Logic and Constraint Satisfaction
 An Introduction

Phokion G. Kolaitis

IBM Almaden Research Center

American Institute of Mathematics
2008

A Primer on Logic

- What is logic?

A Primer on Logic

- What is logic?
- "Logic is logic. That's all I say."

The Deacon's Masterpiece
Oliver Wendell Holmes, Sr., 1858

Outline

(9) Basic Notions
(2) Conjunctive Queries \& CSP
(3) Datalog and CSP

4 Finite-variable Logics and CSP

Vocabularies and Structures

Definition

- Vocabulary σ : a set $\sigma=\left\{R_{1}^{\prime}, \ldots, R_{m}^{\prime}\right\}$ of relation symbols of specified arities.
- σ-structure $\mathbf{A}=\left(A, R_{1}, \ldots, R_{m}\right)$: a non-empty set A and relations on A such that $\operatorname{arity}\left(R_{i}\right)=\operatorname{arity}\left(R_{i}^{\prime}\right), 1 \leq i \leq m$.
- Finite σ-structure \mathbf{A} : universe A is finite

Vocabularies and Structures

Definition

- Vocabulary σ : a set $\sigma=\left\{R_{1}^{\prime}, \ldots, R_{m}^{\prime}\right\}$ of relation symbols of specified arities.
- σ-structure $\mathbf{A}=\left(A, R_{1}, \ldots, R_{m}\right)$: a non-empty set A and relations on A such that $\operatorname{arity}\left(R_{i}\right)=\operatorname{arity}\left(R_{i}^{\prime}\right), 1 \leq i \leq m$.
- Finite σ-structure \mathbf{A} : universe A is finite

Example

- Graph: $\mathbf{G}=(V, E)$, where E is binary.
- String: $\mathbf{S}=(\{1,2, \ldots, n\}, P)$, where P is unary $m \in P \Longleftrightarrow$ the m-th bit of the string is 1 .
- String 10001 encoded as ($\{1,2,3,4,5\},\{1,5\}$).

Vocabularies and Structures

Example

Every 3-CNF formula can be viewed as a finite structure of the form $\mathbf{A}=\left(A, R_{0}, R_{1}, R_{2}, R_{3}\right)$, where each R_{i} is a 3 -ary relation.

- 3-CNF formula φ with variables x_{1}, \ldots, x_{n}
- Structure $\mathbf{A}^{\varphi}=\left(\left\{x_{1}, \ldots, x_{n}\right\}, R_{0}^{\varphi}, R_{1}^{\varphi}, R_{2}^{\varphi}, R_{3}^{\varphi}\right)$, where

$$
\begin{aligned}
& R_{0}^{\varphi}=\{(x, y, z):(x \vee y \vee z) \text { is a clause of } \varphi\} \\
& R_{1}^{\varphi}=\{(x, y, z):(\neg x \vee y \vee z) \text { is a clause of } \varphi\} \\
& R_{2}^{\varphi}=\{(x, y, z):(\neg x \vee \neg y \vee z) \text { is a clause of } \varphi\} \\
& R_{3}^{\varphi}=\{(x, y, z):(\neg x \vee \neg y \vee \neg z) \text { is a clause of } \varphi\}
\end{aligned}
$$

Queries

Definition

- Class \mathcal{C} of structures: a collection of relational σ-structures closed under isomorphisms.
- k-ary Query Q on \mathcal{C}, where $k \geq 1$: a mapping Q with domain \mathcal{C} and such that
- $Q(\mathbf{A})$ is a k-ary relation on \mathbf{A}, for $\mathbf{A} \in \mathcal{C}$;
- Q is preserved under isomorphisms, i.e., if $h: \mathbf{A} \rightarrow \mathbf{B}$ is an isomorphism, then $Q(\mathbf{B})=h(Q(\mathbf{A}))$.
- Boolean Query Q on C: a mapping $Q: \mathcal{C} \rightarrow\{0,1\}$ preserved under isomorphisms. Thus, Q can be identified with the subclass \mathcal{C}^{\prime} of \mathcal{C}, where

$$
\mathcal{C}^{\prime}=\{\mathbf{A} \in \mathcal{C}: Q(\mathbf{A})=1\} .
$$

Examples of Queries

- Path of Length 2: Binary query on graphs $\mathbf{H}=(V, E)$

$$
P 2(\mathbf{H})=\left\{(a, b) \in V^{2}: \text { there is a path of length } 2 \text { from } a \text { to } b\right\} .
$$

- Connectivity: Boolean query on graphs $\mathbf{H}=(V, E)$

$$
C N(\mathbf{H})= \begin{cases}1 & \text { if } \mathbf{H} \text { is connected } \\ 0 & \text { otherwise } .\end{cases}
$$

