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A Primer on Logic

@ What is logic?

@ “Logic is logic. That's all | say."

The Deacon’s Masterpiece
Oliver Wendell Holmes, Sr., 1858
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Basic Notions

Vocabularies and Structures

@ Vocabulary o: aseto = {R/,...,R/,} of relation symbols
of specified arities.
@ o-structure A = (A,Ry,...,Rn): a non-empty set A and

relations on A such that arity(R;) = arity(R{), 1 <i <m.
@ Finite o-structure A: universe A is finite




Basic Notions

Vocabularies and Structures

@ Vocabulary o: aseto = {R/,...,R/,} of relation symbols
of specified arities.
@ o-structure A = (A,Ry,...,Rn): a non-empty set A and

relations on A such that arity(R;) = arity(R{), 1 <i <m.
@ Finite o-structure A: universe A is finite

Graph: G = (V,E), where E is binary.
@ String: S=({1,2,...,n},P), where P is unary
m € P <> the m-th bit of the string is 1.
@ String 10001 encoded as ({1, 2,3,4,5}, {1,5}).




Basic Notions

Vocabularies and Structures

Every 3-CNF formula can be viewed as a finite structure of the
form A = (A, Rp, R1, Ry, R3), where each R; is a 3-ary relation.
@ 3-CNF formula ¢ with variables x, . .., X,
@ Structure A¥ = ({X1,..., X%}, Ry, Ry, RS, RY), where
Ry = {(x,y,z):(xVyVz)isaclause of ¢}
RY = {(x,y,z):(-xVyVz)isaclause of ¢}
Ry = {(x,y,z):(-xV-yVz)isa clause of p}
RY {(x,y,z) : (-x V -y VvV —z) is a clause of p}




Basic Notions

Queries

Definition
@ Class C of structures: a collection of relational o-structures
closed under isomorphisms.

@ k-ary Query Q on C, where k > 1:
a mapping Q with domain C and such that

@ Q(A) is ak-ary relation on A, for A € C;
@ Q is preserved under isomorphisms, i.e.,
if h : A — B is an isomorphism, then Q(B) = h(Q(A)).

@ Boolean Query Q on C:
amapping Q : C — {0,1} preserved under isomorphisms.
Thus, Q can be identified with the subclass C’ of C, where
C'={AeC: QA)=1}.




Basic Notions

Examples of Queries

@ PATH OF LENGTH 2: Binary query on graphs H = (V,E)

P2(H) = {(a,b) € V2 thereisapath of length 2 from a to b}.

@ CONNECTIVITY: Boolean query on graphs H = (V,E)

1 if His connected
CN(H) = { 0 otherwise.

@ k-COLORABILITY, k > 2

@ 3-SAT (with formulas viewed as structures)



Basic Notions

Definability of Queries

Let L be a logic and C a class of structures

@ A k-ary query Q on C is L-definable if there is an L-formula
©(X1,...,Xk) With X1, ..., Xk as free variables and such that
for every A € C

Q(A) = {(a1,...,ak) € A*: A = o(ay,...,aW)}-

@ A Boolean query Q on C is L-definable if there is an
L-sentence v such that for every A € C

QA =1 < Ak .




Basic Notions

First-Order Logic

First-Order Logic FO (on graphs):
@ first-order variables: x, vy, z, ...
@ atomic formulas: E(X,y), X =Yy

@ formulas: atomic formulas, Boolean connectives, first-order
qguantifiers Ix, vx, 3y, Vy, ...that range over the nodes of
the graph.




Basic Notions

First-Order Logic

First-Order Logic FO (on graphs):
@ first-order variables: x, vy, z, ...
@ atomic formulas: E(X,y), X =y

@ formulas: atomic formulas, Boolean connectives, first-order
qguantifiers Ix, vx, 3y, Vy, ...that range over the nodes of
the graph.

Example

On the class G of finite graphs the query PATH OF LENGTH 2 is
FO-definable

P2(H) = {(a,b) € V2:H = 3z(E(a,z) AE(z,b))}.




Basic Notions

Limitations of First-Order Logic

@ The queries TRANSITIVE CLOSURE, CONNECTIVITY,
k-COLORABILITY, k > 2, are not FO-definable.

@ On the class of all finite structures with 4 ternary relations,
the query 3-SAT is not first-order definable.

Note: Results about non-definability in FO-logic can be proved
using Ehrenfeucht-Fraissé games.



