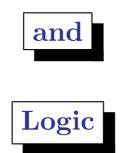
Constraint Satisfaction



Phokion G. Kolaitis

IBM Almaden Research Center

and

UC Santa Cruz

Tutorial Outline

Part I: Queries and Logics

- Queries & Definability of Queries
- First-Order Logic, Existential Second Logic
- Combined, Expression, and Data Complexity

Part II: Logic and CSP Problems

- Conjunctive Queries
- The Chandra-Merlin Theorem
- MMSNP & its extensions.

Part III: Logic and Tractability of CSP

- First-Order Logic and CSP
- Datalog
- Finite-Variable Logics and Pebble Games

Definitions:

- Vocabulary σ : a set $\sigma = \{R'_1, \ldots, R'_m\}$ of relation symbols of specified arities.
- σ -structure $\mathbf{A} = (A, R_1, \dots, R_m)$: a non-empty set A and relations on A such that arity $(R_i) = \operatorname{arity}(R'_i), 1 \le i \le m$.
- Finite σ -structure **A**: universe A is finite

Examples:

- Graph: $\mathbf{G} = (V, E)$, where E is binary.
- String: $\mathbf{S} = (\{1, 2, \dots, n\}, P)$, where P is unary

 $m \in P \iff$ the *m*-th bit of the string is 1.

- string 10001 encoded as $(\{1, 2, 3, 4, 5\}, \{1, 5\})$

Basic Concepts

Example: 3-CNF formulas as finite structures

Every 3-CNF formula can be viewed as a finite structure of the form $\mathbf{A} = (A, R_0, R_1, R_2, R_3)$, where each R_i is a ternary relation.

- 3-CNF formula φ with variables x_1, \ldots, x_n
- Structure $\mathbf{A}^{\varphi} = (\{x_1, \dots, x_n\}, R_0^{\varphi}, R_1^{\varphi}, R_2^{\varphi}, R_3^{\varphi}),$ where

$$\begin{array}{lll} R_0^{\varphi} &=& \{(x,y,z): (x \lor y \lor z) \text{ is a clause of } \varphi\} \\ R_1^{\varphi} &=& \{(x,y,z): (\neg x \lor y \lor z) \text{ is a clause of } \varphi\} \\ R_2^{\varphi} &=& \{(x,y,z): (\neg x \lor \neg y \lor z) \text{ is a clause of } \varphi\} \\ R_3^{\varphi} &=& \{(x,y,z): (\neg x \lor \neg y \lor \neg z) \text{ is a clause of } \varphi\} \end{array}$$

Queries

Definitions:

- Class C of structures: a collection of relational σ -structures closed under isomorphisms.
- k-ary Query Q on C:
 a mapping Q with domain C and such that
 Q(A) is a k-ary relation on A, for A ∈ C;
 - Q is preserved under isomorphisms, i.e., if $h : \mathbf{A} \to \mathbf{B}$ is an isomorphism, then

$$Q(\mathbf{B}) = h(Q(\mathbf{A})).$$

• Boolean Query Q on C:

a mapping $Q : \mathcal{C} \to \{0,1\}$ preserved under isomorphisms. Thus, Q can be identified with the subclass \mathcal{C}' of \mathcal{C} , where

$$\mathcal{C}' = \{ \mathbf{A} \in \mathcal{C} : Q(\mathbf{A}) = 1 \}.$$

Examples of Queries

- PATH OF LENGTH 2: P2
 Binary query on graphs H = (V, E) such that
 P2(H) = {(a, b) ∈ V²: there is a path of length 2 free
- S-T CONNECTIVITY: TC
 Binary query on graphs H = (V, E) such that
 TC(H) = {(a, b) ∈ V²: there is a path from s to t}.
- CONNECTIVITY CN: Boolean query on graphs $\mathbf{H} = (V, E)$ such that

 $CN(\mathbf{H}) = \begin{cases} 1 & \text{if } \mathbf{H} \text{ is connected} \\ 0 & \text{otherwise.} \end{cases}$

- k-Colorability $k \ge 2$
- 3-SAT (with formulas viewed as structures)

Definability of Queries

Let L be a logic and \mathcal{C} a class of structures

• A k-ary query Q on C is *L*-definable if there is an *L*-formula $\varphi(x_1, \ldots, x_k)$ with x_1, \ldots, x_k as free variables and such that for every $\mathbf{A} \in C$

 $Q(\mathbf{A}) = \{(a_1, \dots, a_k) \in A^k : \mathbf{A} \models \varphi(a_1, \dots, a_k)\}.$

• A Boolean query Q on C is *L*-definable if there is an *L*-sentence ψ such that for every $\mathbf{A} \in C$

$$Q(\mathbf{A}) = 1 \iff \mathbf{A} \models \psi.$$

First-Order & Second-Order Logic

- First-Order Logic FO (on graphs):
 - first-order variables: x, y, z, \ldots
 - atomic formulas: E(x, y), x = y
 - formulas: atomic formulas + connectives + first-order quantifiers $\exists x, \forall x, \exists y, \forall y, \dots$ that range over the nodes of the graph.
- Second-Order Logic SO:

First-order logic + second-order quantifiers $\exists S, \forall S, \exists T, \forall T, \dots$ ranging over relations of specified arities on the universe of structures.

• Existential Second-Order Logic ESO:

 $(\exists S_1) \cdots (\exists S_m) \varphi(\overline{x}, S_1, \dots, S_m)$, where φ is FO.

• Universal Second-Order Logic USO:

 $(\forall S_1) \cdots (\forall S_m) \varphi(\overline{x}, S_1, \dots, S_m)$, where φ is FO.

First-Order Definability

Example: On the class \mathcal{G} of finite graphs

- The query PATH OF LENGTH 2 is FO-definable $P2(\mathbf{H}) = \{(a, b) \in V^2 : \mathbf{H} \models \exists z (E(a, z) \land E(z, b))\}.$
- The queries TRANSITIVE CLOSURE, CONNEC-TIVITY, k-COLORABILITY, $k \ge 2$, are **not** FOdefinable.

Example: On the class of all finite structures with 4 ternary relations:

The query 3-SAT is **not** first-order definable.

