18

Notions of Unique Characterizability

Definition: M = (S, T, Σ) a GLAV schema mapping, C  a class of 
GLAV constraints. 
 Let P and N be two finite sets of positive and negative examples for 

M. We say that P and N uniquely characterize M w.r.t. C if 
for every finite set  Σ’ ⊆ C such that P and N are sets of positive 
and negative examples for M’ = (S, T, Σ’), we have that Σ ≡ Σ’.

 Let U be a finite set of universal examples for M.
We say that U uniquely characterizes M w.r.t. C if 
for every finite set  Σ’ ⊆ C such that U is a set of universal
examples for M’ = (S, T, Σ’), we have that Σ ≡ Σ’.



19

Relationships between Unique Characterizability Notions

Proposition: M = (S, T, Σ) a GLAV schema mapping, C  a 
class of GLAV constraints. 
If M is uniquely characterizable w.r.t. C by two finite sets of 
positive and negative examples, then M is also uniquely 
characterizable w.r.t. C by a finite set of universal examples.
Proof Idea: Uniquely characterizing

positive examples: (I+1, J+1),  (I+2, J+2), … and
negative examples: (I-1, J-1),   (I-2, J-2), …
give rise to uniquely characterizing
universal examples: (I+1, chaseM(I+1)), (I+2, chaseM (I+2)), …

(I-1, chaseM (I-1),  (I+2, chaseM (I+2)), …



20

Relationships between Unique Characterizability Notions

 So, unique characterizability via positive and negative 
examples implies unique characterizability via universal 
examples.

 The converse, however, is not always true.

 For this reason, we will focus on unique characterizability via 
universal examples.



21

Unique Characterizations via Universal Examples

Reminder -

Definition: Let M = (S, T, Σ) be a GLAV schema mapping.

 A universal example for M is a data example (I,J) such that J is a 
universal solution for I w.r.t. M.

 Let U be a finite set of universal examples for M, and let C  be a 
class of GLAV constraints. 
We say that U uniquely characterizes M w.r.t. C if 
for every finite set  Σ’ ⊆ C such that U is a set of universal
examples for the schema mapping M’ = (S, T, Σ’),
we have that Σ ≡ Σ’.



22

Unique Characterizations via Universal Examples

Question:
Which GLAV schema mappings can be uniquely
characterized by a finite set of universal examples and 
w.r.t. to what classes of constraints?



23

Unique Characterizations Warm-Up

Theorem: Let M be the binary copy schema mapping specified 
by the constraint  ∀x ∀y (E(x,y) → F(x,y)).

 The set U = { ( I1, J1) } with  I1 = { E(a,b }, J1 = { F(a,b) } 
uniquely characterizes M w.r.t. the class of all LAV 
constraints.

 There is a finite set U’ consisting of three universal examples 
that uniquely characterizes M w.r.t. the class of all GAV 
constraints.

 There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GLAV constraints.



24

Unique Characterizations Warm-Up

The set U’ = { (I1,J1), (I2,J2), (I3,J3) } uniquely characterizes the 
copy schema mapping w.r.t. to the class of all GAV constraints.

J1
a b a b

a b a b

c d

e

c d

e

I2 J2

I3 J3

I1



25

Unique Characterizations of LAV Mappings

Theorem: If M = (S, T, Σ) is a LAV schema mapping,
then there is a finite set U of universal examples that
uniquely characterizes M w.r.t. the class of all LAV 
constraints.
Hint of Proof: 
 Let d1, d2, …, dk be k distinct elements, where 

k = maximum arity of the relations in S.
 U consists of all universal examples (I, J) with

I = { R(c1,…,cm) }  and J = chaseM({ R(c1,…,cm) }), 
where  each ci is one of the dj’s.



26

Illustration of Unique Characterizability

Let M be the binary projection schema mapping specified by
∀x ∀y (P(x,y)  → Q(x))

 The following set U of universal examples uniquely 
characterizes M w.r.t. the class of all LAV constraints:

U =  { (I1, J1),  (I2, J2) }, where
 I1 = { P(c1,c2) },    J1 = { Q(c1) }
 I2 = { P(c1,c1) },    J2 = { Q(c1) }.



27

Illustration of Unique Characterizability

Let M be the schema mapping specified by
∀x ∀y (P(x,y)  → Q(x))  and  ∀x (P(x,x) → ∃y R(x,y))

 The following set U of universal examples uniquely 
characterizes M w.r.t. the class of all LAV constraints:

U =  { (I1, J1),  (I2, J2) }, where
 I1 = { P(c1,c2) },    J1 = { Q(c1) }
 I2 = { P(c1,c1) },    J2 = { Q(c1), R(c1,Y) }.



28

Number of Uniquely Characterizing Examples

Note:
 The number of universal examples needed to uniquely 

characterize a LAV schema mapping is bounded by an 
exponential in the maximum arity of the relations in the 
source schema.

 This bound turns out to be tight.

Theorem: For n ≥ 3, let Mn be the n-ary copy schema mapping
specified by the constraint  

∀x1 … ∀xn(P(x1,…,xn) → Q(x1,…,xn)).
If U is a set of universal examples that uniquely characterizes 
Mn w.r.t. the class of LAV constraints, then |U| ≥ 2n – 2.



29

Unique Characterizations of GAV Mappings

Note: Recall that for the schema mapping specified by the 
binary copy constraint  ∀x ∀y (E(x,y)→ F(x,y)), there is a finite
set of universal examples that uniquely characterizes it w.r.t. the
class of all GAV constraints.  

In contrast, 

Theorem: Let M be the GAV schema mapping specified by 
∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).
There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GAV constraints.



30

Unique Characterizations of GAV Mappings

Theorem: Let M be the GAV schema mapping specified by 
∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).
There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GAV constraints.

Note: 
 Extends to every GAV schema mapping specified by

∀x ∀y (E(x,y) Æ QG → F(x,y)),  where QG is the
canonical conjunctive query of a graph G containing a cycle.
This will be a consequence of more general results to be 
discussed in what follows.



31

(Non)-Characterizable GAV Schema Mappings

In summary, we have that
 ∀x ∀y (E(x,y)→ F(x,y))

is uniquely characterizable by finitely many (in fact, three) 
universal examples w.r.t. the class of all GAV constraints.

 ∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y))
is not uniquely characterizable by finitely many universal 
examples w.r.t. the class of all GAV constraints.

Question: How can this difference be explained?