- k-COLORABILITY, $k \geq 2$
- 3-SAT (with formulas viewed as structures)

Definability of Queries

Definition

Let L be a logic and \mathcal{C} a class of structures

- A k-ary query Q on \mathcal{C} is L-definable if there is an L-formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ with x_{1}, \ldots, x_{k} as free variables and such that for every $\mathbf{A} \in \mathcal{C}$

$$
Q(\mathbf{A})=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: \mathbf{A} \models \varphi\left(a_{1}, \ldots, a_{k}\right)\right\} .
$$

- A Boolean query Q on \mathcal{C} is L-definable if there is an L-sentence ψ such that for every $\mathbf{A} \in \mathcal{C}$

$$
Q(\mathbf{A})=1 \Longleftrightarrow \mathbf{A} \models \psi .
$$

First-Order Logic

Definition

First-Order Logic FO (on graphs):

- first-order variables: x, y, z, \ldots
- atomic formulas: $E(x, y), x=y$
- formulas: atomic formulas, Boolean connectives, first-order quantifiers $\exists x, \forall x, \exists y, \forall y, \ldots$ that range over the nodes of the graph.

First-Order Logic

Definition

First-Order Logic FO (on graphs):

- first-order variables: x, y, z, \ldots
- atomic formulas: $E(x, y), x=y$
- formulas: atomic formulas, Boolean connectives, first-order quantifiers $\exists x, \forall x, \exists y, \forall y, \ldots$ that range over the nodes of the graph.

Example

On the class \mathcal{G} of finite graphs the query Path OF LENGTH 2 is FO-definable

$$
P 2(\mathbf{H})=\left\{(a, b) \in V^{2}: \mathbf{H} \models \exists z(E(a, z) \wedge E(z, b))\right\} .
$$

Limitations of First-Order Logic

Fact

- The queries Transitive Closure, Connectivity, k-Colorability, $k \geq 2$, are not FO-definable.
- On the class of all finite structures with 4 ternary relations, the query 3-SAT is not first-order definable.

Note: Results about non-definability in FO-logic can be proved using Ehrenfeucht-Fraïssé games.

The Complexity of Logic

Definition (Vardi, 1982)

- The combined complexity of L is the following decision problem:
Given a finite structure \mathbf{B} and an L-sentence ψ, does $\mathbf{B} \models \psi$?

The Complexity of Logic

Definition (Vardi, 1982)

- The combined complexity of L is the following decision problem:
Given a finite structure \mathbf{B} and an L-sentence ψ, does $\mathbf{B} \models \psi$?
- The data complexity of L is the family of the following decision problems P_{ψ}, one for each fixed L-sentence ψ : Given a finite structure B, does $\mathbf{B} \models \psi$?

The Complexity of Logic

Definition (Vardi, 1982)

- The combined complexity of L is the following decision problem:
Given a finite structure \mathbf{B} and an L-sentence ψ, does $\mathbf{B} \models \psi$?
- The data complexity of L is the family of the following decision problems P_{ψ}, one for each fixed L-sentence ψ : Given a finite structure \mathbf{B}, does $\mathbf{B} \models \psi$?
- The expression complexity of L is the family of the following decision problems $P_{\mathbf{B}}$, one for each fixed finite structure \mathbf{B} : Given an L-sentence ψ, does $\mathbf{B} \models \psi$?

Some Basic Complexity Classes

Definition

- L: problems solvable by a TM in logspace
- NL: problems solvable by a NTM in logspace
- P: problems solvable by a TM in polynomial time
- NP: problems solvable by a NTM in polynomial time
- PSPACE: problems solvable by a TM in polynomial space.

Some Basic Complexity Classes

Definition

- L: problems solvable by a TM in logspace
- NL: problems solvable by a NTM in logspace
- P: problems solvable by a TM in polynomial time
- NP: problems solvable by a NTM in polynomial time
- PSPACE: problems solvable by a TM in polynomial space.

Fact

- $\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq$ PSPACE $=$ NPSPACE.
- NL \neq PSPACE
- No other proper containment is known at present.
- Each of them possesses natural complete problems.

The Complexity of Logic

Definition

Let L be a logic and C a complexity class.

- The data complexity of L is in C if for each L-sentence ψ, the problem P_{ψ} is in C.
- The data complexity of L is C -complete if it is in C and there is at least one L-sentence ψ such that P_{ψ} is C-complete.

The Complexity of Logic

Definition

Let L be a logic and C a complexity class.