Note: Results about non-definability in FO-logic can be proved using Ehrenfeucht-Fraïssé Games.

Second-Order Definability

Fact: The queries DISCONNECTIVITY, k-COLORABILITY, 3-SAT are ESO-definable.

• DISCONNECTIVITY:

$$\begin{split} \exists S(\exists x S(x) \land \exists y \neg S(y) \land \\ (\forall z \forall w (S(z) \land \neg S(w) \rightarrow \neg E(z,w))). \end{split}$$

• 2-COLORABILITY:

$$\exists R \forall x \forall y (E(x, y) \to (R(x) \leftrightarrow \neg R(y))).$$

• **3-SAT**:

 $\exists S \forall x \forall y \forall z ((R_0(x, y, z) \to S(x) \lor S(y) \lor S(z)) \land$

$$(R_1(x, y, z) \to \neg S(x) \lor S(y) \lor S(z)) \land$$
$$(R_2(x, y, z) \to \neg S(x) \lor \neg S(y) \lor S(z)) \land$$
$$(R_3(x, y, z) \to \neg S(x) \lor \neg S(y) \lor \neg S(z))).$$

The Complexity of Logic

Definition: (Vardi -1982) Let L be a logic.

- The combined complexity of L is the following decision problem:
 Given a finite structure A and an L-sentence ψ, does A ⊨ ψ?
 (i.e., it is the model checking problem for L)
- The data complexity of L is the family of the following decision problems P_{ψ} , one for each fixed L-sentence ψ :

Given a finite structure **A**, does $\mathbf{A} \models \psi$?

• The expression complexity of L is the family of the following decision problems $P_{\mathbf{A}}$, one for each fixed finite structure \mathbf{A} :

Given an *L*-sentence ψ , does $\mathbf{A} \models \psi$?

The Complexity of Logic

Definition: L a logic and C a complexity class.

- The data complexity of L is in C if for each L-sentence ψ , the problem P_{ψ} is in C.
- The data complexity of L is C-complete if it is in C and there is at least one L-sentence ψ such that P_{ψ} is C-complete.
- The expression complexity of L is in C if for each finite structure **A**, the problem P_A is in C.
- The expression complexity of L is C-complete if it is in C and there is at least one finite structure **A** such that $P_{\mathbf{A}}$ is C-complete.

The Complexity of First-Order Logic

Theorem: The following hold for first-order logic:

- The data complexity of FO is in LOGSPACE
- The expression complexity of FO is PSPACEcomplete
- The combined complexity of FO is PSPACEcomplete.

Proof:

- Fix a first-order sentence ψ. Given finite A:
 Cycle through all possible instantiations of the quantifiers of ψ in A, keeping track of the number of them using a counter in binary.
- QBF is PSPACE-complete (Stockmeyer 1976).
 QBF is the expression complexity of FO on a structure with two distinct elements. ■

The Complexity of ESO

Theorem: The data complexity of ESO is NP-complete.

Proof:

• Let Ψ be an ESO-sentence of the form

$$\exists S_1 \cdots \exists S_m \varphi.$$

Given a finite structure \mathbf{A} , to test that $\mathbf{A} \models \Psi$,

- 1. "Guess" relations S'_1, \ldots, S'_m on A;
- 2. Verify that $(\mathbf{A}, S'_1, \dots, S'_m) \models \varphi$, using the fact that the data complexity of FO is in P.
- 3-COLORABILITY is definable by an ESO-sentence and is NP-complete. ■

Theorem Both the expression complexity and the combined complexity of ESO are NEXPTIME-complete.

Descriptive Complexity

Note: Actually, a much stronger result holds for the data complexity of ESO:

Theorem: Fagin – 1972

The following are equivalent for a Boolean query Q on the class \mathcal{F} of all finite σ -structures.

- Q is in NP.
- Q is ESO-definable on \mathcal{F} .

In other words, NP = ESO on \mathcal{F} .

Tutorial Outline

Part I: Queries and Logics

- Queries & Definability of Queries
- First-Order Logic, Existential Second Logic
- Combined, Expression, and Data Complexity

Part II: Logic and CSP Problems

- Conjunctive Queries
- The Chandra-Merlin Theorem
- MMSNP & its extensions.

Part III: Logic and Tractability of CSP

- First-Order Logic and CSP
- Datalog
- Finite-Variable Logics and Pebble Games

Fragments of First-Order Logic

- First-order logic FO has high expression and combined complexity (PSPACE-complete).
- However, there are interesting *fragments* of FO such that:
 - 1. they have lower expression and combined complexity;
 - 2. they have been extensively studied in *database* theory;
 - 3. they are intimately connected to *constraint satisfaction*.

Conjunctive Queries

Definition: A conjunctive query is a query definable by a FO-formula in prenex normal form built from atomic formulas, \wedge , and \exists only.

$$(\exists z_1 \ldots \exists z_m) \psi(x_1, \ldots, x_k, z_1, \ldots, z_m),$$

where ψ is a conjunction of atomic formulas.

Note: CQs can also be written as a *rule*:

 $Q(x_1, \ldots, x_k) := -R(y_2, x_3, x_1), S(x_1, y_3), \ldots, S(y_7, x_2)$

Examples:

• PATH OF LENGTH 2 (Binary query)

$$(\exists z)(E(x_1, z) \land E(z, x_2))$$

 $P2(x_1, x_2) :- E(x_1, z), E(z, x_2)$

• CYCLE OF LENGTH 3 (Boolean query) $(\exists x_1 \exists x_2 \exists x_3) (E(x_1, x_2) \land E(x_2, x_3) \land E(x_3, x_1))$ $Q := E(x_1, x_2), E(x_2, x_3), E(x_3, x_1)$

Conjunctive Queries & Databases

Relational Joins
Database relations R₁(A, B, C), R₂(B, C, D).
By definition,

 $R_1 \bowtie R_2 = \{(a, b, c, d) : R_1(a, b, c) \text{ and } R_2(b, c, d)\}.$ Clearly,