32

Characterizing GAV Schema Mappings

 Question:
 What is the reason that some GAV schema mappings are

uniquely characterizable w.r.t. the class of all GAV 
constraints while some others are not?

 Is there an algorithm for deciding whether or not a given 
GAV schema mapping is uniquely characterizable w.r.t. the 
class of all GAV constraints?

 Answer:
 The answers to these questions are closely connected to 

database constraints and homomorphism dualities.



33

Homomorphisms

Notation: A, B relational structures (e.g., graphs)
 A → B means there is a homomorphism h from A to B, 

i.e., a function h from the universe of A to the universe of B
such that if P(a1,…,am) is  a fact of A, then 
P(h(a1), …, h(am)) is a fact of B.
 Example: G → K2 if and only if G is 2-colorable

 →A = {B : B → A } 
 Example: →K2 =  Class of 2-colorable graphs

 A→ = {B: A → B}
 Example: K2→ =  Class of graphs with at least one edge.



34

Homomorphism Dualities

 Definition: Let D and F be two relational structures
 (F,D) is a duality pair if for every structure A

A → D if and only if  (F ඃ A).

In symbols,   →D =  Fඃ
 In this case, we say that F is an obstruction for D.

 Examples:
 For graphs,  (K2, K1) is a duality pair, since

G → K1 if and only if  K2 ඃ G.

 Gallai-Hasse-Roy-Vitaver Theorem (����1965) for directed graphs
Let Tk be the linear order with k elements, Pk+1 be the path with 
k+1 elements.  Then (Pk+1, Tk) is a duality pair, since for every H

H → Tk if and only  if Pk+1 ඃ H.



35

Homomorphism Dualities

 Theorem (König 1936): A graph is 2-colorable if and only if it
contains no cycle of odd length.
In symbols,    →K2 = ∩i≥0 (C2i+1ඃ).

 Definition: Let F and D be two sets of structures. We say that 
(F, D) is a duality pair if for every structure A, TFAE
 There is a structure D in D such that A →→→→ D.

 For every structure F in F, we have Fඃ A.

In symbols,    UD ∈ D (→D) = IF ∈ F ( Fඃ).
In this case, we say that F is an obstruction set for D.



36

Homomorphism Dualities

The Yin

“Dreams”: UUUUi ( →→→→Di ) 

The Yang

“Fears”:  UUUUi ( Fi→→→→)

Duality Pair (F,D),where

F = {F1,F2,}

D = {D1,D2,}



37

Unique Characterizations and 
Homomorphism Dualities

Theorem: Let M = (S, T, Σ) be a GAV  mapping.
Then the following statements are equivalent:

 M is uniquely characterizable via universal examples 
w.r.t. the class of all GAV constraints.

 For every target relation symbol R, the set F (M,R) of 
the canonical structures of the GAV constraints in Σ
with R as their head is the obstruction set of some finite 
set D of structures.



38

Canonical Structures of GAV Constraints

Definition:
 The canonical structure of a GAV constraint

䳪x (ϕ1(x) 䴑 ... 䴑 ϕκ(x) → R(xi1
,…,xim

)) 
is the structure consisting of the atomic facts ϕ1(x), ..., ϕκ(x)
and having constant symbols c1,…,cm interpreted by the 
variables xi1

,…,xim
in the atom R(xi1

,…,xim
).

 Let M = (S, T, Σ) be a GAV schema mapping.
For every relation symbol R in T, let F (M,R) be the set of all 
canonical structures of GAV constraints in Σ with the target 
relation symbol R in their head. 



39

Canonical Structures

Examples:

 GAV constraint σ
∀x ∀y ∀z (E(x,y) Æ E(y,z) → F(x,z))

 Canonical structure: Aσ = ({x,y,z}, {(E(x,y),E(y,z)},x,z)
 Constants c1 and c2 interpreted by the distinguished elements x 

and z.

 GAV constraint θ
∀x ∀y ∀z(E(x,y) Æ E(y,z) → F(x,x))

 Canonical structure: Aτ = ({x,y,z}, {E(x,y),E(y,z)},x,x)
 Constants c1 and c2 both interpreted by the distinguished 

element x.



40

Unique Characterizations and 
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV mapping.
Then the following statements are equivalent:

 M is uniquely characterizable via universal examples w.r.t. the 
class of all GAV constraints.

 For every target relation symbol R, the set F (M,R) of the 
canonical structures of the GAV constraints in Σ with R as 
their head is the obstruction set of some finite set D of 
structures.



41

Illustration

Let M be the GAV schema mapping specified by 
∀x (R(x,x) → P(x)).

 Canonical structure F = ({x}, {R(x,x)}, x)     
 Consider D = ({a,b}, {R(a,b), R(b,a), R(b,b)}, a})

Fact: (F,D) is a duality pair, because it is easy to see that for
every structure G=(V,R,d), we have that 

G → D if and only if F ඃ G.

Consequently, M is uniquely characterizable via universal
examples w.r.t. the class of all GAV constraints.



42

Unique Characterizations and 
Homomorphism Dualities

Question:

 Is there an algorithm to decide when a GAV mapping is 
uniquely characterizable via a finite set of universal 
examples w.r.t. to the class of all GAV constraints?

 If so, what is the complexity of this decision problem?



43

c-Acyclicity

Definition: Let A = (A, R1,…,Rm,c1,…ck) be a relational structure with 
constants c1,…,ck.

 The incidence graph inc(A) of A is the bipartite graph with
 nodes the elements of A and the facts of A
 edges between elements and facts in which they occur

 The structure A is c-acyclic if 
 Every cycle of Inc(A) contains at least one constant ci, and
 Only constants may occur more than once in the same fact.

Example:
 A = ({1,2,3}, {R((1,2,3), Q(1,2)}, 1) is c-acyclic

 the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains the constant 1,
and it is the only cycle of inc(A).

 A = ({1,2,3}, {R((1,2,3), Q(1,2)}, 3) is not c-acyclic
 the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains no constant.



44

When do Homomorphism Dualities Exist?

Theorem:
Let  F be a finite set of relational structures with constants 
consisting of homomorphically incomparable core structures. 

 The following statements are equivalent:
 F is an obstruction set of some finite set D of structures.
 Each structure F in F is c-acyclic.

 Moreover, there is an algorithm that, given such a set F
consisting of c-acyclic structures, computes a finite set D of 
structures such that (F, D ) is a duality pair.

Note: Extends results of Foniok, Nešetřil, and Tardif – 2008.