- The data complexity of L is in C if for each L-sentence ψ, the problem P_{ψ} is in C.
- The data complexity of L is C -complete if it is in C and there is at least one L-sentence ψ such that P_{ψ} is C-complete.
- The expression complexity of L is in C if for each finite structure \mathbf{B}, the problem $P_{\mathbf{B}}$ is in \mathbf{C}.
- The expression complexity of L is C -complete if it is in C and there is at least one finite structure \mathbf{B} such that $P_{\mathbf{B}}$ is C-complete.

The Complexity of First-Order Logic

Theorem

- The data complexity of FO is in L.
- Both the expression complexity of FO and the combined complexity of FO are PSPACE-complete.

Proof.

- Fix a first-order sentence ψ. Given a finite structure B: Cycle through all possible instantiations of the quantifiers of ψ in \mathbf{B}, keeping track of the number of them using a counter in binary.
- QBF is PSPACE-complete (Stockmeyer - 1976).

Outline

(1) Basic Notions

(2) Conjunctive Queries \& CSP

(3) Datalog and CSP

4 Finite-variable Logics and CSP

Conjunctive Queries

Definition

- A primitive positive formula (pp-formula) is a FO-formula in prenex normal form built from atomic formulas, \wedge, and \exists only, i.e., it is of the form:

$$
\left(\exists z_{1} \ldots \exists z_{m}\right) \psi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{m}\right),
$$

where ψ is a conjunction of atomic formulas.

- A conjunctive query is a query definable by a pp-formula.

Conjunctive Queries

Definition

- A primitive positive formula (pp-formula) is a FO-formula in prenex normal form built from atomic formulas, \wedge, and \exists only, i.e., it is of the form:

$$
\left(\exists z_{1} \ldots \exists z_{m}\right) \psi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{m}\right),
$$

where ψ is a conjunction of atomic formulas.

- A conjunctive query is a query definable by a pp-formula.

Example

- Path of Length 2 (Binary query)

$$
(\exists z)\left(E\left(x_{1}, z\right) \wedge E\left(z, x_{2}\right)\right)
$$

Can also be written as a rule:

$$
P 2\left(x_{1}, x_{2}\right):-E\left(x_{1}, z\right), E\left(z, x_{2}\right)
$$

Conjunctive Queries and Databases

Fact

- Conjunctive queries are the most frequently asked queries in databases (a.k.a. SPJ queries)
- The main construct of SQL expresses conjunctive queries.

Example

Relations $R_{1}(A, B, C), R_{2}(B, C, D)$

$$
\begin{aligned}
\text { SELECT } & R_{1} \cdot A, R_{2} \cdot D \\
\text { FROM } & R_{1}, R_{2} \\
\text { WHERE } & R_{1} \cdot B=R_{2} \cdot B \text { AND } R_{1} \cdot C=R_{2} \cdot C
\end{aligned}
$$

This expresses the conjunctive query $Q(x, w)$ definable by

$$
\exists y \exists z\left(R_{1}(x, y, z) \wedge R_{2}(y, z, w)\right)
$$

Conjunctive Query Evaluation

A fundamental problem about conjunctive queries

Definition

Conjunctive Query Evaluation

- Given a CQ Q and a structure A, find

$$
Q(\mathbf{A})=\left\{\left(a_{1}, \ldots a_{k}\right): \mathbf{A} \models Q\left(a_{1}, \ldots, a_{k}\right)\right\}
$$

- For Boolean queries Q, this becomes:

Given Q and \mathbf{A}, does $\mathbf{A} \models Q$? (is $Q(\mathbf{A})=1$?)

- Same problem as the combined complexity of pp-formulas.

Example

- Given a graph \mathbf{H}, does it contain a triangle?

Conjunctive Query Containment

Another fundamental problem about conjunctive queries

Definition

Conjunctive Query Containment

- Given two k-ary $C Q s Q_{1}$ and Q_{2}, is it true that for every structure \mathbf{A}, we have that $Q_{1}(\mathbf{A}) \subseteq Q_{2}(\mathbf{A})$?
- For Boolean queries, this becomes:

Given two Boolean queries Q_{1} and Q_{2}, does $Q_{1} \models Q_{2}$? (does Q_{1} logically imply Q_{2} ?)

Example

Is it true that if two nodes of a graph \mathbf{H} are connected by a path of length 4, then they are also connected by a path of length 3 ?

Conjunctive Queries and Homomorphisms

- Chandra and Merlin (1977) showed that:

Conjunctive Query Evaluation and
Conjunctive Query Containment are the same problem.

Conjunctive Queries and Homomorphisms

- Chandra and Merlin (1977) showed that:

Conjunctive Query Evaluation and
Conjunctive Query Containment are the same problem.