 $R_1 \bowtie R_2(x, y, z, w) :- R_1(x, y, z), R_2(y, z, w)$

- Relational joins are precisely the CQs without existential quantification.
- Conjunctive Queries are the most frequently asked queries in databases (a.k.a. SPJ queries)
- The main construct of SQL expresses conjunctive queries SELECT $R_1.A, R_2.D$ FROM R_1, R_2 WHERE $R_1.B = R_2.B$ AND $R_1.C = R_2.C$

Conjunctive Query Evaluation

A fundamental problem about conjunctive queries **Definition:** CONJUNCTIVE QUERY EVALUATION

• Given a CQ Q and a structure **A**, find

$$Q(\mathbf{A}) = \{(a_1, \dots, a_k) : \mathbf{A} \models Q(a_1, \dots, a_k)\}$$

- For Boolean queries Q, this becomes: Given Q and \mathbf{A} , does $\mathbf{A} \models Q$? (is $Q(\mathbf{A}) = 1$?)
- Same problem as the combined complexity of conjunctive queries

Examples:

- Given a graph H, find all pairs of nodes connected by a path of length 4.
- Given a graph H, does it contain a triangle?

Conjunctive Query Containment

A fundamental problem about conjunctive queries

Definition: CONJUNCTIVE QUERY CONTAINMENT

• Given two k-ary CQs Q_1 and Q_2 , is it true that for every structure **A**,

$$Q_1(\mathbf{A}) \subseteq Q_2(\mathbf{A})?$$

• For Boolean queries, this becomes: Given two Boolean queries Q_1 and Q_2 , does $Q_1 \models Q_2$? (does Q_1 logically imply Q_2 ?)

Examples:

- Is it true that if two nodes of a graph **H** are connected by a path of length 4, then they are also connected by a path of length 3?
- It is true that if a graph **H** contains a **K**₄, then it also contains a **K**₃?

Conjunctive Queries and Homomorphisms

- Chandra and Merlin (1977) showed that CONJUNCTIVE QUERY EVALUATION and CONJUNCTIVE QUERY CONTAINMENT are the *same* problem.
- The link is the HOMOMORPHISM PROBLEM

Homomorphisms

Definition: Consider two relational structures $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$ and $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

 $h : \mathbf{A} \to \mathbf{B}$ is a homomorphism if for every $i \leq m$ and every tuple $(a_1, \ldots, a_n) \in A^n$,

$$R_i^{\mathbf{A}}(a_1,\ldots,a_n) \implies R_i^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

Definition: The HOMOMORPHISM PROBLEM Given two relational structures **A** and **B**, is there a homomorphism $h : \mathbf{A} \to \mathbf{B}$?

In symbols, does $\mathbf{A} \to \mathbf{B}$?

Example: A graph $\mathbf{H} = (V, E)$ is 3-colorable \iff

there is a homomorphism $h : \mathbf{H} \to \mathbf{K}_3$, where \mathbf{K}_3 is the 3-clique, i.e., $\mathbf{K}_3 = (\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}, E_3)$, where

 $E_3 = \{ (\mathbf{R}, G), (G, \mathbf{R}), (\mathbf{R}, B), (B, \mathbf{R}), (B, G), (G, B) \}.$

Canonical CQs and Canonical Structures

Definition: Canonical Conjunctive Query Given $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$, the canonical CQ of \mathbf{A} is the Boolean CQ $Q^{\mathbf{A}}$ with the elements of Aas variables and the "facts" of \mathbf{A} as conjuncts:

$$Q^{\mathbf{A}} : - \bigwedge_{i=1}^{m} \bigwedge_{\mathbf{t}} R_i^{\mathbf{A}}(\mathbf{t})$$

Definition: Canonical Structure

Given a Boolean conjunctive query Q, let \mathbf{A}^{Q} be the structure with the variables of Q as elements and the conjuncts of Q as "facts".

Example:

• $\mathbf{A} = (\{a, b, c\}, \{(a, b), (b, c), (c, a)\}$ $Q^{\mathbf{A}} : - E(x, y) \land E(y, z) \land E(z, x)$

•
$$Q := E(x, y) \wedge E(x, z)$$

 $\mathbf{A}^Q = (\{a, b, c), \{(a, b), (a, c)\})$

Homomorphisms, CQC and CQE

Theorem: Chandra & Merlin – 1977 For relational structures **A** and **B**, TFAE

- There is a homomorphism $h : \mathbf{A} \to \mathbf{B}$
- $\mathbf{B} \models Q^{\mathbf{A}}$ (i.e., $Q^{\mathbf{A}}(\mathbf{B}) = 1$)
- $Q^{\mathbf{B}} \subseteq Q^{\mathbf{A}}$

Alternatively,

For conjunctive queries Q_1 and Q_2 , TFAE

- $Q_1 \subseteq Q_2$
- There is a homomorphism $h: \mathbf{A}^{Q_2} \to \mathbf{A}^{Q_1}$
- $\mathbf{A}^{Q_1} \models Q_2$ (i.e., $Q_2(\mathbf{A}^{Q_1}) = 1$)

Illustration: 3-COLORABILITY

For a graph \mathbf{H} , the following are equivalent:

- 1. There is a homomorphism $h : \mathbf{H} \to \mathbf{K_3}$
- 2. $\mathbf{K}_3 \models Q^{\mathbf{H}}$
- 3. $Q^{\mathbf{K}_3} \subseteq Q^{\mathbf{H}}$

Proof:

(1) \implies (2): A hom. $h : \mathbf{H} \to \mathbf{K_3}$ provides witnesses in $\mathbf{K_3}$ for the existential quantifiers in $Q^{\mathbf{H}}$.

(2) \implies (3): If $\mathbf{K}_3 \models Q^{\mathbf{H}}$ and $\mathbf{A} \models Q^{\mathbf{K}_3}$, then there are witness functions $h : \mathbf{H} \to \mathbf{K}_3$ and $h^* : \mathbf{K}_3 \to \mathbf{A}$.

The composition $h^* \circ h : \mathbf{H} \to \mathbf{A}$ provides witnesses in \mathbf{A} for the existential quantifiers in $Q^{\mathbf{H}}$.