45

Normal Forms

Definition: A GAV schema mapping is in normal form if for 
every target relation symbol R, the set F (M,R) of the canonical 
structures of the GAV constraints in Σ with R as their head 
consists of homomorphically incomparable cores.

Fact:
 Every GAV schema mapping is logically equivalent to a GAV 

schema mapping in normal form.
 There is an algorithm based on conjunctive-query 

containment that transforms a given GAV schema mapping to 
a GAV schema mapping in normal form.  



46

Unique Characterizations and
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV schema mapping in 
normal form. Then the following statements are equivalent:
 M is uniquely characterizable via universal examples

w.r.t. the class of all GAV constraints.

 For every target relation symbol R, the set F (M,R) is the 
obstruction set of some finite set of structures.

 For every target relation symbol R, the set F (M,R) consists 
entirely of c-acyclic structures.



47

Complexity of Unique Characterizations of 
GAV Mappings
Theorem:
 This following problem is in LOGSPACE:

Given a GAV mapping M in normal form, is it uniquely 
characterizable via universal examples w.r.t. the class of all GAV 
constraints?

 The following problem is NP-complete:
Given a GAV mapping M, is it uniquely characterizable via universal 
examples w.r.t. the class of all GAV constraints?

Note:
 Recall that every GAV mapping can be transformed to a logically 

equivalent one in normal form.



48

Applications

 The  GAV schema mapping M specified by 
∀ x ∀ y (E(x,y) → F(x,y)) 

is uniquely characterizable (the canonical structure is c-acyclic).

 More generally, if M is a GAV schema mapping specified by a tgd in which all 
variables in the LHS are exported to the RHS, then M is uniquely characterizable
(reason: cycles in incidence graph contain constants).

 The GAV schema mapping M specified by 
∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).
is not uniquely characterizable: 
the canonical structure contains a cycle with no constant on it, namely,

u, E(u,v), v, E(v,w), w, E(w,u), u

 The GAV schema mapping M specified by 
∀ x ∀ y ∀ u (E(x,y) Æ E(u,u) → F(x,y)) 

is not uniquely characterizable.



49

More Applications

 The GAV schema mapping specified by the constraint
Ѧx ∀ y ∀ z (E(x,y) ҍ E(y,z) → F(x,z)) 

is uniquely characterizable via universal examples. 

 Let M be the GAV schema mappings specified by the constraints 
 σ: Ѧx ∀ y ∀ z (E(x,y) ҍ E(y,z) Æ E(z,x) → F(x,z)) 
 τ:        Ѧx ∀ y (E(x,y) ҍ E(y,x) → F(x,x)) 

The canonical structures of these constraints are
 Aσ = ({x,y,x} {E(x,y), E(y,z), E(z,x)}, x, z)
 Aτ = ({x,y}, {E(x,y), E(y,x)}, x, x)

 Both are c-acyclic; hence {Aσ, Aτ} is an obstruction set of a finite set 
of structures.

 Therefore, M is uniquely characterizable via universal examples.



50

Synopsis

 Introduced and studied the notion of unique characterization 
of a schema mapping by a finite set of universal examples.

 Every LAV schema mapping is uniquely characterizable via 
universal examples w.r.t. the class of all LAV constraints.

 Necessary and sufficient condition, and an algorithmic 
criterion for a GAV schema mapping to be uniquely 
characterizable via universal examples w.r.t. the class of all 
GAV constraints.
 Tight connection with homomorphism dualities. 



51

Open Problems

 When is a LAV schema mapping uniquely characterizable by a  
“small” number of universal examples w.r.t. to the class of all 
LAV constraints?  
 Same question for GAV schema mappings.

 When is a GLAV schema mapping uniquely characterizable by 
finitely many universal examples w.r.t. to the class of all GLAV 
constraints?
 We do not even know whether this problem is decidable.



52

References

 This part of the tutorial is based mainly on the paper
“Characterizing Schema Mappings via Data Examples”
by B. Alexe, B. ten Cate, Ph. Kolaitis, W.-C. Tan 
in ACM TODS 2011.

 Earlier versions appeared in PODS 2010 and CP 2011.

 For an introduction on homomorphism dualities, see the book
“Graphs and Homomorphisms”
by P. Hell and J. Nešetril, Cambridge University Press 2004.



53

Roadmap

This tutorial is about schema mappings and data examples.

 This part of the tutorial focused on the direction
 From schema mappings to data examples:

Given a schema mapping, how can we characterize it using 
finitely many “good” data examples?

 The next part of the tutorial will focus on the other direction:
 From data examples to schema mappings.



54

Back-up Slides



55

Armstrong Bases and Armstrong Databases

Definition: (Fagin - 1982; implicit in Armstrong - 1974) 
Σ and C two sets of constraints over the same schema.  An
Armstrong database for Σ w.r.t. C is a database D such that 
for every σ ∈ C, we have that  Σ  σ if and only if  D  σ.

Note: Armstrong databases were extensively studied in the 
context of the implication problem for database constraints.

Definition: Σ and C two sets of constraints over the same
schema.  An Armstrong basis for Σ w.r.t. C is a finite set D
of databases  such that for every σ ∈ C, we have that

Σ  σ if and only if  D  σ, for every D ∈ D.



56

Armstrong Databases vs. Armstrong Bases

Example: Σ = { P(x) → P’(x), Q(x) → Q’(x) }
 There is no Armstrong database for Σ w.r.t. the class of all 

LAV constraints.
 There is an Armstrong basis for Σ w.r.t. the class of all LAV 

constraints, namely,  D = { D1, D2 } with
D1 = { P(a), P’(a) },  D2 = { Q(a), Q’(a) }.

Note: 
 Armstrong bases do not seem to have been studied earlier.
 Much of the earlier work on Armstrong bases focused on 

unirelational databases and typed constraints;  in this case, 
an Armstrong basis exists if and only if an Armstrong 
database exists. 



57

Universal Examples and Armstrong Bases

Theorem: Let M = (S, T, Σ) be a GLAV schema mapping, and
let C be a set of GLAV constraints. The following are equivalent:
1. There is a finite set U of universal examples that uniquely 

characterizes M w.r.t. C. 
2. There is an Armstrong basis D for Σ w.r.t. C. 

Note: The above result:
 Reinforces the “goodness” of universal examples.
 Reveals an a priori unexpected connection between a key 

notion in data exchange and (a relaxation of) a key notion in 
database dependency theory. 



Schema'Mappings'and'Data'
Examples'
Earlier'part'of'this'tutorial:'
•   From%schema%mappings%to%data%examples:'

•  Given'a'schema'mapping,'how'can'we'characterize'it'
using'finitely'many'“good”'data'examples?'