- The link is the Homomorphism Problem: Given \mathbf{A} and \mathbf{B}, does $\mathbf{A} \rightarrow \mathbf{B}$?

Canonical CQs and Canonical Structures

Definition

- Given $\mathbf{A}=\left(A, R_{1}^{\mathbf{A}}, \ldots, R_{m}^{\mathbf{A}}\right)$, the canonical $C Q$ of \mathbf{A} is the Boolean CQ $Q^{\mathbf{A}}$ with the elements of A as variables and the "facts" of \mathbf{A} as conjuncts: $\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{i=1}^{m} \wedge_{\mathbf{t}} R_{i}^{\mathbf{A}}(\mathbf{t})\right)$
- If Q is a Boolean CQ , then \mathbf{A}^{Q} is the structure with the variables of Q as elements and the conjuncts of Q as "facts".

Example

- If $\mathbf{A}=\left(\{a, b, c\},\{(a, b),(b, c),(c, a)\}\right.$, then $Q^{\mathbf{A}}$ is

$$
\exists x \exists y \exists z(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

- If Q is $\exists x \exists y(E(x, y) \wedge E(x, z))$, then

$$
\mathbf{A}^{Q}=(\{x, y, z),\{(x, y),(x, z)\})
$$

Homomorphisms, CQE and CQC

Theorem (Chandra and Merlin, 1977)
For all relational structures \mathbf{A} and \mathbf{B}, the following statements are equivalent:
(1) $\mathbf{A} \rightarrow \mathbf{B}$
(2) $\mathbf{B} \models Q^{\mathbf{A}}$
(3) $Q^{\mathbf{B}} \subseteq Q^{\mathbf{A}}$.

Homomorphisms, CQE and CQC

Alternatively,

Theorem (Chandra and Merlin, 1977)

For all conjunctive queries Q_{1} and Q_{2}, the following statements are equivalent:
(1) $Q_{1} \subseteq Q_{2}$
(2) $\mathbf{A}^{Q_{2}} \rightarrow \mathbf{A}^{Q_{1}}$
(3) $\mathrm{A}^{Q_{1}} \models Q_{2}$.

Illustration: 3-COLORABILITY

Example

For a graph \mathbf{H}, the following are equivalent:
(1) $\mathbf{H} \rightarrow \mathbf{K}_{3}$ (i.e., \mathbf{H} is 3 -colorable)
(2) $\mathrm{K}_{3} \models Q^{\mathrm{H}}$
(3) $Q^{\mathrm{K}_{3}} \subseteq Q^{\mathrm{H}}$
(1) $\Longrightarrow(2)$: A hom. $h: \mathbf{H} \rightarrow \mathbf{K}_{3}$ provides witnesses in \mathbf{K}_{3} for the \exists quantifiers in Q^{H}.
(2) \Longrightarrow (3): If $\mathbf{K}_{3} \models Q^{\mathbf{H}}$ and $\mathbf{A} \models Q^{\mathbf{K}_{3}}$, then there are witness functions $h: \mathbf{H} \rightarrow \mathbf{K}_{\mathbf{3}}$ and $h^{*}: \mathbf{K}_{\mathbf{3}} \rightarrow \mathbf{A}$. Then $h^{*} \circ h: \mathbf{H} \rightarrow \mathbf{A}$ provides witnesses in \mathbf{A} for the \exists quantifiers in Q^{H}. (3) \Longrightarrow (1): Since $\mathbf{K}_{3} \models Q^{\mathbf{K}_{3}}$, we have $\mathbf{K}_{3} \models Q^{\mathbf{H}}$. The witnesses to the \exists quantifiers give a homomorphism from \mathbf{H} to K_{3}.

CSP, Homomorphisms, CQE, and CQC

Fact

- Constraint Satisfaction
- The Homomorphism Problem
- Conjunctive Query Evaluation
- Conjunctive Query Containment
are the same problem.

CSP, Homomorphisms, CQE, and CQC

Fact

- The combined complexity of conjunctive queries (pp-formulas) coincides with the Homomorphism Problem (Uniform CSP).
- The expression complexity of conjunctive queries (pp-formulas) coincides with the family of problems $\operatorname{CSP}(B)$, where

$$
\operatorname{CSP}(\mathbf{B})=\{\mathbf{A}: \mathbf{A} \rightarrow \mathbf{B}\}=\left\{\mathbf{A}: \mathbf{B} \models Q^{\mathbf{A}}\right\} .
$$

- Both the combined complexity and the expression complexity of conjunctive queries are NP-complete. (contrast with FO.)