(3) \Longrightarrow (1): Since $\mathbf{K}_3 \models Q^{\mathbf{K}_3}$, we have $\mathbf{K}_3 \models Q^{\mathbf{H}}$. The witnesses to the existential quantifiers give a homomorphism from \mathbf{H} to \mathbf{K}_3 .

Illustration: 3-SAT

Let φ be a 3-CNF formula with variables x_1, \ldots, x_n :

•
$$\mathbf{A}^{\varphi} = (\{x_1, \dots, x_n\}, R_0^{\varphi}, R_1^{\varphi}, R_2^{\varphi}, R_3^{\varphi}), \text{ where }$$

$$\begin{array}{lll} R_0^{\varphi} &=& \{(x,y,z) : (x \lor y \lor z) \text{ is a clause of } \varphi\} \\ R_1^{\varphi} &=& \{(x,y,z) : (\neg x \lor y \lor z) \text{ is a clause of } \varphi\} \\ R_2^{\varphi} &=& \{(x,y,z) : (\neg x \lor \neg y \lor z) \text{ is a clause of } \varphi\} \\ R_3^{\varphi} &=& \{(x,y,z) : (\neg x \lor \neg y \lor \neg z) \text{ is a clause of } \varphi\} \end{array}$$

•
$$\mathbf{B} = (\{0, 1\}, R_0, R_1, R_2, R_3)$$
, where
 $R_0 = \{0, 1\}^3 - \{(0, 0, 0)\}$ $R_1 = \{0, 1\}^3 - \{(1, 0, 0)\}$
 $R_2 = \{0, 1\}^3 - \{(1, 1, 0)\}$ $R_3 = \{0, 1\}^3 - \{(1, 1, 1)\}$
Corollary: The following are equivalent:

- φ is satisfiable.
- $\mathbf{A}^{\varphi} \to \mathbf{B}$

• $\mathbf{B} \models Q^{\mathbf{A}^{\varphi}}$ • $Q^{\mathbf{B}} \subseteq Q^{\mathbf{A}^{\varphi}}$

CSP and Conjunctive Queries

Conclusion 1:

- Constraint Satisfaction
- The Homomorphism Problem
- Conjunctive Query Evaluation
- Conjunctive Query Containment

are the *same* problem.

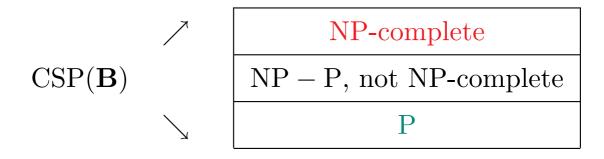
Conclusion 2:

Both the combined complexity and the expression complexity of conjunctive query evaluation are NPcomplete (contrast with FO-logic). The Feder-Vardi Dichotomy Conjecture

Definition: $CSP(\mathbf{B}) = \{A : A \to B\}$

Conjecture: Feder-Vardi, 1993

If \mathbf{B} is a finite structure, then $CSP(\mathbf{B})$ is in P or it is NP-complete.



Note: This amounts to a dichotomy conjecture about the expression complexity of conjunctive queries

 $CSP(\mathbf{B}) = \{\mathbf{A} : \mathbf{B} \models Q^{\mathbf{A}}\}\$ $= \{Q : Q \text{ is a conjunctive query and } \mathbf{B} \models Q\}$

CSP and Data Complexity

- We saw that CSP(B) is the same problem as the expression complexity of conjunctive queries.
- The data complexity of conjunctive queries is in LOGSPACE, so CSP(**B**) cannot be captured by the data complexity of conjunctive queries.
- However, CSP(**B**) is intimately connected to the data complexity of a fragment of existential second-order logic, called *monadic monotone strict* NP, and denoted by MMSNP.

Existential Monadic Second-Order Logic

Definition: Existential Monadic SO-Logic (also known as Monadic NP)

$$\exists S_1 \exists S_2 \cdots \exists S_m \psi,$$

where S_1, \ldots, S_m are set variables and ψ is FO.

Fact: If $\mathbf{B} = (B, R_1, \dots, R_m)$ is a finite structure, then $CSP(\mathbf{B})$ is definable by a sentence of existential monadic second-order logic with a universal first-order part, i.e., by a sentence of the form

$$\exists S_1 \cdots \exists S_n \forall y_1 \cdots \forall y_s \theta,$$

where θ is quantifier-free.

Proof: Use one S_i for each element of $B = \{1, \ldots, n\}$, so that S_i is the set of all elements of **A** that are mapped to i, for $1 \le i \le n$.

CSP and Monadic NP

Example: 3-COLORABILITY

 $\exists R \exists G \exists B \forall x \forall y \theta$, where θ asserts

• R, B, G form a partition

 $(R(x) \lor B(x) \lor G(x)) \land$

 $\neg (R(x) \land B(x)) \land \neg (B(x) \land G(x)) \land \neg (R(x) \land G(x)) \land (R(x) \land G(x)) \land$

• If (x, y) is an edge, then x and y are in different parts.

 $(E(x,y) \to (R(x) \to \neg R(y)) \land (B(x) \to \neg B(y)) \land (G(x) \to (G(x) \to \neg B(y)) \land (G(x) \to (G(x)$

Characteristics:

- *Monadic*: SO-quantifiers over set variables only;
- *Strict*: only universal FO-quantifiers;
- Monotone: all occurrences of E are negated; there are no \neq .

MMSNP - Monadic Monotone Strict NP

Definition: Feder-Vardi, 1993

MMSNP is the class of all monadic ESO-formulas

$$(\exists S_1 \cdots \exists S_n) (\forall y_1 \cdots \forall y_s) \theta,$$

such that

- all relations in the vocabulary have only negative occurrences in θ ;
- no inequalities \neq occur in θ .

Proposition: Feder-Vardi, 1993

For every structure $\mathbf{B} = (B, R_1, \dots, R_m)$, there is a MMNSP-formula $\Psi_{\mathbf{B}}$ that defines $\text{CSP}(\mathbf{B})$.

Thus, each $CSP(\mathbf{B})$ is a query about the data complexity of MMSNP.

CSP vs. MMSNP

Question: What is the exact relationship between CSP and MMSNP?