This'part'of'the'tutorial'will'focus'on'the'other'direcAon:'
•   'From%data%examples%to%schema%mappings.'

•  The'Eirene'and'Muse'Systems'
•  Use'data'examples'to'derive'and'understand'
schema'mappings.'

30 



Deriving,'Understanding,'and'
Re9ining'Schema'Mappings'
•  Eirene:'Derive,'understand,'and'refine'schema'mappings'
via'data'examples'
•  [Alexe,'ten'Cate,'KolaiAs,'Tan,'SIGMOD'2011]'
•  [Alexe,'ten'Cate,'KolaiAs,'Tan,'VLDB'2011'demo]'

•  Muse:'Understand'and'refine'certain'components'of'a'
given'schema'mapping'via'data'examples'
•  [Alexe,'ChiAcariu,'Miller,'Tan,'ICDE'2008]'
•  [Alexe,'ChiAcariu,'Miller,'Pepper,'Tan,''SIGMOD'2008'
Demo]'

'

31 



Data'Examples'
•  Recall:'A'data%example'is'a'pair'(I,'J)'such'that'I'is'a'
source'instance'over'S'and'J'is'a'target'instance'over'T.'

'

32 

I' J'

Source'Schema'S# Target'Schema'T#



Why'Data'Examples?'
•  Natural'way'to'provide'parAal'specificaAons'of'the'
semanAcs'of'the'desired'schema'mapping.'

'
•  User’s'intenAon:'J'is'a'universal%solu5on%of'I'w.r.t.'the'
desired'schema'mapping.'
•  A'universal'soluAon'is'a'most'general'soluAon.'
•  No'extraneous'or'over\specified'facts,'unlike'arbitrary'
soluAons.'

•  Contain'just'the'right'informaAon'needed'to'represent'
the'desired'outcome'of'migraAng'data.#

#

33 

Recall:'“universal'examples”'



Fitting'Schema'Mappings'
•  A'schema'mapping'M%fits%a%data%example%(I,J)%if'J'is'a'
universal'soluAon'for'I'w.r.t.'M.'

•  A'schema'mapping'M%fits%a%set%E%of%data%examples%if'M'fits'
every'data'example'(I,J)'in'E.'

'

GLAV#Fi*ng#Genera0on#Problem##
Given'a'source'schema'S,'a'target'schema'T,'and'a'finite'set'E'
of'data'examples'that'conform'to'the'schemas,'can'we'
construct'a'GLAV'schema'mapping'that'fits'E'if'possible?'
Otherwise,'report'“none'exists”.'
'

34 



Putting'the'human'in'the'loop'
•  InteracAve'design'of'schema'mappings'via'data'
examples'

35 

I1 J1 … 

Fitting GLAV schema mapping or report �none exists� 

Ik Jk 
User insert/delete/modify 
data examples 

GLAV'Fiang'Algorithm'

S T 

Data Examples Source and Target Schemas 



An'Illustration'
Source schema S 
Patient(pid, name, healthplan, date) 
Doctor(pid, docid) 

Target schema T 
History(pid, plan, date, docid) 
Physician(docid, name, office) 

I1: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 

J1: 
History(123, Plus, Jan, Anna) 

Patient(x,y,z,u) � Doctor(x,v) → History(x,z,u,v) 

GLAV'Fiang'Algorithm'

36 



An'Illustration'
Source schema S 
Patient(pid, name, healthplan, date) 
Doctor(pid, docid) 

Target schema T 
History(pid, plan, date, docid) 
Physician(docid, name, office) 

I2: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 

J2: 
History(123, Plus, Jan, N1) 
Physician(N1, Anna, N2) 

Patient(x,y,z,u) � Doctor(x,v) → 
 ∃w,w� (History(x,z,u,w) � Physician(w,v,w�)) 

GLAV'Fiang'Algorithm'

“Canonical'GLAV'schema'mapping”'–'based'on'data'examples'
37 



An'Illustration'
Source schema S 
Patient(pid, name, healthplan, date) 
Doctor(pid, docid) 

Target schema T 
History(pid, plan, date, docid) 
Physician(docid, name, office) 

I3: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 
I4: 
Doctor(392, Bob)  

J3: 
History(123, Plus, Jan, N1) 
Physician(N1, Anna, N2) 
J4: 
Physician(Bob, 392, N3) 

GLAV'Fiang'Algorithm'

No'fiang'schema'mapping'exists!'
IntuiAon:'The'way'Anna'gets'mapped'from'I3'to'J3'contradicts'the'
way'Bob'gets'mapped'from'I4'to'J4.'
' 38 



An'Illustration'
Source schema S 
Patient(pid, name, healthplan, date) 
Doctor(pid, docid) 

Target schema T 
History(pid, plan, date, docid) 
Physician(docid, name, office) 

I5: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 
I6: 

Doctor(392, Bob)  

I7: 

Patient(653, Cathy, Basic, Feb) 

J5: 
History(123, Plus, Jan, N1) 
Physician(N1, Anna, N2) 
J6: 

Physician(N3, Bob, N4) 

J7: 

History(653, Basic, Feb, N5) 

Patient(x,y,z,u) � Doctor(x,v) → ∃w,w� (History(x,z,u,w) �Physician(w,v,w�)) 
Doctor(x,y) → ∃w,w��Physician(w,y,w�) 
Patient(x,y,z,u) → ∃w History(x,z,u,w) 

39 



GLAV'Fitting'Algorithm'
Input:'S,'T,'E%
Output:'A'fiang'GLAV'schema'mapping'or'“none'exists�'
'
1. 'Perform'homomorphism%extension%test%on%every'pair'(I1,J1),'
(I2,J2)'of'data'examples'in'E.''

''''If'the'test'fails,'return'“none'exists”.'

2. 'Construct'a'fi?ng%canonical%GLAV%schema%mapping%M.'
Return'M.'

40 



Homomorphism'Extension'
•  A'homomorphism%h:'I1'→'I2''between'instances'is'funcAon'
from'adom(I1)'to'adom(I2)'s.t.'for'every'fact'P(a1,…,am)'in'I1,'
we'have'that'P(h(a1),…,h(am))'is'a'fact'in'I2.'

I5: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 
I6: 
Doctor(392, Bob)  

J5: 
History(123, Plus, Jan, N1) 
Physician(N1, Anna, N2) 
J6: 
Physician(N3, Bob, N4) 

The source homomorphism can be extended. 