Tractability of CSP via Logic

Fact

- The complexity of $\operatorname{CSP}(\mathbf{B})$ depends on \mathbf{B} :
- $\operatorname{CSP}\left(\mathrm{K}_{3}\right)$ is 3-Colorability, hence is NP-complete.
- $\operatorname{CSP}\left(\mathbf{K}_{2}\right)$ is 2-Colorability, hence is in P.

Approach

- Use logic to identify tractable (polynomial-time solvable) cases of $\operatorname{CSP}(\mathbf{B})$.
- Study when $\operatorname{CSP}(\mathbf{B})$ is definable in some logic L whose data complexity is in P .

CSP and Unions of Conjunctive Queries

Definition

For every structure B, let

$$
\neg \operatorname{CSP}(\mathbf{B})=\{\mathbf{A}: \mathbf{A} \nrightarrow \mathbf{B}\} .
$$

Fact

For every structure B:

- $\neg \operatorname{CSP}(\mathbf{B})$ is closed under homomorphisms.
- Moreover,

$$
\neg \operatorname{CSP}(\mathbf{B})=\left\{\mathbf{A}: \mathbf{A} \models \bigvee_{\mathbf{D} \nrightarrow \mathbf{B}} Q^{\mathbf{D}}\right\}
$$

i.e., $\neg \operatorname{CSP}(\mathbf{B})$ is definable by an infinite union of conjunctive queries.

CSP and Unions of Conjunctive Queries

Definition

- $L_{\infty \omega}$ is the extension of FO with infinitary disjunctions and infinitary conjunctions.
- $\exists L_{\infty \omega}^{+}$is the existential positive fragment of $L_{\infty \omega}$.

Approach

- Thus, for every structure \mathbf{B}, we have that $\neg \operatorname{CSP}(\mathbf{B})$ is $\exists L_{\infty \omega}^{+}$-definable, since

$$
\neg \operatorname{CSP}(\mathbf{B})=\left\{\mathbf{A}: \mathbf{A} \models \bigvee_{\mathbf{D} \not \subset \mathbf{B}} Q^{\mathbf{D}}\right\} .
$$

- Study when $\neg \operatorname{CSP}(\mathbf{B})$ is definable in a tractable fragment of $\exists L_{\infty \omega}^{+}$.

CSP and First-Order Logic

Fact

Assume that \mathbf{B} is a structure such that $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a finite union of conjunctive queries (i.e., $\neg \operatorname{CSP}(\mathbf{B})=\bigvee_{i=1}^{m} Q^{\mathbf{D}_{i}}$). Then $\operatorname{CSP}(\mathbf{B})$ is FO-definable; hence, it is in P .

CSP and First-Order Logic

Fact

Assume that B is a structure such that $\neg \operatorname{CSP}(B)$ is definable by a finite union of conjunctive queries (i.e., $\neg \operatorname{CSP}(\mathbf{B})=\bigvee_{i=1}^{m} Q^{\mathbf{D}_{i}}$). Then $\operatorname{CSP}(\mathbf{B})$ is FO-definable; hence, it is in P .

Theorem (Atserias, 2005)

For every structure \mathbf{B}, the following statements are equivalent.
(1) $\operatorname{CSP}(\mathbf{B})$ is FO-definable.
(2) $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a finite union of conjunctive queries.

CSP and First-Order Logic

Example (Gallai-Hesse-Roy Theorem, circa 1965)

Let \mathbf{T}_{k} be the linear order with k elements and \mathbf{P}_{k+1} be the directed path with $k+1$ elements. Then, for every directed graph \mathbf{G}, we have that

$$
\mathbf{G} \rightarrow \mathbf{T}_{k} \Longleftrightarrow \mathbf{P}_{k+1} \nrightarrow \mathbf{G}
$$

Consequently,

$$
\neg \operatorname{CSP}\left(\mathbf{T}_{k}\right)=\left\{\mathbf{G}: \mathbf{G} \models Q^{\mathbf{P}_{k+1}}\right\} .
$$

Beyond First-Order Logic

Fact

- $\operatorname{CSP}\left(\mathbf{K}_{2}\right)$ is 2-Colorability.
- $\operatorname{CSP}\left(\mathbf{K}_{2}\right)$ is in P, but it is not FO-definable.
- Hence, $\neg \operatorname{CSP}\left(\mathbf{K}_{2}\right)$ is definable by an infinite union of conjunctive queries, but it is not definable by any finite union of conjunctive queries.

Question

Can the tractability of $\operatorname{CSP}\left(\mathbf{K}_{2}\right)$ be explained via definability in a logic other than FO?

Outline

(1) Basic Notions

(2) Conjunctive Queries \& CSP
(3) Datalog and CSP

4 Finite-variable Logics and CSP

Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of $\neg \operatorname{CSP}(\mathbf{B})$ in Datalog is a unifying explanation for many tractability results about $\operatorname{CSP}(\mathbf{B})$, including $\operatorname{CSP}\left(\mathbf{K}_{2}\right)$.