Basic Notions

The Complexity of Logic

Definition (Vardi, 1982)

@ The combined complexity of L is the following decision
problem:
Given a finite structure B and an L-sentence 1, does

B = ¢?
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Basic Notions

The Complexity of Logic

Definition (Vardi, 1982)

@ The combined complexity of L is the following decision
problem:
Given a finite structure B and an L-sentence 1, does

B = ¢?

@ The data complexity of L is the family of the following
decision problems P, one for each fixed L-sentence .
Given a finite structure B, does B = ¢?

@ The expression complexity of L is the family of the following
decision problems Pg, one for each fixed finite structure B:
Given an L-sentence 1, does B = ¢?




Basic Notions

Some Basic Complexity Classes

L: problems solvable by a TM in logspace

@ NL: problems solvable by a NTM in logspace

@ P: problems solvable by a TM in polynomial time
o

o

NP: problems solvable by a NTM in polynomial time

PSPACE: problems solvable by a TM in polynomial space.




Basic Notions

Some Basic Complexity Classes

L: problems solvable by a TM in logspace

@ NL: problems solvable by a NTM in logspace

@ P: problems solvable by a TM in polynomial time
o

o

NP: problems solvable by a NTM in polynomial time

PSPACE: problems solvable by a TM in polynomial space.

-

L € NL € PC NP C PSPACE = NPSPACE.
NL # PSPACE
No other proper containment is known at present.

o
o
o
o

Each of them possesses natural complete problems.



Basic Notions

The Complexity of Logic

Let L be a logic and C a complexity class.

@ The data complexity of L is in C if for each L-sentence 1,
the problem P, is in C.

@ The data complexity of L is C-complete if it is in C and there
is at least one L-sentence 1 such that P, is C-complete.




Basic Notions

The Complexity of Logic

Let L be a logic and C a complexity class.

@ The data complexity of L is in C if for each L-sentence 1,
the problem P, is in C.

@ The data complexity of L is C-complete if it is in C and there
is at least one L-sentence 1 such that P, is C-complete.

@ The expression complexity of L is in C if for each finite
structure B, the problem Pg is in C.

@ The expression complexity of L is C-complete if it is in C
and there is at least one finite structure B such that Pg is
C-complete.




Basic Notions

The Complexity of First-Order Logic

@ The data complexity of FOisin L.

@ Both the expression complexity of FO and the combined
complexity of FO are PSPACE-complete.

@ Fix a first-order sentence . Given a finite structure B:
Cycle through all possible instantiations of the quantifiers
of ¢ in B, keeping track of the number of them using a
counter in binary.

@ OQBF is PSPACE-complete (Stockmeyer - 1976).
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Conjunctive Queries & CSP

Conjunctive Queries

@ A primitive positive formula (pp-formula) is a FO-formula in
prenex normal form built from atomic formulas, A, and 3
only, i.e., it is of the form:

(Fz1 ... 3zm)¥ (X1, - oy Xk 22,5+ -+, Zm)s
where ) is a conjunction of atomic formulas.

@ A conjunctive query is a query definable by a pp-formula.




Conjunctive Queries & CSP

Conjunctive Queries

@ A primitive positive formula (pp-formula) is a FO-formula in
prenex normal form built from atomic formulas, A, and 3
only, i.e., it is of the form:

(Fz1 ... 3zm)¥ (X1, - oy Xk 22,5+ -+, Zm)s
where ) is a conjunction of atomic formulas.

@ A conjunctive query is a query definable by a pp-formula.

@ PATH OF LENGTH 2 (Binary query)
(Fz)(E(x1,2) AE(z,%2))
Can also be written as a rule:
P2(x1,x2) : — E(x1,2),E(z,%2)




Conjunctive Queries & CSP

Conjunctive Queries and Databases

@ Conjunctive queries are the most frequently asked queries
in databases (a.k.a. SPJ queries)

@ The main construct of SQL expresses conjunctive queries.

Relations R1(A,B,C), Ry(B,C,D)

SELECT R;.A,R,.D
FROM Ry,R,
WHERE R;.B =R,.B AND R;.C =R,.C

This expresses the conjunctive query Q(x,w) definable by
Elyzlz(Rl(Xaya Z) A RZ(y7 Z7W))




Conjunctive Queries & CSP

Conjunctive Query Evaluation

A fundamental problem about conjunctive queries

CONJUNCTIVE QUERY EVALUATION

@ Given a CQ Q and a structure A, find
Q(A)={(a1,.-.-a) : AEQ(as,...,ak)}
@ For Boolean queries Q, this becomes:
Given Q and A, does A = Q? (is Q(A) = 1?)
@ Same problem as the combined complexity of pp-formulas.