41 



Homomorphism'Extension'

I3: 
Patient(123, Joe, Plus, Jan) 
Doctor(123, Anna) 
I4: 
Doctor(392, Bob)  

J3: 
History(123, Plus, Jan, N1) 
Physician(N1, Anna, N2) 
J4: 
Physician(Bob, 392, N3) 

The source homomorphism cannot be extended. 

42 

•  A'homomorphism%h:'I1'→'I2''between'instances'is'funcAon'
from'adom(I1)'to'adom(I2)'s.t.'for'every'fact'P(a1,…,am)'in'I1,'
we'have'that'P(h(a1),…,h(am))'is'a'fact'in'I2.'



GLAV'Fitting'Algorithm:'Properties'

Correctness#
'
Theorem:'Let'E'be'a'finite'set'of'data'examples.'TFAE:'
1) 'The'canonical'GLAV'schema'mapping'of'E'fits'E.''
2) 'There'is'a'GLAV'schema'mapping'that'fits'E.''
3) 'For'all'(I,'J),'(I�,'J�)'∈'E,'every'homomorphism'h':'I'→'I�'
extends'to'a'homomorphism'h�':'J'→'J�.'

43 



Σ'

GLAV'Fitting'Algorithm:'Properties'
Most#general#fi*ng#schema#mapping'
'
Theorem:'Let'E'be'a'finite'set'of'data'examples.'If'there'is'a'
GLAV'schema'mapping'that'fits'E,'then'the'canonical'GLAV'
schema'mapping'of'E'is'the'most'general'schema'mapping'
that'fits'E.''

We'say'that'a'schema'mapping'M'is'more%
general%than'M�'if'Σ�'logically'implies'Σ.''
•  If'for'every'data'example'(I,'J)'such'that'

(I,'J)'saAsfies'Σ�we'have'that'(I,'J)'also'
saAsfies'Σ.'

'

Σ�'

Σ 

44 



GLAV'Fitting'Algorithm:'Properties'

Completeness#for#GLAV#Schema#Mapping#Design'
'
Theorem:'For'every'GLAV'schema'mapping'M,'there'is'a'
finite'set'EM'of'data'examples,'where'M'is'the'most'general'
GLAV'schema'mapping'(up'to'logical'equivalence)'that'fits'EM.''

45 



GLAV'Fitting'Algorithm:'Properties'
Complexity#
'
•  Step'1'of'the'GLAV'fiang'algorithm'can'take'exponenAal'Ame.'

•  Number'of'homomorphisms'between'two'database'instances'
can'be'exponenAal.'

•  Every'homomorphism'extension'must'be'verified'in'the'
successful'case.'

•  Polynomial'amount'of'memory'(for'storing'homomorphisms).'

Theorem''
The'GLAV'Fiang'GeneraAon'Problem'is'''''''\complete.'

46 



A'further'note'

47 

Input:'S,'T,'E%
Output:'A'fiang'GLAV'schema'mapping'or'“none'exists�'
'
1. 'Perform'homomorphism%extension%test%on%every'pair'(I1,J1),'
(I2,J2)'of'data'examples'in'E.''

''''If'the'test'fails,'return'“none'exists”.'

2. 'Construct'a'fi?ng%canonical%GLAV%schema%mapping%M.'
Return'M.'

Fact:'For'any'“consistent”'set'of'data'examples,'a'(canonical)'fiang'
GAV'schema'mapping'can'be'computed'in'linear'Ame.'



Statistics'of'realIlife'mapping'
scenarios'

48 



Experimental'evaluation'with'realI
life'mapping'scenarios'

•  Canonical'data'examples'

49 



Experimental'evaluation'with'realI
life'mapping'scenarios'

•  SyntheAc'data'examples'

50 



Implementation'
•  ImplementaAon'over'DB2'shows'promising'results'for'
real'schema'mapping'scenarios.'

•  Canonical'Data'Examples:'
•  IniAal'execuAon'of'GLAV'fiang'algorithm:'1\4'secs'
•  Aker'modificaAons,'Ame'to'refit'a'schema'mapping,'if'
it'exists:'8%'to'17%'of'iniAal'fiang'Ame.'
•  IntuiAon:'only'part'of'the'homomorphism'
extension'test'is'recomputed.'

•  SyntheAc'Data'Examples:'
•  IniAal'execuAon'of'GLAV'fiang'algorithm:'14\222s'
•  Aker'modificaAons,'Ame'to'refit'a'schema'mapping,'if'
it'exists:'about'10%'of'iniAal'fiang'Ame.' 51 



As'part'of'existing''
SchemaIMapping'Design'Systems'

Source schema S Target schema T 
Visual spec. 

GLAV Schema Mapping 

I1 J1 … 

Fitting GLAV schema mapping or report �none exists� 

Ik Jk 
User insert/delete/modify 
data examples 

GLAV'Fiang'Algorithm'

S T 

Canonical Data Examples 

Data Examples Source and Target Schemas 

52 



MUSE'



Muse'
•  A'mapping'design'wizard'that'uses'data'examples'to'
assist'designers'in'understanding'and'refining'a'schema'
mapping.'

•  Use'of'data'examples'was'advocated'in''
''''[Yan,'Miller,'Haas,'Fagin'SIGMOD'01]'

•  Data'examples'are'used'to'resolve'ambiguiAes'in'
visual'specificaAon,'and'refine'mappings'(SQL).'

•  Focus'on'two'important'components'of'a'mapping'
design:''
•  the'specificaAon'of'the'desired'grouping'semanAcs'for'
sets'of'data,'and''

•  the'choice'among'alternaAve'interpretaAons'for'
semanAcally'ambiguous'mappings.' 54 



Ambiguous'Mappings'

e1.ename e1.ename e2.ename e2.ename 

e1.contact e2.contact e1.contact e2.contact 

CompDB: Rcd 
   Projects: Set of 
        Project: Rcd 

 pid 
 pname 
 manager 
 tech-lead 

    Employees: Set of 
        Employee: Rcd 

 eid 
 ename 
 contact 

OrgDB: Rcd 
   Projects: Set of 
       Project: Rcd 

 pname 
 supervisor 
 email 
  

for 
     p in CompDB.Projects 
     e1 in CompDB.Employees 
     e2 in CompDB.Employees 
satisfy 
     e1.eid = p.manager 
     e2.eid = p.tech-lead 
exists 
     p1 in OrgDB.Projects 
 where 
        p.pname = p1.pname 
        p1.supervisor =  
                      e1.ename or e2.ename 
        p1.email = 
                      e1.contact or e2.contact 

Ambiguous 
Elements 

•   This mapping is ambiguous. 