Datalog

Note: Recall that every CQ can be written as a rule:

$$
P 2\left(x_{1}, x_{2}\right):-E\left(x_{1}, z\right), E\left(z, x_{2}\right)
$$

Definition

- Datalog $=$ Conjunctive Queries + Recursion Function, negation-free, and \neq-free logic programs
- A Datalog program is a finite set of rules given by conjunctive queries

$$
T(\bar{x}):-S_{1}\left(\bar{y}_{1}\right), \ldots, S_{r}\left(\bar{y}_{r}\right) .
$$

Intensional DB predicates (IDBs): those that occur both in the heads and the bodies of rules (recursive predicates).
Extensional DB predicates (EDBs): all other predicates.

Example (Transitive Closure Query TC)

$T C(\mathbf{H})=\{(a, b)$: there is a path from a to b in $\mathbf{H}\}$.

A Datalog program for TC (linear Datalog)

$$
\begin{aligned}
& S(x, y):-E(x, y) \\
& S(x, y):-E(x, z), S(z, y)
\end{aligned}
$$

Another Datalog program for TC (non-linear Datalog)

$$
\begin{aligned}
& S(x, y):-E(x, y) \\
& S(x, y):-S(x, z), S(z, y)
\end{aligned}
$$

- E is the EDB.
- S is the IDB; it defines TC.

Semantics of Datalog Programs

Example

A Datalog program for TC

$$
\begin{aligned}
& S(x, y):-E(x, y) \\
& S(x, y):-E(x, z), S(z, y)
\end{aligned}
$$

Operational Semantics: "Bottom-up" Evaluation

$$
\begin{aligned}
& S^{0}=\emptyset \\
& \left.S^{m+1}=\{(a, b)): \exists z\left(E(a, z) \wedge S^{m}(z, b)\right)\right\}
\end{aligned}
$$

Fact: The following statements are true:

$$
\begin{aligned}
& S^{m}=\{(a, b): \text { there is a path of length } \leq m \text { from } a \text { to } b\} \\
& T C=\bigcup_{m} S^{m}=S^{|V|} .
\end{aligned}
$$

Datalog and 2-Colorability

Example

- $\operatorname{CSP}\left(\mathbf{K}_{2}\right)=2$-CoLORABILITY.
- Recall that a graph is 2 -colorable if and only if it does not contain an odd cycle.
- Datalog program for Non-2-Colorability:

$$
\begin{aligned}
& O(X, Y) \\
& :-E(X, Y) \\
& O(X, Y) \\
& Q \\
& Q
\end{aligned}:-O(X, Z), E(Z, W), E(W, Y)
$$

Data Complexity of Datalog

Theorem

- Every Datalog query is definable by an "effective and uniform" union of conjunctive queries.
- Every Datalog query is in P .
- The data complexity of Datalog is P-complete.

Proof.

- The "bottom-up" evaluation of Datalog programs converges in polynomially-many steps.
- Each iteration is definable by a finite union of conjunctive queries.
- Horn 3-UnSAt is P-complete and expressible in Datalog.

Horn 3-SAT and Datalog

Fact (HORN 3-UNSAT is expressible in Datalog)

- Horn 3-CNF formula φ viewed as a finite structure

$$
\left.\mathbf{A}^{\varphi}=\left(\left\{x_{1}, \ldots, x_{n}\right\}\right), U, P, N\right), \text { where }
$$

- U is the set of unit clauses x
- P is the set of clauses $(\neg x \vee \neg y \vee z)$
- N is the set of clauses ($\neg x \vee \neg y \vee \neg z$).
- Datalog program for Horn 3-UnSat: encodes the unit propagation algorithm for Horn Satisfiability.

$$
\begin{aligned}
T(z) & :-U(z) \\
T(z) & :-P(x, y, z), T(x), T(y) \\
Q & :-N(x, y, z), T(x), T(y), T(z)
\end{aligned}
$$

Provably non-linearizable.

Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of $\neg \operatorname{CSP}(\mathbf{B})$ in Datalog is a unifying explanation for many tractability results about $\operatorname{CSP}(\mathbf{B})$.