@ Given a graph H, does it contain a triangle?




Conjunctive Queries & CSP

Conjunctive Query Containment

Another fundamental problem about conjunctive queries

Definition

CONJUNCTIVE QUERY CONTAINMENT

@ Given two k-ary CQs Q7 and Qy, is it true that for every
structure A, we have that Q1 (A) C Q2(A)?

@ For Boolean queries, this becomes:
Given two Boolean queries Q; and Q;, does Q;  Q?
(does Q; logically imply Q»?)

Is it true that if two nodes of a graph H are connected by a path
of length 4, then they are also connected by a path of length 3?




Conjunctive Queries & CSP

Conjunctive Queries and Homomorphisms

@ Chandra and Merlin (1977) showed that:

CONJUNCTIVE QUERY EVALUATION
and

CONJUNCTIVE QUERY CONTAINMENT
are the same problem.



Conjunctive Queries & CSP

Conjunctive Queries and Homomorphisms

@ Chandra and Merlin (1977) showed that:

CONJUNCTIVE QUERY EVALUATION
and

CONJUNCTIVE QUERY CONTAINMENT
are the same problem.

@ The link is the HOMOMORPHISM PROBLEM:
Given A and B, does A — B?



Conjunctive Queries & CSP

Canonical CQs and Canonical Structures

@ Given A = (A,R7,...,RR), the canonical CQ of A is the
Boolean CQ Q* with the elements of A as variables and
the “facts” of A as conjuncts: 3x; - - - Ixn (AL, A RA(L))

@ If Q is a Boolean CQ, then AQ is the structure with the
variables of Q as elements and the conjuncts of Q as
“facts".

@ IfA = ({a,b,c},{(a,b),(b,c),(c,a)}, then Q* is
Ix3Jy3z(E(x,y) NE(y,z) ANE(z,X))
@ If Qis Ix3y(E(x,y) A E(X,2)), then

AR = ({x,y,2),{(x,y),(x,2)})



Conjunctive Queries & CSP

Homomorphisms, CQE and CQC

Theorem (Chandra and Merlin, 1977)

For all relational structures A and B, the following statements
are equivalent:

O A—-B
Q@ BLQ
@ QB C QA




Conjunctive Queries & CSP

Homomorphisms, CQE and CQC

Alternatively,

Theorem (Chandra and Merlin, 1977)

For all conjunctive queries Q; and Q, the following statements
are equivalent:

Q@ Q:CcQ
Q A2 L AQ

QO A% E Q..




Conjunctive Queries & CSP

[llustration: 3-COLORABILITY

For a graph H, the following are equivalent:
@ H — K; (i.e., His 3-colorable)

Q K3 = Q"

Q Q% c Q"

(1) = (2): Ahom. h: H — K3 provides witnesses in K3 for the
3 quantifiers in QH.

(2) = (3): If K3 = Q" and A |= QKs, then there are witness
functionsh:H — Kz and h* : K3 — A. Thenh*oh: H — A
provides witnesses in A for the 3 quantifiers in Q".

(3) = (1): Since K3 |= QX3, we have K3 = Q. The witnesses
to the 4 quantifiers give a homomorphism from H to Ks.

-



Conjunctive Queries & CSP

CSP, Homomorphisms, CQE, and CQC

@ CONSTRAINT SATISFACTION

@ THE HOMOMORPHISM PROBLEM
@ CONJUNCTIVE QUERY EVALUATION

@ CONJUNCTIVE QUERY CONTAINMENT

are the same problem.




Conjunctive Queries & CSP

CSP, Homomorphisms, CQE, and CQC

@ The combined complexity of conjunctive queries
(pp-formulas) coincides with the
HOMOMORPHISM PROBLEM (UNIFORM CSP).

@ The expression complexity of conjunctive queries
(pp-formulas) coincides with the family of problems
CSP(B), where

CSP(B) = {A:A—B} = {A:B =Q"}.

@ Both the combined complexity and the expression
complexity of conjunctive queries are NP-complete.
(contrast with FO.)