•   There are four alternative interpretations. 

55 



MuseID:'Disambiguating'Mappings'
!  Key#idea:'provide'a'data'example'that'
illustrates'the'alternaAve'interpretaAons'in'a'
compact'way.'

Projects#
'''''P1'''''DB'''''e4'''''e5'
Employees#
'''''e4'''''John'''''john@ibm'
'''''e5'''''Anna''''anna@ibm'

Projects#
'''''DB ''''''John ' 'john@ibm'

''''''Anna ' 'anna@ibm'

Designer makes 
two choices 

•  'The'mapping'designer'makes'one'choice'for'each'ambiguous'element'
•  'Each'decision'removes'one'ambiguity.'

•  'E.g.,'choosing'�Anna�'as'the'supervisor'and'�john@ibm�'as'the'email.'

p1.supervisor'=''
e1.ename'or'e2.ename'

p1.email'=''
e1.contact'or'e2.contact'

56 



Obtaining'Source'Examples'
Running'queries'over'the'real'
source'instance.'

Query: 

Projects(p1,pn1,e1,e2) and 

       Employees(e1,en1,cn1) and 

       Employees(e2,en2,cn2) and 

 en1 != en2 and  

 cn1 != cn2 

Real Example: 
Projects 
     P1       DB        e4     e5 
Employees 
     e4      John       john@ibm 
     e5      Anna      anna@ibm 

Synthetic Example: 
Projects 
     p1    pn1     e1      e2 
Employees 
     e1    en1     cn1 
     e2    en2     cn2 

Non-empty 
result 

Empty 
result 

57 



MuseID:'Properties'
!  For'each'ambiguous'mapping,'the'designer'is'presented'with'
a'single'compact'data'example.'

! Proposi0on#(Completeness).''
!  The'single'data'example'differenAates'among'all'the'
alternaAve'interpretaAons'of'the'ambiguous'mapping.''

!  The'number'of'choices'a'mapping'designer'has'to'make'is'
equal'to'the'number'of'ambiguous'elements.'

! Proposi0on#(Small#examples).#The'number'of'tuples'in'the'
example'source'instance'is'the'number'of'conjuncts'in'the'
for'clause'of'the'mapping.#

58 



MUSE'Work9low'
Mapping'

SpecificaAon'Real'Source'

Instance'

(if'available)'

Real/SyntheAc'

Data'

Examples'

Mapping'designer'
inspects'

data'examples'

ExaminaAon'

GeneraAon'

EssenAally'
Yes/No'Answers'

Refinement'
Grouping'SemanAcs'

DisambiguaAon'

59 



Schema Mappings and 
Data Examples

Part IV: More Approaches to Deriving 
Schema Mappings from Examples

EDBT’13 tutorial
Balder ten Cate, Phokion Kolaitis and Wang-Chiew Tan



Where are we?

• Two aspects of the use of data examples in schema mapping design:

I. Using data examples to illustrate (candidate) schema mappings

II. Deriving schema mappings from data examples

• Three approaches to deriving schema mappings from data examples:

1. Fitting approach (EIRENE): Construct a (most general) fitting schema 
mapping (if it exists)  [Alexe - ten Cate - Kolaitis - Tan SIGMOD’11]

2. Gottlob-Senellart approach: computing a schema mapping of 
“optimal cost”  [Gottlob - Senellart JACM’10]

3. Learning Schema Mappings: computational learning approach      
[ten Cate - Dalmau - Kolaitis ICDT’12]

2



The Fitting Approach

• We want to derive a GLAV schema mapping on the basis of a 
collection of (universal) data examples (I1, J1), ..., (In,Jn). 

- Case 1: There is a unique fitting GLAV schema mapping 

- Case 2: There are multiple fitting GLAV schema mappings

- Case 3: There is no fitting GLAV schema mapping

3



Multiple Fitting Schema Mappings

4

R(a, b),
P(a)

Source Target

S(a, b),
Q(a)

•  Schema mapping M1:

• Schema mapping M2: 

• Schema mapping M3:

8xy(R(x, y) ^ P (x) ! S(x, y)

8xy(R(x, y) ^ P (x) ! Q(x)

8xy(R(x, y) ! S(x, y) ^Q(x)

8xy(R(x, y) ! S(x, y))

8x(P (x) ! Q(x))

Most general fitting 
GLAV schema mapping

smallest fitting GLAV 
schema mapping



No Fitting Schema Mapping

5

R(a1, b1),
R(a2, b2),
R(a3, b3)
R(a4, b4)

Source Target

S(a1, c1),
S(a2, c2),
S(a3, c3)



The Fitting Approach (Summary)

• Input: a finite collection of data examples (typically small; hand-
crafted or system-generated; possibly containing labeled null values)

• Method: Test if a fitting GLAV schema mapping exists 
(homomorphism extension test, !2p-complete)

- Yes? Produce most general fitting GLAV schema mapping (PTIME)

- No? show user where the homomorphism extension test fails, so 
that they can correct the examples.

• (Similarly for GAV.)

6



The “Gottlob-Senellart” Model

• Input: single data example (large; no labeled nulls; for example 
(DBLP,GoogleScholar))

• Method: find a schema mapping of “optimal cost”

- Cost model (intuitively): takes into account size of the schema 
mapping and how well it fits the data example.

- Cost model (more formally): the cost of a schema mapping is the 
size of the smallest “repair” that fits the given data example. 

• Two-layered approach:

- The basic language of GLAV schema mapping (as usual)

- A richer language of “repaired GLAV schema mappings”

7



Example

• GLAV Schema Mapping: 

• Repaired GLAV Schema Mapping (which fits the data example): 

-  

-  

8

R(a1, b1),
R(a2, b2),
R(a3, b3)
R(a4, b4)

Source Target

S(a1, c1),
S(a2, c2),
S(a3, c3)
S(d, e)

R(x, y) ! 9zS(x, z)

S(d, e)

R(x, y) ^ x 6= a4 ! 9zS(x, z) ^
^

i

(x = ai ! z = ci)



A Note on Terminology

• G&S speak of “a schema mapping M that is valid and fully 
explaining for (I,J)”. Since (I,J) is assumed to be a ground data 
example, we can equivalently say that “M fits (I,J)”.

