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A Primer on Logic

What is logic?

“Logic is logic. That’s all I say."

The Deacon’s Masterpiece

Oliver Wendell Holmes, Sr., 1858
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Vocabularies and Structures

Definition

Vocabulary σ: a set σ = {R′
1, . . . ,R

′
m} of relation symbols

of specified arities.

σ-structure A = (A,R1, . . . ,Rm): a non-empty set A and
relations on A such that arity(Ri) = arity(R′

i ), 1 ≤ i ≤ m.

Finite σ-structure A: universe A is finite
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Vocabularies and Structures

Definition

Vocabulary σ: a set σ = {R′
1, . . . ,R

′
m} of relation symbols

of specified arities.

σ-structure A = (A,R1, . . . ,Rm): a non-empty set A and
relations on A such that arity(Ri) = arity(R′

i ), 1 ≤ i ≤ m.

Finite σ-structure A: universe A is finite

Example

Graph: G = (V ,E), where E is binary.

String: S = ({1,2, . . . ,n},P), where P is unary
m ∈ P ⇐⇒ the m-th bit of the string is 1.

String 10001 encoded as ({1, 2, 3, 4, 5}, {1, 5}).
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Vocabularies and Structures

Example

Every 3-CNF formula can be viewed as a finite structure of the
form A = (A,R0,R1,R2,R3), where each Ri is a 3-ary relation.

3-CNF formula ϕ with variables x1, . . . , xn

Structure Aϕ = ({x1, . . . , xn},R
ϕ
0 ,R

ϕ
1 ,R

ϕ
2 ,R

ϕ
3 ), where

Rϕ
0 = {(x , y , z) : (x ∨ y ∨ z) is a clause of ϕ}

Rϕ
1 = {(x , y , z) : (¬x ∨ y ∨ z) is a clause of ϕ}

Rϕ
2 = {(x , y , z) : (¬x ∨ ¬y ∨ z) is a clause of ϕ}

Rϕ
3 = {(x , y , z) : (¬x ∨ ¬y ∨ ¬z) is a clause of ϕ}



Basic Notions Conjunctive Queries & CSP Datalog and CSP Finite-variable Logics and CSP

Queries

Definition

Class C of structures: a collection of relational σ-structures
closed under isomorphisms.

k-ary Query Q on C, where k ≥ 1:
a mapping Q with domain C and such that

Q(A) is a k -ary relation on A, for A ∈ C;
Q is preserved under isomorphisms, i.e.,
if h : A → B is an isomorphism, then Q(B) = h(Q(A)).

Boolean Query Q on C:
a mapping Q : C → {0,1} preserved under isomorphisms.
Thus, Q can be identified with the subclass C′ of C, where

C′ = {A ∈ C : Q(A) = 1}.
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Examples of Queries

PATH OF LENGTH 2: Binary query on graphs H = (V ,E)

P2(H) = {(a,b) ∈ V 2: there is a path of length 2 from a to b}.

CONNECTIVITY: Boolean query on graphs H = (V ,E)

CN(H) =

{

1 if H is connected
0 otherwise.

k -COLORABILITY, k ≥ 2

3-SAT (with formulas viewed as structures)
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Definability of Queries

Definition

Let L be a logic and C a class of structures

A k-ary query Q on C is L-definable if there is an L-formula
ϕ(x1, . . . , xk ) with x1, . . . , xk as free variables and such that
for every A ∈ C

Q(A) = {(a1, . . . ,ak ) ∈ Ak : A |= ϕ(a1, . . . ,ak )}.

A Boolean query Q on C is L-definable if there is an
L-sentence ψ such that for every A ∈ C

Q(A) = 1 ⇐⇒ A |= ψ.
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First-Order Logic

Definition

First-Order Logic FO (on graphs):

first-order variables: x , y , z, . . .

atomic formulas: E(x , y), x = y

formulas: atomic formulas, Boolean connectives, first-order
quantifiers ∃x , ∀x , ∃y , ∀y , . . . that range over the nodes of
the graph.
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First-Order Logic

Definition

First-Order Logic FO (on graphs):

first-order variables: x , y , z, . . .

atomic formulas: E(x , y), x = y

formulas: atomic formulas, Boolean connectives, first-order
quantifiers ∃x , ∀x , ∃y , ∀y , . . . that range over the nodes of
the graph.

Example

On the class G of finite graphs the query PATH OF LENGTH 2 is
FO-definable

P2(H) = {(a,b) ∈ V 2 : H |= ∃z(E(a, z) ∧ E(z,b))}.
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Limitations of First-Order Logic

Fact

The queries TRANSITIVE CLOSURE, CONNECTIVITY,
k -COLORABILITY, k ≥ 2, are not FO-definable.

On the class of all finite structures with 4 ternary relations,
the query 3-SAT is not first-order definable.

Note: Results about non-definability in FO-logic can be proved
using Ehrenfeucht-Fraïssé games.
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The Complexity of Logic

Definition (Vardi, 1982)

The combined complexity of L is the following decision
problem:
Given a finite structure B and an L-sentence ψ, does
B |= ψ?
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The Complexity of Logic

Definition (Vardi, 1982)

The combined complexity of L is the following decision
problem:
Given a finite structure B and an L-sentence ψ, does
B |= ψ?