Conjunctive Queries & CSP

Tractability of CSP via Logic

@ The complexity of CSP(B) depends on B:

@ CSP(K3) is 3-COLORABILITY, hence is NP-complete.
@ CSP(K3) is 2-COLORABILITY, hence is in P.

Approach

@ Use logic to identify tractable (polynomial-time solvable)
cases of CSP(B).

@ Study when CSP(B) is definable in some logic L whose
data complexity is in P.




Conjunctive Queries & CSP

CSP and Unions of Conjunctive Queries

For every structure B, let
~CSP(B) = {A:A 4 B}.

For every structure B:
@ —CSP(B) is closed under homomorphisms.

@ Moreover,

-CSP(B) = {A:AE \/ Q°},
DA4B

i.e., "CSP(B) is definable by an infinite union of conjunctive
gueries.

-



Conjunctive Queries & CSP

CSP and Unions of Conjunctive Queries

@ L. is the extension of FO with infinitary disjunctions and
infinitary conjunctions.

@ JLL , is the existential positive fragment of L.

-

@ Thus, for every structure B, we have that -CSP(B) is
JLt -definable, since

-CSP(B) = {A:AE \/ Q°}.
D4B

@ Study when —-CSP(B) is definable in a tractable fragment of
Lt .

-



Conjunctive Queries & CSP

CSP and First-Order Logic

Assume that B is a structure such that -CSP(B) is definable by
a finite union of conjunctive queries (i.e., ~CSP(B) = \/{"_; QP).
Then CSP(B) is FO-definable; hence, it is in P.




Conjunctive Queries & CSP

CSP and First-Order Logic

Assume that B is a structure such that -CSP(B) is definable by
a finite union of conjunctive queries (i.e., ~CSP(B) = \/{"_; QP).
Then CSP(B) is FO-definable; hence, it is in P.

Theorem (Atserias, 2005)

For every structure B, the following statements are equivalent.
© CSP(B) is FO-definable.

@ —CSP(B) is definable by a finite union of conjunctive
gueries.




Conjunctive Queries & CSP

CSP and First-Order Logic

Example (Gallai-Hesse-Roy Theorem, circa 1965)

Let Tk be the linear order with k elements and Py 1 be the
directed path with k + 1 elements. Then, for every directed
graph G, we have that

G —->Ti — Pk+17L>G.

Consequently,

~CSP(Ty) = {G: G = QP




Conjunctive Queries & CSP

Beyond First-Order Logic

@ CSP(K;) is 2-COLORABILITY.
@ CSP(Ky) isin P, but it is not FO-definable.

@ Hence, ~CSP(K>) is definable by an infinite union of
conjunctive queries, but it is not definable by any finite
union of conjunctive queries.

Can the tractability of CSP(K) be explained via definability in a
logic other than FO?
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Datalog and CSP

Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of -CSP(B) in Datalog is a unifying explanation for
many tractability results about CSP(B), including CSP(K5).




Datalog and CSP

Datalog

Note: Recall that every CQ can be written as a rule:
P2(x1,%2) : — E(x1,2),E(z,X2)

@ Datalog = Conjunctive Queries + Recursion
Function, negation-free, and #-free logic programs

@ A Datalog program is a finite set of rules given by
conjunctive queries

T(X) : = S1(Y1)-- - Se(¥r)-
Intensional DB predicates (IDBs): those that occur both in
the heads and the bodies of rules (recursive predicates).
Extensional DB predicates (EDBSs): all other predicates.




Datalog and CSP

Example (TRANSITIVE CLOSURE Query TC)

TC(H) = {(a,b) : there is a path from a to b in H}.
A Datalog program for TC (linear Datalog)

'S(X7y) P E(Xay)
S(x,y) :— E(x,2),S(z,y)

Another Datalog program for TC (non-linear Datalog)

'S(Xay) P E(X7y)
S(x,y) :— S(x,2),S(z,y)

@ E is the EDB.
@ S is the IDB; it defines TC.




Datalog and CSP

Semantics of Datalog Programs

A Datalog program for TC

‘S(X7y) P E(Xay)
S(x,y) :— E(x,2),S(z,y)

Operational Semantics: “Bottom-up" Evaluation

S =0
‘S"‘“ = {(a,b)):3Iz(E(a,z) AS™(z,b))}

Fact: The following statements are true:

S™ = {(a,b): thereisapath of length < m fromatob}
TC = U,S™ = sivi,




Datalog and CSP

Datalog and 2-Colorability

@ CSP(K;) = 2-COLORABILITY.