Theorem: Feder-Vardi, 1993

Every MMSNP-query has a randomized polynomialtime Turing reduction to finitely many $CSP(\mathbf{B})$ queries.

Theorem: Kun, 2006

The reduction of MMSNP to CSP can be de-randomized.

Corollary:

(1) CSP and MMSNP are polynomially equivalent.

(2) The Dichotomy Conjecture for CSP is the same as a Dichotomy Conjecture for MMSNP.

CSP vs. Monadic NP

Theorem: Feder-Vardi, 1993

Every problem in NP is polynomially equivalent to

- a problem in strict, monotone, ESO;
- a problem in monadic, monotone, strict ESO with ≠;
- a problem in monadic, strict, \neq -free ESO.

Corollary: Assuming $P \neq NP$, the Dichotomy Conjecture fails for all extensions of MMSNP.

Summary

• The HOMOMORPHISM PROBLEM is the same as the combined complexity of conjunctive queries (a fragment of first-order logic)

$$\mathbf{A} \to \mathbf{B} \iff \mathbf{B} \models Q^{\mathbf{A}}$$

 CSP(B) is the same problem as the expression complexity of conjunctive queries (a fragment of FO-logic):

Given a structure \mathbf{A} , does $\mathbf{B} \models Q^{\mathbf{A}}$?

- $Q^{\mathbf{A}}$ is the canonical conjunctive query of \mathbf{A} .
- CSP(B) is polynomially equivalent to the data complexity of MMSNP (a fragment of ESO-logic):
 Given a structure A, does B ⊨ Ψ_B?
 Ψ_B is a MMSNP-sentence obtained from B.

Tutorial Outline

Part I: Queries and Logics

- Queries & Definability of Queries
- First-Order Logic, Existential Second Logic
- Combined, Expression, and Data Complexity

Part II: Logic and CSP Problems

- Conjunctive Queries
- The Chandra-Merlin Theorem
- MMSNP & its extensions.

Part III: Logic and Tractability of CSP

- First-Order Logic and CSP
- Datalog
- Finite-Variable Logics and Pebble Games

Complexity of CSP

Uniform CSP: The Homomorphism Problem

 $\mathrm{CSP} = \{(\mathbf{A}, \mathbf{B}) : \mathbf{A} \to \mathbf{B}\}$

- Combined complexity of conjunctive queries
- NP-complete.

Non-Uniform CSP: For every structure **B**,

$$\mathrm{CSP}(\mathbf{B}) = \{\mathbf{A} : \mathbf{A} \to \mathbf{B}\}\$$

- Expression complexity of conjunctive queries;
- Data complexity of MMSNP;
- It is in NP; can be NP-complete.

Research Program: Identify *all* tractable cases of CSP.

Islands of Tractability of CSP

Definition: Let C be a class of pairs $(\mathcal{A}, \mathcal{B})$ of structures.

- $\operatorname{CSP}(\mathcal{C}) = \{ (\mathbf{A}, \mathbf{B}) \in \mathcal{C} : \mathbf{A} \to \mathbf{B} \}$
- We say that C is an *island of tractability of* CSP if CSP(C) is in P.

Research Program: Identify *all* islands of tractability of CSP.

Fact: So far, the main focus has been on islands of tractability C of the form $C = A \times B$, where A and B are two classes of finite structures.

 $\mathrm{CSP}(\mathcal{A},\mathcal{B}) = \{ (\mathbf{A},\mathbf{B}) \in \mathcal{A} \times \mathcal{B} : \mathbf{A} \to \mathbf{B} \}$

Note: $CSP(B) = CSP(All, \{B\})$

Logic and Tractability of Non-Uniform CSP

Research Program: Identify *all* islands of tractability of non-uniform CSP, that is, all structures \mathbf{B} such that $CSP(\mathbf{B})$ is in P.

Approach through Logic:

- Use logics with tractable data complexity to identify tractable cases of non-uniform CSP.
- If L is a logic whose data complexity is in P and if B is such that CSP(B) is definable by an L-formula, then CSP(B) is in P.

Case Study: First-Order Logic

- The data complexity of FO is in P (in fact, in LOGSPACE).
- When is CSP(**B**) FO-definable?

First-Order Logic and Non-Uniform CSP

Theorem: Atserias - 2005

The following are equivalent for a structure \mathbf{B} :

- CSP(**B**) FO-definable.
- $\overline{\text{CSP}(\mathbf{B})} = \{\mathbf{A} : \mathbf{A} \not\rightarrow \mathbf{B}\}$ is definable by a finite union of conjunctive queries.

Note: Follows also from Rossman's Theorem (2005) about preservation under homomorphisms.

Theorem: Larose, Loten, and Tardif - 2006 The problem of deciding, given **B**, whether CSP(**B**) is FO-definable is NP-complete.

Note: Membership in NP is non-trivial.

Datalog

Note: Recall that CQs can be written as *rules*:

$$P2(x_1, x_2) :- E(x_1, z), E(z, x_2)$$

Definition:

- Datalog = Conjunctive Queries + Recursion
 Function, negation and ≠-free logic programs
- A Datalog program is a finite set of rules given by conjunctive queries

$$T(\overline{x}) :- S_1(\overline{y}_1), \dots, S_r(\overline{y}_r).$$

- Some relation symbols may occur both in the *heads* and the *bodies* of rules.
 These are the *recursive* relation symbols or *intensional database predicates* (IDBs).
- The remaining relation symbols are the *extensional database predicates* (EDBs).

Datalog Examples

Definition: TRANSITIVE CLOSURE Query TCGiven graph $\mathbf{H} = (V, E)$,

 $TC(\mathbf{H}) = \{(a, b) \in V^2 : \text{there is a path from } a \text{ to } b\}.$

Example 1: Datalog program for TC

$$S(x,y) := E(x,y)$$

$$S(x,y) := E(x,z) \land S(z,y)$$

Example 2: Another Datalog program for TC

$$S(x,y) := E(x,y)$$

$$S(x,y) := S(x,z) \land S(z,y)$$

- E is the EDB.
- S is the IDB; it defines TC.