Theorem (Feder and Vardi, 1993)

- If $\mathrm{B}=\left(B, R_{1}, \ldots, R_{k}\right)$ is such that $\operatorname{Pol}\left(\left\{R_{1}, \ldots, R_{k}\right\}\right)$ contains a near-unanimity function, then $\neg \operatorname{CSP}(\mathbf{B})$ is Datalog-definable.
Special Case: 2-Sat
- If $\mathrm{B}=\left(B, R_{1}, \ldots, R_{k}\right)$ is such that $\operatorname{Pol}\left(\left\{R_{1}, \ldots, R_{k}\right\}\right)$ contains a semi-lattice function, then $\neg \operatorname{CSP}(\mathbf{B})$ is Datalog-definable.
Special Case: Horn k-Sat, Dual Horn k-Sat, $k \geq 2$.

Outline

(1) Basic Notions

(2) Conjunctive Queries \& CSP
(3) Datalog and CSP

4 Finite-variable Logics and CSP

Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.
Definition

- FO^{k} : FO-formulas with at most k variables.
- L^{k} : FO^{k}-formulas built from atomic formulas, \wedge, and \exists only.
- Note: Each L^{k}-formula defines a conjunctive query.

Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

- FO^{k} : FO-formulas with at most k variables.
- L^{k} : FO^{k}-formulas built from atomic formulas, \wedge, and \exists only.
- Note: Each L^{k}-formula defines a conjunctive query.

Example

- $P^{n}(x, y)$: there is a path of length n from x to y.

Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

- FO^{k} : FO -formulas with at most k variables.
- L^{k} : FO^{k}-formulas built from atomic formulas, \wedge, and \exists only.
- Note: Each L^{k}-formula defines a conjunctive query.

Example

- $P^{n}(x, y)$: there is a path of length n from x to y.
- $P^{n}(x, y)$ is L^{3}-definable.

$$
\begin{aligned}
P^{1}(x, y) & \equiv E(x, y) \\
P^{n+1}(x, y) & \equiv \exists z\left(E(x, z) \wedge \exists x\left((x=z) \wedge P_{n}(x, y)\right)\right) .
\end{aligned}
$$

k-Datalog

Definition

A k-Datalog program is a Datalog program in which each rule $t_{0}:-t_{1}, \ldots, t_{m}$ has at most k distinct variables.

Example

- Non 2-Colorability revisited

$$
\begin{aligned}
O(X, Y) & :-E(X, Y) \\
O(X, Y) & :-O(X, Z), E(Z, W), E(W, Y) \\
Q & :-O(X, X)
\end{aligned}
$$

- Therefore, Non 2-Colorability is definable in 4-Datalog.
- Exercise: Non 2-Colorability is definable in 3-Datalog.

Datalog and Finite-Variable Logics

Theorem (K ... and Vardi, 1990)

- Every k-Datalog definable query is also definable by a formula of the form $\bigvee_{n \geq 1} \psi_{n}$, where ψ_{n} is an L^{k}-formula.
- Consequently, k-Datalog $\subseteq \exists L_{\infty \omega}^{k,+}$.

Note

In general, k-Datalog is a proper fragment of $\exists L_{\infty \omega}^{k,+}$.
(The latter can express non-recursive queries using arbitrary infinite disjunctions.)

Datalog, Finite-Variable Logics, and CSP

Theorem (K ... and Vardi, 1998)

For every \mathbf{B} and every $k \geq 1$, the following are equivalent:
(1) $\neg \operatorname{CSP}(\mathbf{B})$ is definable in k-Datalog.
(2) $\neg \operatorname{CSP}(\mathbf{B})$ is definable by a formula of the form $\bigvee_{n \geq 1} \psi_{n}$, where each ψ_{n} is an L^{k}-formula.
(3) $\neg \operatorname{CSP}(\mathbf{B})$ is definable in $\exists L_{\infty \omega}^{k,+}$.

Note

Recall that

$$
\neg \operatorname{CSP}(\mathbf{B})=\left\{\mathbf{A}: \mathbf{A} \models V_{\mathbf{D} \nrightarrow \mathbf{B}} Q^{\mathbf{D}}\right\}
$$

and each $Q^{\mathbf{D}}$ is a conjunctive query.

CSP and Logic

Summary

For every structure \mathbf{B} and for every $k \geq 1$:

- $\neg \operatorname{CSP}(\mathbf{B})$ is definable by an (infinite) union of conjunctive queries.
- $\neg \operatorname{CSP}(\mathbf{B})$ is FO-definable if and only if it is definable by a finite union of conjunctive queries.
$-\neg \operatorname{CSP}(\mathbf{B})$ is definable in k-Datalog if and only if it is definable by an (infinite) union of conjunctive queries each of which is L^{k}-definable.

Existential k-Pebble Games

Spoiler and Duplicator play on two structures A and B. Each player uses k pebbles, labeled $1, \ldots, k$. In each move,

- Spoiler places a pebble on or removes a pebble from an element of A.
- Duplicator tries to duplicate the move on Busing the pebble with the same label.