@ Recall that a graph is 2-colorable if and only if it does not
contain an odd cycle.

@ Datalog program for NON-2-COLORABILITY:
O(X,Y) :— E(X,Y)

O(X,Y) :— O(X,Z),E(Z,W),E(W,Y)
Q — O(X,X)




Datalog and CSP

Data Complexity of Datalog

@ Every Datalog query is definable by an “effective and
uniform" union of conjunctive queries.

@ Every Datalog query is in P.
@ The data complexity of Datalog is P-complete.

@ The “bottom-up" evaluation of Datalog programs
converges in polynomially-many steps.

@ Each iteration is definable by a finite union of conjunctive
gueries.

@ HORN 3-UNSAT is P-complete and expressible in Datalog.

O

-




Datalog and CSP

Horn 3-SAT and Datalog

Fact (HORN 3-UNSAT is expressible in Datalog)

@ Horn 3-CNF formula ¢ viewed as a finite structure
A?Y = ({X1,...,Xn}),U,P,N), where

@ U is the set of unit clauses x
@ P is the set of clauses (—x V -y V z)
@ N is the set of clauses (—x V -y V —z).

@ Datalog program for HORN 3-UNSAT: encodes the
unit propagation algorithm for Horn Satisfiability.

T(z) :— U(2)
T(z) :— P(xy,2),T(x),T(y)
Q L N(X,y,Z),T(X),T(y),T(Z)

Provably non-linearizable.



Datalog and CSP

Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of =CSP(B) in Datalog is a unifying explanation for
many tractability results about CSP(B).

Theorem (Feder and Vardi, 1993)

@ If B = (B,Ry,...,Rx) is such that Pol({Ry,...,Rk})
contains a near-unanimity function, then -CSP(B) is
Datalog-definable.

Special Case: 2-SAT

@ If B = (B,Ry,...,Rg) is such that Pol({Ry,...,Rk})
contains a semi-lattice function, then ~CSP(B) is
Datalog-definable.

Special Case: HORN k-SAT, DUAL HORN K-SAT, k > 2.

>




Finite-variable Logics and CSP

Outline

@ Finite-variable Logics and CSP



Finite-variable Logics and CSP

Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

@ FOX: FO-formulas with at most k variables.
o Lk: FOX-formulas built from atomic formulas, A, and 3 only.
@ Note: Each Lk-formula defines a conjunctive query.
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Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

@ FOX: FO-formulas with at most k variables.

o Lk: FOX-formulas built from atomic formulas, A, and 3 only.
@ Note: Each Lk-formula defines a conjunctive query.

@ P"(x,y): there is a path of length n from x to y.




Finite-variable Logics and CSP

Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

@ FOX: FO-formulas with at most k variables.

o Lk: FOX-formulas built from atomic formulas, A, and 3 only.
@ Note: Each Lk-formula defines a conjunctive query.

@ P"(x,y): there is a path of length n from x to y.
@ P"(x,y) is L3-definable.

Pix,y) = E(x,y)
P™(x,y) = 3Jz(E(x,z) A3IX((X = Z) APn(X,y))).




Finite-variable Logics and CSP

k-Datalog
Definition
A k-Datalog program is a Datalog program in which each rule
to : —t1,...,tn has at most k distinct variables.

Example

@ NON 2-COLORABILITY revisited

o(X,Y) :— E(X,Y)
O(X,Y) :— O(X,Z),E(Z,W),E(W,Y)
Q — O(X,X)

@ Therefore, NON 2-COLORABILITY is definable in 4-Datalog.
@ Exercise: NON 2-COLORABILITY is definable in 3-Datalog.




Finite-variable Logics and CSP

Datalog and Finite-Variable Logics

Theorem (K ... and Vardi, 1990)

@ Every k-Datalog definable query is also definable by a
formula of the form \/,,»; ¥n, where ¢, is an Lk-formula.

@ Consequently, k-Datalog C 3LX:7.

Note

In general, k-Datalog is a proper fragment of LK.
(The latter can express non-recursive queries using arbitrary
infinite disjunctions.)




Finite-variable Logics and CSP

Datalog, Finite-Variable Logics, and CSP

Theorem (K ... and Vardi, 1998)

For every B and every k > 1, the following are equivalent:
© -CSP(B) is definable in k-Datalog.