Datalog Examples

Definition: S. Cook – 1974

PATH SYSTEMS $\mathbf{S} = (F, A, R)$

Given a finite set of formulas F, a set of axioms $A \subseteq F$, and a rule of inference $R \subseteq F^3$, compute the *theorems* of this system.

Example: Datalog program for PATH SYSTEMS:

$$T(x) :- A(x)$$

$$T(x) :- T(y), T(z), R(x, y, z)$$

- A and R are the EDBs.
- T is the IDB; it defines the theorems of **S**.

Theorem: Cook - 1974

PATH SYSTEMS is a P-complete query.

Data Complexity of Datalog

Theorem:

- Every Datalog query is definable by an "effective and uniform" union of conjunctive queries.
- Every Datalog query is in P.
- The data complexity of Datalog is P-complete.

Proof:

- Datalog programs can be evaluated "bottomup" in a polynomial number of iterations.
- Each iteration is definable by a finite union of conjunctive queries.
- PATH SYSTEMS is a P-complete problem.

Evaluation of Datalog Programs

Example : Datalog program for TC

$$S(x,y) := E(x,y)$$

$$S(x,y) := E(x,z) \land S(z,y)$$

Bottom-up Evaluation

$$S^{0} = \emptyset$$

$$S^{m+1} = \{(a,b)\} : \exists z (E(a,z) \land S^{m}(z,b)\}$$

Fact:

 $S^m = \{(a.b) : \text{there is a path of length} \le m \text{ from } a \text{ t}$ $TC = \bigcup_m S^m$ $TC = S^{|V|}.$

Preservation Properties

Fact: *Preservation Properties* of Datalog.

Datalog queries are preserved under homomorphisms:
Let Q be a Datalog query. If A ⊨ Q and

 $\mathbf{A} \to \mathbf{B}$, then $\mathbf{B} \models Q$.

• Similarly, Datalog queries are *monotone*, i.e., they query is preserved if new tuples are added to the EDBs.

Reason: Unions of conjunctive queries have these preservation properties.

Fact: Let $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}}).$

- In general, $CSP(\mathbf{B})$ is *not* monotone.
- Hence, $CSP(\mathbf{B})$ is *not* expressible in Datalog.

However,

• $\overline{\text{CSP}(\mathbf{B})}$ is monotone, where

$$\overline{\mathrm{CSP}(\mathbf{B})} = \{\mathbf{A}: \ \mathbf{A} \to \mathbf{B}\}.$$

• Hence, it is conceivable that CSP(B) is expressible in Datalog (and, thus, it is in P).

Datalog and CSP

Fact: Feder & Vardi – 1993

Definability of $\overline{\text{CSP}(\mathbf{B})}$ in Datalog is a unifying explanation for many tractability results about $\text{CSP}(\mathbf{B})$.

Example: 2-COLORABILITY = $CSP(\mathbf{K}_2)$ Datalog program for NON 2-COLORABILITY

$$O(X,Y) := E(X,Y)$$

$$O(X,Y) := O(X,Z), E(Z,W), E(W,Y)$$

$$Q := O(X,X)$$

Datalog and CSP

Theorem: Feder & Vardi – 1993

- If B = (B, R₁, ..., R_k) is such that Pol({R₁, ..., R_k}) contains a near-unanimity function, then CSP(B) is definable in Datalog.
 Special Case: 2-SAT
- If $\mathbf{B} = (B, R_1, \dots, R_k)$ is such that Pol($\{R_1, \dots, R_k\}$) contains an ACI function, then $\overline{\mathrm{CSP}(\mathbf{B})}$ is definable in Datalog.

Special Cases:

HORN k-SAT, DUAL HORN k-SAT, $k \ge 2$.

• There are affine Boolean structures **B** such that $\overline{\text{CSP}(\mathbf{B})}$ is **not** definable in Datalog.

Horn 3-SAT and Datalog

Horn 3-CNF formula φ viewed as a finite structure

$$\mathbf{A}^{\varphi} = (\{x_1, \dots, x_n\}), U, P, N), \text{ where}$$

- U is the set of unit clauses x
- P is the set of clauses $(\neg x \lor \neg y \lor z)$
- N is the set of clauses $(\neg x \lor \neg y \lor \neg z)$

Datalog program for HORN 3-UNSAT Unit Propagation Algorithm

$$T(Z) := U(Z)$$

$$T(Z)) := P(x, y, z), T(x), T(z)$$

$$Q := N(x, y, z), T(x), T(y), T(z)$$

CSP and Datalog

Fact: Expressibility in Datalog is a unifying explanation for many, but not all, tractability results about $CSP(\mathbf{B})$.

Open Problem: Is there an algorithm to decide whether, given \mathbf{B} , we have that $\overline{\text{CSP}(\mathbf{B})}$ is expressible in Datalog?

Note: It follows from the work of Larose, Loten, and Tardif that this problem is NP-hard.

Datalog and CSP

Question: Fix $\mathbf{B} = (B, R_1, \dots, R_m)$.

When is $\overline{\text{CSP}(\mathbf{B})}$ expressible in Datalog?

Answer:

Feder & Vardi – 1993, K ... & Vardi – 1998, 2000

Expressibility of $\overline{\text{CSP}(\mathbf{B})}$ in Datalog can be characterized in terms of

- Finite-Variable Logics
- Pebble Games
- Consistency Properties.

Existential *k*-Pebble Games

Spoiler and Duplicator play on two structures \mathbf{A} and \mathbf{B} . Each player uses k pebbles. In each move,

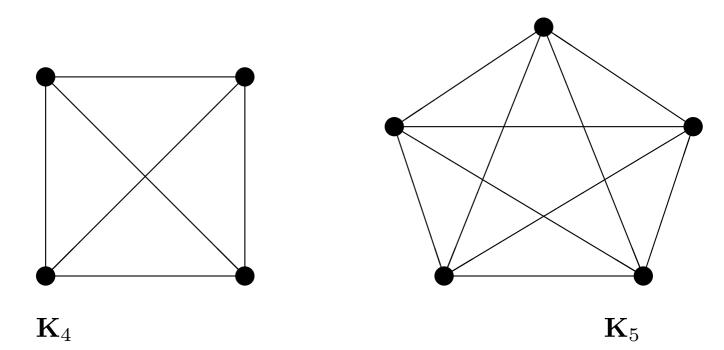
- Spoiler places a pebble on or removes a pebble from an element of **A**.
- Duplicator tries to duplicate the move on **B**.