The data complexity of L is the family of the following
decision problems Pψ, one for each fixed L-sentence ψ:
Given a finite structure B, does B |= ψ?
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The Complexity of Logic

Definition (Vardi, 1982)

The combined complexity of L is the following decision
problem:
Given a finite structure B and an L-sentence ψ, does
B |= ψ?

The data complexity of L is the family of the following
decision problems Pψ, one for each fixed L-sentence ψ:
Given a finite structure B, does B |= ψ?

The expression complexity of L is the family of the following
decision problems PB, one for each fixed finite structure B:
Given an L-sentence ψ, does B |= ψ?
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Some Basic Complexity Classes

Definition
L: problems solvable by a TM in logspace

NL: problems solvable by a NTM in logspace

P: problems solvable by a TM in polynomial time

NP: problems solvable by a NTM in polynomial time

PSPACE: problems solvable by a TM in polynomial space.
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Some Basic Complexity Classes

Definition
L: problems solvable by a TM in logspace

NL: problems solvable by a NTM in logspace

P: problems solvable by a TM in polynomial time

NP: problems solvable by a NTM in polynomial time

PSPACE: problems solvable by a TM in polynomial space.

Fact
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE.

NL 6= PSPACE

No other proper containment is known at present.

Each of them possesses natural complete problems.
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The Complexity of Logic

Definition
Let L be a logic and C a complexity class.

The data complexity of L is in C if for each L-sentence ψ,
the problem Pψ is in C.

The data complexity of L is C-complete if it is in C and there
is at least one L-sentence ψ such that Pψ is C-complete.
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The Complexity of Logic

Definition
Let L be a logic and C a complexity class.

The data complexity of L is in C if for each L-sentence ψ,
the problem Pψ is in C.

The data complexity of L is C-complete if it is in C and there
is at least one L-sentence ψ such that Pψ is C-complete.

The expression complexity of L is in C if for each finite
structure B, the problem PB is in C.

The expression complexity of L is C-complete if it is in C
and there is at least one finite structure B such that PB is
C-complete.
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The Complexity of First-Order Logic

Theorem

The data complexity of FO is in L.

Both the expression complexity of FO and the combined
complexity of FO are PSPACE-complete.

Proof.

Fix a first-order sentence ψ. Given a finite structure B:
Cycle through all possible instantiations of the quantifiers
of ψ in B, keeping track of the number of them using a
counter in binary.

QBF is PSPACE-complete (Stockmeyer - 1976).
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Conjunctive Queries

Definition

A primitive positive formula (pp-formula) is a FO-formula in
prenex normal form built from atomic formulas, ∧, and ∃
only, i.e., it is of the form:

(∃z1 . . . ∃zm)ψ(x1, . . . , xk , z1, . . . , zm),
where ψ is a conjunction of atomic formulas.

A conjunctive query is a query definable by a pp-formula.



Basic Notions Conjunctive Queries & CSP Datalog and CSP Finite-variable Logics and CSP

Conjunctive Queries

Definition

A primitive positive formula (pp-formula) is a FO-formula in
prenex normal form built from atomic formulas, ∧, and ∃
only, i.e., it is of the form:

(∃z1 . . . ∃zm)ψ(x1, . . . , xk , z1, . . . , zm),
where ψ is a conjunction of atomic formulas.

A conjunctive query is a query definable by a pp-formula.

Example

PATH OF LENGTH 2 (Binary query)
(∃z)(E(x1, z) ∧ E(z, x2))

Can also be written as a rule:
P2(x1, x2) : − E(x1, z),E(z, x2)
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Conjunctive Queries and Databases

Fact

Conjunctive queries are the most frequently asked queries
in databases (a.k.a. SPJ queries)

The main construct of SQL expresses conjunctive queries.

Example

Relations R1(A,B,C), R2(B,C,D)

SELECT R1.A,R2.D

FROM R1,R2

WHERE R1.B = R2.B AND R1.C = R2.C

This expresses the conjunctive query Q(x ,w) definable by
∃y∃z(R1(x , y , z) ∧ R2(y , z,w))
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Conjunctive Query Evaluation

A fundamental problem about conjunctive queries

Definition

CONJUNCTIVE QUERY EVALUATION

Given a CQ Q and a structure A, find
Q(A) = {(a1, . . . ak ) : A |= Q(a1, . . . ,ak )}

For Boolean queries Q, this becomes:
Given Q and A, does A |= Q? (is Q(A) = 1?)

Same problem as the combined complexity of pp-formulas.

Example

Given a graph H, does it contain a triangle?
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Conjunctive Query Containment

Another fundamental problem about conjunctive queries

Definition

CONJUNCTIVE QUERY CONTAINMENT

Given two k-ary CQs Q1 and Q2, is it true that for every
structure A, we have that Q1(A) ⊆ Q2(A)?