Q@ —~CSP(B) is definable by a formula of the form \/, -, ¥n,
where each v, is an LK-formula.

© -CSP(B) is definable in ILK:S.

Recall that
-CSP(B) = {A:AEVp,.sQ"%}
and each QP is a conjunctive query.




Finite-variable Logics and CSP

CSP and Logic

For every structure B and for every k > 1:

@ —CSP(B) is definable by an (infinite) union of conjunctive
queries.

@ —CSP(B) is FO-definable if and only if it is definable by a
finite union of conjunctive queries.

@ —CSP(B) is definable in k-Datalog if and only if it is
definable by an (infinite) union of conjunctive queries each
of which is LX-definable.




Finite-variable Logics and CSP

Existential k-Pebble Games

Spoiler and Duplicator play on two structures A and B. Each
player uses k pebbles, labeled 1, ..., k. In each move,

@ Spoiler places a pebble on or removes a pebble from an
element of A.

@ Duplicator tries to duplicate the move on B using the
pebble with the same label.

A a ax ... q
B : bl b2 b| |§k

@ Spoiler wins the (3, k)-pebble game if at some point the
mapping a; — bj, 1 <i <1, is not a partial homomorphism.

@ Duplicator wins the (3, k)-pebble game if the above never
happens.



Finite-variable Logics and CSP

Fact (Cliques of Different Size)

Let Ky be the k-clique. Then

@ Duplicator wins the (3, k)-pebble game on Ky and Ky 1.
@ Spoiler wins the (3, k)-pebble game on K and Ky _1.

=

A\



Finite-variable Logics and CSP

Winning Strategies in the (3, k)-Pebble Game

Definition
A winning strategy for the Duplicator in the (3, k)-pebble game
is a non-empty set Z of partial homomorphisms from A to B

such that
o lffeZandhCf,thenheZ
(Z is closed under subfunctions).
@ Iff € 7 and |f| < k, then for every a € A, thereis g € Z so
that f C g and a € dom(g).
(Z has the forth property up to k)
If A — B, then, for every k > 1, the Duplicator wins the
(3,k)-pebble game on A and B.

A\



Finite-variable Logics and CSP

k-Datalog and (4, k)-Pebble Games

Theorem (K ... and Vardi)

@ Let Q be a query definable in HL&Z. If A satisfies Q and
the Duplicator wins the (3, k)-pebble game on A and B,
then also B satisfies Q.

@ There is a polynomial-time algorithm to decide whether,
given two finite structures A and B, the Spoiler or the
Duplicator wins the (3, k)-pebble game on A and B.

@ For every fixed finite structure B, there is a k-Datalog
program that expresses the query: given a finite structure
A, does the Spoiler win the (3,k)-game on A and B?




Finite-variable Logics and CSP

k-Datalog, 3LX:*, (3, k)-pebble games, and CSP

oow

Let k be a positive integer and B a finite structure. Then the
following statements are equivalent:

© -CSP(B) is definable in k-Datalog.

@ —CSP(B) is definable in ILK:L.

@ CSP(B) =
{A : Duplicator wins the (3, k)-pebble game on A and B}.

Single canonical polynomial-time algorithm for all CSP(B)’s that
are definable in k-Datalog:
Determine the winner in the (3, k)-pebble game.



Finite-variable Logics and CSP

The Hierarchy Problem for Datalog-definable CSPs

Prove or disprove:
For every k > 4, there is a directed graph G, such that

@ —CSP(Gy) is definable in k-Datalog;
@ —CSP(Gy) is not definable in (k — 1)-Datalog.

@ NON 2-COLORABILITY is definable in 3-Datalog, but not in
2-Datalog.

@ All -CSP(G)’s presently known to be definable in Datalog
are actually definable in 3-Datalog.
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The Meta-problem for Datalog-definable CSPs

Determine whether or not the following problems are decidable:

@ Given a structure B, is -CSP(B) definable in Datalog?

@ Given a structure B, is ~CSP(B) definable in k-Datalog?
(Here k is a fixed positive integer.)

Theorem (Larose, Loten, and Tardif, 2006)

The following problem is NP-complete:
Given a structure B, is CSP(B) definable in first-order logic?
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Epilogue

@ “Logic is in the eye of the logician."

Outrageous Acts and Everyday Rebellions
Gloria Steinem, 1986.
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