$\mathbf{A}:$	a_1	a_2	• • •	a_l	
	\downarrow	\downarrow	• • •	\downarrow	
\mathbf{B} :	b_1	b_2	•••	b_l	$l \leq k$

- Spoiler wins the (∃, k)-pebble game if at some point the mapping a_i → b_i, 1 ≤ i ≤ l, is not a partial homomorphism.
- Duplicator wins the (\exists, k) -pebble game if the above never happens.

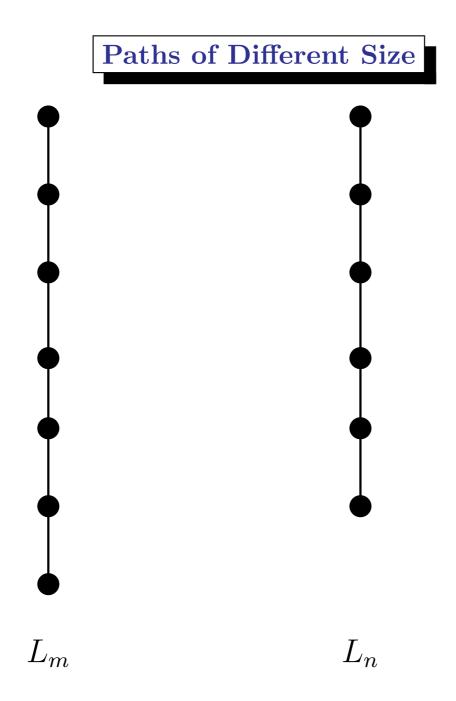
Example

Cliques of Different Size



Fact: Let \mathbf{K}_k be the *k*-clique

- Duplicator wins the (∃, k)-pebble game on K_k and K_{k+1}.
- Spoiler wins the (∃, k)-pebble game on K_k and K_{k-1}.



- Spoiler wins the $(\exists, 3)$ -pebble game on L_m and L_n , where m > n.
- Duplicator wins the $(\exists, 3)$ -pebble game on L_n and L_m , where m > n.

Winning Strategies in the (\exists, k) -Pebble Game

Definition: A winning strategy for the Duplicator in the (\exists, k) -pebble game is a non-empty family Iof partial homomorphisms from **A** to **B** such that

- If $f \in I$ and $h \subseteq f$, then $h \in I$ (I is closed under subfunctions).
- If $f \in I$ and |f| < k, then for every $a \in A$, there is $g \in I$ so that $f \subseteq g$ and $a \in \text{dom}(g)$.

(I has the forth property up to k)

Fact: If $\mathbf{A} \to \mathbf{B}$, then the Duplicator wins the (\exists, k) -pebble game on \mathbf{A} and \mathbf{B} for every k.

k-Datalog

Definition: A k-Datalog program is a Datalog program in which each rule

 t_0 : $-t_1,\ldots,t_m$

has at most k distinct variables.

Example: NON 2-COLORABILITY revisited

$$O(X,Y) := E(X,Y)$$

$$O(X,Y) := O(X,Z), E(Z,W), E(W,Y)$$

$$Q := O(X,X)$$

Therefore,

NON 2-COLORABILITY is definable in 4-Datalog.

k-Datalog and (\exists, k) -Pebble Games

Theorem: K ... & Vardi

- Let Q be a query definable by a k-Datalog program. If A satisfies Q and the Duplicator wins the (∃, k)-pebble game on A and B, then also B satisfies Q.
- There is a polynomial-time algorithm to decide whether, given two finite structures A and B, the Spoiler or the Duplicator wins the (∃, k)pebble game on A and B.
- For every fixed finite structure B, there is a k-Datalog program that expresses the query: given a finite structure A, does the Spoiler win the (∃, k)-game on A and B?

Datalog and Non-Uniform CSP

Theorem: K ... & Vardi

Let k be a positive integer and **B** a finite structure. Then the following are equivalent:

- $\overline{\text{CSP}(\mathbf{B})}$ is definable in k-Datalog
- CSP(B) = {A : Duplicator wins the
 (∃, k)-pebble game on A and B}.
- For every finite structure A, establishing strong k-consistency for A and B implies that there is a homomorphism from A to B.

The Complexity of Existential *k*-Pebble Games

Theorem: K ... and Panttaja - 2003

- (Also implicit in Kasif 1986)
 For every k ≥ 2, the following problem is P-complete:
 Given two finite structures A and B, does the Duplicator win the (∃, k)-pebble game on A and B?
- The following problem is EXPTIME-complete: Given a positive integer k and two finite structures A and B, does the Duplicator win the (∃, k)-pebble game on A and B?

Corollary:

The following problem is EXPTIME-complete:

Given a positive integer k and two finite structures **A**, **B**, can strong k-consistency be established for (the CSP instance encoded by) **A** and **B**?

Datalog and Tractability of CSP

Summary:

- Definability of $\overline{\text{CSP}(\mathbf{B})}$ in k-Datalog is a sufficient condition for tractability of $\text{CSP}(\mathbf{B})$.
- Single *canonical* polynomial-time algorithm: determine who wins the (\exists, k) -pebble game.

Open Problem:

Fix a positive integer $k \ge 2$. Is there an algorithm to decide whether, given **B**, we have that $\overline{\text{CSP}(\mathbf{B})}$ is expressible in k-Datalog?

Tractability of Non-Uniform CSP

- Thus far, we have concentrated on tractability results for non-uniform CSP.
- What about tractability results for uniform CSP?
- Does logic help to discover islands of tractability for uniform CSP?