- Spoiler wins the (\exists, k)-pebble game if at some point the mapping $a_{i} \mapsto b_{i}, 1 \leq i \leq I$, is not a partial homomorphism.
- Duplicator wins the (\exists, k)-pebble game if the above never happens.

Fact (Cliques of Different Size)

Let \mathbf{K}_{k} be the k-clique. Then

- Duplicator wins the (\exists, k)-pebble game on \mathbf{K}_{k} and \mathbf{K}_{k+1}.
- Spoiler wins the (\exists, k)-pebble game on \mathbf{K}_{k} and \mathbf{K}_{k-1}.

Example

K_{4}

\mathbf{K}_{5}

Winning Strategies in the (\exists, k)-Pebble Game

Definition

A winning strategy for the Duplicator in the (\exists, k)-pebble game is a non-empty set \mathcal{I} of partial homomorphisms from \mathbf{A} to \mathbf{B} such that

- If $f \in \mathcal{I}$ and $h \subseteq f$, then $h \in \mathcal{I}$
(\mathcal{I} is closed under subfunctions).
- If $f \in \mathcal{I}$ and $|f|<k$, then for every $a \in A$, there is $g \in \mathcal{I}$ so that $f \subseteq g$ and $a \in \operatorname{dom}(g)$.
(\mathcal{I} has the forth property up to k)

Fact

If $\mathbf{A} \rightarrow \mathbf{B}$, then, for every $k \geq 1$, the Duplicator wins the (\exists, k)-pebble game on \mathbf{A} and \mathbf{B}.

k-Datalog and (\exists, k)-Pebble Games

Theorem (K ... and Vardi)

- Let Q be a query definable in $\exists L_{\infty \omega}^{k,+}$. If \mathbf{A} satisfies Q and the Duplicator wins the (\exists, k)-pebble game on \mathbf{A} and \mathbf{B}, then also \mathbf{B} satisfies Q.
- There is a polynomial-time algorithm to decide whether, given two finite structures \mathbf{A} and \mathbf{B}, the Spoiler or the Duplicator wins the (\exists, k)-pebble game on \mathbf{A} and \mathbf{B}.
- For every fixed finite structure \mathbf{B}, there is a k-Datalog program that expresses the query: given a finite structure \mathbf{A}, does the Spoiler win the (\exists, k)-game on \mathbf{A} and \mathbf{B} ?

k-Datalog, $\exists L_{\infty \omega}^{k,+},(\exists, k)$-pebble games, and CSP

Theorem

Let k be a positive integer and \mathbf{B} a finite structure. Then the following statements are equivalent:
(1) $\neg \operatorname{CSP}(\mathbf{B})$ is definable in k-Datalog.
(2) $\neg \operatorname{CSP}(\mathbf{B})$ is definable in $\exists L_{\infty}^{k,+}$.
(3) $\operatorname{CSP}(\mathbf{B})=$
$\{\mathbf{A}$: Duplicator wins the (\exists, k)-pebble game on \mathbf{A} and $\mathbf{B}\}$.

Note

Single canonical polynomial-time algorithm for all $\operatorname{CSP}(\mathbf{B})$'s that are definable in k-Datalog:
Determine the winner in the (\exists, k)-pebble game.

The Hierarchy Problem for Datalog-definable CSPs

Problem

Prove or disprove:
For every $k \geq 4$, there is a directed graph \mathbf{G}_{k} such that

- $\neg \operatorname{CSP}\left(\mathbf{G}_{k}\right)$ is definable in k-Datalog;
- $\neg \operatorname{CSP}\left(\mathbf{G}_{k}\right)$ is not definable in $(k-1)$-Datalog.

Note

- NON 2-Colorability is definable in 3-Datalog, but not in 2-Datalog.
- All $\neg \operatorname{CSP}(\mathbf{G})$'s presently known to be definable in Datalog are actually definable in 3-Datalog.

The Meta-problem for Datalog-definable CSPs

Problem

Determine whether or not the following problems are decidable:

- Given a structure \mathbf{B}, is $\neg \operatorname{CSP}(\mathbf{B})$ definable in Datalog?
- Given a structure \mathbf{B}, is $\neg \operatorname{CSP}(\mathbf{B})$ definable in k-Datalog? (Here k is a fixed positive integer.)

Theorem (Larose, Loten, and Tardif, 2006)

The following problem is NP-complete: Given a structure \mathbf{B}, is $\operatorname{CSP}(\mathbf{B})$ definable in first-order logic?

Epilogue

- "Logic is in the eye of the logician."

Outrageous Acts and Everyday Rebellions Gloria Steinem, 1986.