9



Gottlob-Senellart Cost Model

• Repair of a GLAV schema mapping M is obtained by

- extending left-hand sides of GLAV constraints with additional 
conjuncts of the form x=c and x≠c

- extending right-hand side of GLAV constraints with additional 
conjuncts of the form (x1=c1 ⋀ ... ⋀ xn=cn) → y=d

- adding ground facts to the schema mapping

• The size of a repaired GLAV schema mapping is the total number 
of occurrences of variables and constant symbols, where ground 
facts R(a1, ..., an) count as having size 3n. 

• The cost of a GLAV schema mapping M w.r.t. a data example (I,J) 
is the size of the smallest repair of M that fits (I,J).

10



Example (Revisited)

• GLAV Schema Mapping M: 

• Repaired GLAV Schema Mapping M’ (which fits the data example): 

-  

-  

11

R(a1, b1),
R(a2, b2),
R(a3, b3)
R(a4, b4)

Source Target

S(a1, c1),
S(a2, c2),
S(a3, c3)
S(d, e)

R(x, y) ! 9zS(x, z)

S(d, e)

R(x, y) ^ x 6= a4 ! 9zS(x, z) ^
^

i

(x = ai ! z = ci)

Cost(I,J)(M) = Size(M’) = 24



Optimization Problem

• the problem of deriving a schema mapping from a data example  
becomes an optimization problem: 

- find a GLAV schema mapping M such that cost(I,J)(M) is mimimal. 

 Such a schema mapping M is said to be “optimal” for (I,J).

12



Justification of the Cost Model

• Recall that GLAV schema mappings allow us to “express” the basic 
relation algebraic operations such as selection, projection, and join 
(e.g., the projection "i  is naturally “expressed” by R(x) → S(xi)).

• Let # be the (binary) relational algebra operator of

 selection, projection, union, intersection, product, or join

 and let M# be the schema mapping that “expresses” #. Then, for all 
“sufficiently rich” instances I, we have that M# is optimal for (I, #(I)).

13



Selected Complexity Results

• Computing the cost of a schema mapping:

- Testing if Cost(I,J)(M) < k is in $3p and !2p-hard. 

- For schema mappings without ∃-quantifiers, it is in $2p and DP-hard. 

• Finding schema mappings of a given cost:

- Testing if there is an M with Cost(I,J)(M) < k is in $3p and NP-hard. 

- For schema mappings without ∃-quantifiers, it is in $2p and NP-hard. 

• Testing optimality:

- Testing if a given schema mapping M is optimal is in !4p and DP-hard. 

- For schema mappings without ∃-quantifiers, it is in !3p and DP-hard.

14



Pros and Cons of the GS Model

• Gottlob-Senellart Model:

- Pro: always results in a schema mapping (in the worst case, M=∅)

- Pro: tolerant to noise in the data example

- Con: sensitive to precise definition of cost function

- Con: may produce a non-fitting schema mapping even when a fitting 
schema mapping exists.

• See [Gottlob - Senellart JACM 2010] for more details.

15



Where are we?

• Two aspects of the use of data examples in schema mapping design:

I. Using data examples to illustrate (candidate) schema mappings

II. Deriving schema mappings from data examples

• Three approaches to deriving schema mappings from data examples:

1. Fitting approach: Computing a (most general) fitting schema 
mapping (if it exists)  [Alexe - ten Cate - Kolaitis - Tan SIGMOD’11]

2. Gottlob-Senellart approach: computing a schema mapping of 
“optimal cost”  [Gottlob - Senellart JACM’10]

3. Learning Schema Mappings: computational learning approach 
[ten Cate - Dalmau - Kolaitis ICDT’12]

16



Learning Schema Mappings

• We now consider the problem of obtaining a schema mapping 
from data examples from the perspective of computational 
learning theory.  

• Our aim: to leverage the rich body of work on learning theory in 
order to develop a framework for exploring the power and the 
limitations of the various algorithmic methods for obtaining 
schema mappings from data examples.

• We restrict attention to GAV schema mappings. 

17



GAV schema mappings

• We consider a relational source schema S and target schema T.

• A GAV schema mapping M is a schema mapping specified by a 
finite set of GAV constraints ∀x (%(x)  →  R(xi1,...,xin)) .

• We denote the set of GAV schema mappings over S and T by 
GAV(S,T).

• Our main question: under what standard models of learning are 
GAV schema mappings learnable using data examples? 

18



Types of data examples

• We focus on positive and negative examples for convenience of 
exposition. All results also hold for universal examples.

- In the GAV setting (unlike in the GLAV setting), positive and 
negative examples and universal examples are interchangeable 
for present purposes. 

• Recall:

- A positive example for M is a pair of instances (I,J) ⊨ M 

- A negative example for M is a pair of instances (I,J) ⊭ M

- A universal example for M is a pair of instances (I,J) such that J 
is a universal solution for I w.r.t. M.

19



Computational learning theory

• Task: to efficiently identify an unknown “goal concept” cg : X→{0,1}, 
for instance

- a Boolean function (cg : {0,1}n→{0,1}), specified by a DNF formula

- a formal language (cg : $*→{0,1}), specified by a DFA

 after asking a number of queries about it to an oracle.

 

“Give me a randomly generated labeled example (x,cg(x))”  (random example query)

“Is it the case that cg(x)=1?”                                                        (membership query)

“Is it the case that cg & c? Give me a counterexample.”          (equivalence query)

in time polynomial in the representation of 
cg and the size of the examples returned by 
the oracle

exactly or 
approximately



Well-known models of learning

• Efficient exact learnability with membership queries and/or equivalence 
queries (Angluin)

 (After asking polynomially many membership/equivalence queries, the 
algorithm identifies the goal concept with certainty.)

- E.g., monotone DNF formulas are efficiently exactly learnable with 
membership and equivalence queries. Both types of queries are needed.

• Efficient PAC (Probably-Approximately-Correct) learnability with random 
example queries and possibly membership queries (Valiant) 

 (For all probability distributions D over the example space, when given labeled 
random examples drawn from D, with high probability, the algorithm produces a 
hypothesis that has a small expected error on random examples drawn from D.)

- E.g., monotone DNF formulas are efficiently PAC learnable with 
membership queries. Membership queries are needed (assuming RP≠NP). 

21



Exact learning vs PAC learning

• References for the (non)-learnability results for Monotone DNF: 
[Angluin ‘87; ‘90, Alekhnovich et al. ‘08].