Tractability of Uniform CSP

Recall that if \mathcal{A} and \mathcal{B} are classes of finite structures, then

 $\mathrm{CSP}(\mathcal{A},\mathcal{B}) = \{\mathbf{A},\mathbf{B}\} \in \mathcal{A} \times \mathcal{B} : \mathbf{A} \to \mathbf{B}\}$

Theorem: Dechter & Pearl – 1989

Let σ be a fixed vocabulary, let $k \geq 2$ be a positive integer, and let $\mathcal{T}(k)$ be the class of all σ -structures of *treewidth* less than k.

Then $CSP(\mathcal{T}(k), All)$ is in P.

Question:

- Can this result be explained in terms of definability in Datalog?
- Can this result be explained in terms of the (∃, k)-pebble game?

Bounded Treewidth & Finite-Variable Logics

Fact: Having $tw(\mathbf{A}) < k$ turns out to be tightly connected to the canonical query $Q^{\mathbf{A}}$ being definable in a fragment of FO with k variables.

Definition: Fix an integer $k \ge 2$.

- FO^k is the collection of all first-order formulas with k distinct variables.
- CQ^k is the collection of all FO^k -formulas built using atomic formulas, \wedge , and \exists only.

Example: Let \mathbf{C}_n be the *n*-element cycle, $n \geq 3$. The canonical CQ $Q^{\mathbf{C}_n}$ is expressible in CQ³. For instance, $Q^{\mathbf{C}_4}$ is logically equivalent to $\exists x \exists y \exists z (E(x,y) \land E(y,z) \land (\exists y) (E(z,y) \land E(y,x))).$

Bounded Treewidth & Finite-Variable Logics

Question: When is $Q^{\mathbf{A}}$ definable in CQ^k ?

Definition: A and B are homomorphically equivalent, denoted $\mathbf{A} \sim_h \mathbf{B}$, if there are homomorphisms $h : \mathbf{A} \to \mathbf{B}$ and $h' : \mathbf{B} \to \mathbf{A}$.

Theorem: Dalmau, K ..., Vardi - 2002 Fix a k and a finite structure **A**. Then the following are equivalent:

- $Q^{\mathbf{A}}$ is definable in CQ^k .
- There is some $\mathbf{B} \in \mathcal{T}(k)$ such that $\mathbf{A} \sim_h \mathbf{B}$.
- $\operatorname{core}(\mathbf{A}) \in \mathcal{T}(k).$

Cores

Definition: We say that a structure **B** is the *core* of a structure **A** if

- **B** is a submodel of **A**
- There is no homomorphism $h : \mathbf{B} \to \mathbf{B}'$ from **B** to a proper submodel **B**' of **B**.

Examples:

- $\operatorname{core}(\mathbf{K}_k) = \mathbf{K}_k$
- If **H** is 2-colorable, then $core(\mathbf{H}) = \mathbf{K}_2$.
- If **H** is 3-colorable and contains a \mathbf{K}_3 , then core(**H**) = \mathbf{K}_3 .

Note: Cores play an important role in database query processing and optimization.

Beyond Bounded Treewidth

Definition: Fix a vocabulary σ and a $k \geq 2$. $\mathcal{H}(\mathcal{T}(k))$ is the class of all σ -structures that are homomorphically equivalent to a structure in $\mathcal{T}(k)$.

Fact: $\mathcal{H}(\mathcal{T}(k))$ is the class of all σ -structures **A** such that core(**A**) has treewidth less than k.

Example: Every 2-colorable graph is in $\mathcal{H}(\mathcal{T}(2))$.

Fact: $\mathcal{T}(k)$ is properly contained in $\mathcal{H}(\mathcal{T}(k))$

Proof: There are 2-colorable graphs of arbitrarily large treewidth (for instance, $m \times m$ -grids)

Islands of Tractability of Uniform CSP

Theorem : Dalmau, K ..., Vardi – 2002

Fix a vocabulary σ and an integer $k \geq 2$.

- For every structure $\mathbf{A} \in \mathcal{H}(\mathcal{T}(k))$ and for every structure \mathbf{B} , the following are equivalent:
 - 1. $\mathbf{A} \rightarrow \mathbf{B}$
 - 2. The Duplicator wins the (\exists, k) -pebble game on **A** and **B**.
- If B is a fixed σ-structure, then CSP(H(T(k)), {B}) is definable in k-Datalog.
- CSP(H(T(k)), All) is in P.
 Actually, it is definable in least fixed-point logic LFP.

Algorithm:

Determine the winner in the (\exists, k) -pebble game.

Classification Theorem

Theorem: Grohe – 2003

Assume that $FPT \neq W[1]$.

If \mathcal{A} is a r.e. class of finite structures over some fixed vocabulary σ such that $\text{CSP}(\mathcal{A}, All)$ is in P, then there is a $k \geq 2$ such that $\mathcal{A} \subseteq \mathcal{H}(\mathcal{T}(k))$.

Note: FPT $\neq W[1]$ is the analog of P \neq NP for parametrized complexity.

Conclusion: For every fixed vocabulary σ , the classes $\mathcal{H}(\mathcal{T}(k))$ constitute the *largest* islands of tractability of the form $\text{CSP}(\mathcal{A}, All)$ among all classes \mathcal{A} of σ -structures.

- The combinatorial concept of bounded treewidth has a logical reconstruction via definability in finite-variable logics.
- $\operatorname{CSP}(\mathcal{H}(\mathcal{T}(k)), All), k \geq 2$, are large islands of tractability of uniform CSP.
- Determining the winner in the (∃, k)-pebble game is a polynomial-time algorithm for CSP(H(T(k)), All) (hence, also for CSP(T(k)), All)).

Logic and CSP

- UNIFORM CSP is the same problem as the *combined complexity of conjunctive queries*
- Non-Uniform CSP
 - is the same problem as the expression complexity of conjunctive queries
 - is polynomially equivalent to the data complexity of MMSNP
- Datalog and (∃, k)-pebble games provide a unifying explanation for many, but not all, tractability results for NON-UNIFORM CSP
- (\exists, k) -pebble games give rise to large islands of tractability for UNIFORM CSP.

Concluding Remarks

- Constraint Satisfaction is a meeting point of
 - Computational Complexity
 - Database Theory
 - Logic
 - Universal Algebra
 - Graph Theory.
- The quest for islands of tractability of CSP goes on through the synergy and interaction of all these areas.