• Relationship between exact learnability and PAC learnability 
[Angluin‘87]:

• Efficient exactly learnability with equivalence queries implies 
efficient PAC learnability

• Efficient exact learnability with equivalence queries and 
membership queries implies efficient PAC learnability with 
membership queries

• Caveat: this assumes that the evaluation problem is in PTime (i.e., 
given a concept c and an example x, we can efficiently test if c(x)=1).

22



Our main results

 Exact learning models

• GAV(S,T) is efficiently exactly learnable with membership queries 
and equivalence queries. 

• Both types of queries are needed, unless S has only unary relations.

 Approximate learning models

• GAV(S,T) is not efficiently PAC learnable (assuming RP ≠ NP), 
unless S has only of unary relations. 

• GAV(S,T) is efficiently PAC learnable with membership queries and 
an oracle for NP.

 Computing a fitting GAV schema mapping of near minimal length

• One cannot approximate efficiently, up to a polynomial, the shortest 
GAV schema mapping fitting a given set of data examples.

23



• All (non-)learnability continue to hold if we consider only 
uniquely characterizable GAV schema mappings.

24



Exact learnability

• Theorem: GAV(S,T) is efficiently exactly learnable with 
membership and equivalence queries.

• Proof sketch:

• Let Mg to be the (unknown) goal GAV schema mapping.

• Our algorithm will work by maintaining a hypothesis GAV 
schema mapping Mh such that Mg ⊨ Mh. Initially, Mh = ∅, and 
after polynomially many iterations, provably Mh &Mg.

• NB: the algorithm cannot even evaluate a hypothesis Mh on an 
example, as the evaluation problem is coNP-hard. On the other 
hand, the algorithm can evaluate Mg on an example 
(membership query).

25



• Definition: For two GAV constraints C, C’, we write C → C’ if the left- 
and right-hand side of C can be homomorphically mapped into the left- 
and right-hand side of C’.

 Example: 

 C     Rxy ( Ryz  → Txz

 C’       Rxx ( Sx → Txx

• Lemma: Let M,M’ be sets of GAV constraints and C,C’ GAV constraints. 
Then

(i) M ⊨ C if and only if C’ → C for some C’ ∈ M.

(ii) M ⊨ M’ if and only ∀C’∈M’ ∃C∈M . (C → C’)

26



current 
hypothesis

goal schema 
mapping

Idea 1:  maintain an “under-approximation” of the goal schema 
mapping (the initial hypothesis is the empty schema mapping)

Idea 2:  any counterexample to an equivalence query can be 
efficiently transformed (using membership queries) into new 
constraint C’i+1 that we add to the current hypothesis.

Idea 3:  in polynomial many steps, we arrive at cg.27



Exact learnability (summary)

• Theorem (stated again): GAV(S,T) is efficiently exactly learnable 
with membership and equivalence queries.

• Theorem: GAV(S,T) is not efficiently exactly learnable with 
membership queries, unless S contains only unary predicates.

 (Combinatorial argument: exponentially many data examples may be 
needed in order to identify the goal schema mapping with certainty.)

• Theorem: GAV(S,T) is not efficiently exactly learnable with 
equivalence queries, unless S contains only unary predicates.

 (Reduction from the analogous problem for Monotone DNF formulas 
[Angluin ‘87; ‘90].)

28



PAC learnability

• PAC (Probabilistically Approximately Correct) learning algorithm:

• Input: a natural number n bounding the size of the goal concept, 
and rationals )>0 and *>0.

• Algorithm has access to an oracle that generates labeled random 
examples according to some probability distribution.

• For every goal concept of size at most n, and for every probability 
distribution D, the algorithm, when given labeled random 
examples drawn from D, produces with high probability (1-)), a 
hypothesis that has a small expected error (*) on random 
examples drawn from D.

• The algorithm terminates in time polynomial in 1/) , 1/* , n , and 
the maximal size of a labeled example returned by the oracle.

29



PAC learnability

• Theorem: GAV(S,T) is not efficiently PAC learnable, unless S 
contains only unary relations.

 The proof is based on a reduction from non-PAC learnability of 
monotone DNF formulas [Alekhnovich et al. ‘08]

• Theorem: GAV(S,T) is efficiently PAC learnable with membership 
queries and an oracle for NP.

 Obtained as a consequence of the exact learnability result (the need 
for an NP oracle reflects the hardness of checking whether a 
candidate schema mapping fits a given data example)

30



Approximating the Smallest 
Fitting Schema Mapping

• Call a set of labeled examples consistent if a fitting GAV schema 
mapping exists.

• Recall: For any consistent set of labeled examples, a canonical 
fitting GAV schema mapping can be computed in linear time.

• The canonical fitting GAV schema mapping has the same order of 
size as the input examples. Much shorter fitting GAV schema 
mappings may exist.

• Can we do better? Can we compute a fitting GAV schema mapping 
whose size is close to minimal?

31



Approximating the Smallest 
Fitting Schema Mapping

• Theorem: there is no polynomial time algorithm that, given a 
consistent set of data examples, produces a fitting GAV schema 
mapping of size less than nk, for fixed k, where n is the size of the 
smallest fitting GAV schema mapping (assuming RP≠NP) 

• Obtained as a corollary of our non-efficient PAC learnability result 
(in fact we obtain a slightly stronger non-approximability result.)

• The same result holds when the input is a single universal example.

32



Conclusion on Learning Schema 
Mappings

• We studied the problem of obtaining a schema mapping from data 
examples from the lens of computational learning theory.  

• We obtained both positive and negative results.

- GAV schema mappings are efficiently exactly learnable, but only if 
both membership and equivalence queries are allowed.

- GAV schema mappings are not PAC learnable, but they are PAC 
learnable with membership queries and access to an NP-oracle.

• Open questions: 

- are GAV schema mappings efficiently PAC learnable with 
membership queries (and without an NP-oracle)?

- What about LAV schema mappings, and GLAV schema mappings?
33



Deriving Schema Mappings from 
Data Examples

• Further open question

- Richer schema mapping languages (including, e.g., target 
constraints, data value transformation, ...)

- Suitable definitions of “approximate fitting” for data examples, 
for which no fitting schema mapping exists.

34



Final Words

• Data example are useful in schema mapping design, understanding, 
refinement.

• Two main thrusts:

- Illustrating/characterizing a (candidate) schema via data examples 

- Deriving schema mappings from examples 

• The research we presented draws from different areas, such as 
databases, constraint satisfaction, logic, and computational learning.

• Schema mapping design can be a difficult task, and data examples 
constitute a helpful tool. 

35