For Boolean queries, this becomes:
Given two Boolean queries Q1 and Q2, does Q1 |= Q2?
(does Q1 logically imply Q2?)

Example

Is it true that if two nodes of a graph H are connected by a path
of length 4, then they are also connected by a path of length 3?
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Conjunctive Queries and Homomorphisms

Chandra and Merlin (1977) showed that:

CONJUNCTIVE QUERY EVALUATION

and
CONJUNCTIVE QUERY CONTAINMENT

are the same problem.
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Conjunctive Queries and Homomorphisms

Chandra and Merlin (1977) showed that:

CONJUNCTIVE QUERY EVALUATION

and
CONJUNCTIVE QUERY CONTAINMENT

are the same problem.

The link is the HOMOMORPHISM PROBLEM:

Given A and B, does A → B?
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Canonical CQs and Canonical Structures

Definition

Given A = (A,RA
1 , . . . ,R

A
m), the canonical CQ of A is the

Boolean CQ QA with the elements of A as variables and
the “facts" of A as conjuncts: ∃x1 · · · ∃xn(

∧m
i=1

∧

t RA
i (t))

If Q is a Boolean CQ, then AQ is the structure with the
variables of Q as elements and the conjuncts of Q as
“facts".

Example

If A = ({a,b, c}, {(a,b), (b, c), (c,a)}, then QA is
∃x∃y∃z(E(x , y) ∧ E(y , z) ∧ E(z, x))

If Q is ∃x∃y(E(x , y) ∧ E(x , z)), then
AQ = ({x , y , z), {(x , y), (x , z)})
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Homomorphisms, CQE and CQC

Theorem (Chandra and Merlin, 1977)

For all relational structures A and B, the following statements
are equivalent:

1 A → B

2 B |= QA

3 QB ⊆ QA.
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Homomorphisms, CQE and CQC

Alternatively,

Theorem (Chandra and Merlin, 1977)

For all conjunctive queries Q1 and Q2, the following statements
are equivalent:

1 Q1 ⊆ Q2

2 AQ2 → AQ1

3 AQ1 |= Q2.
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Illustration: 3-COLORABILITY

Example

For a graph H, the following are equivalent:

1 H → K3 (i.e., H is 3-colorable)
2 K3 |= QH

3 QK3 ⊆ QH

(1) =⇒ (2): A hom. h : H → K3 provides witnesses in K3 for the
∃ quantifiers in QH.

(2) =⇒ (3): If K3 |= QH and A |= QK3 , then there are witness
functions h : H → K3 and h∗ : K3 → A. Then h∗ ◦ h : H → A
provides witnesses in A for the ∃ quantifiers in QH.

(3) =⇒ (1): Since K3 |= QK3 , we have K3 |= QH. The witnesses
to the ∃ quantifiers give a homomorphism from H to K3.
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CSP, Homomorphisms, CQE, and CQC

Fact

CONSTRAINT SATISFACTION

THE HOMOMORPHISM PROBLEM

CONJUNCTIVE QUERY EVALUATION

CONJUNCTIVE QUERY CONTAINMENT

are the same problem.
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CSP, Homomorphisms, CQE, and CQC

Fact

The combined complexity of conjunctive queries
(pp-formulas) coincides with the
HOMOMORPHISM PROBLEM (UNIFORM CSP).

The expression complexity of conjunctive queries
(pp-formulas) coincides with the family of problems
CSP(B), where

CSP(B) = {A : A → B} = {A : B |= QA}.

Both the combined complexity and the expression
complexity of conjunctive queries are NP-complete.
(contrast with FO.)
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Tractability of CSP via Logic

Fact

The complexity of CSP(B) depends on B:
CSP(K3) is 3-COLORABILITY, hence is NP-complete.
CSP(K2) is 2-COLORABILITY, hence is in P.

Approach

Use logic to identify tractable (polynomial-time solvable)
cases of CSP(B).

Study when CSP(B) is definable in some logic L whose
data complexity is in P.
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CSP and Unions of Conjunctive Queries

Definition
For every structure B, let

¬CSP(B) = {A : A 6→ B}.

Fact
For every structure B:

¬CSP(B) is closed under homomorphisms.

Moreover,

¬CSP(B) = {A : A |=
∨

D 6→B

QD},

i.e., ¬CSP(B) is definable by an infinite union of conjunctive
queries.
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CSP and Unions of Conjunctive Queries

Definition

L∞ω is the extension of FO with infinitary disjunctions and
infinitary conjunctions.

∃L+
∞ω is the existential positive fragment of L∞ω.

Approach

Thus, for every structure B, we have that ¬CSP(B) is
∃L+

∞ω-definable, since

¬CSP(B) = {A : A |=
∨

D 6→B

QD}.

Study when ¬CSP(B) is definable in a tractable fragment of
∃L+

∞ω.



Basic Notions Conjunctive Queries & CSP Datalog and CSP Finite-variable Logics and CSP

CSP and First-Order Logic

Fact

Assume that B is a structure such that ¬CSP(B) is definable by
a finite union of conjunctive queries (i.e., ¬CSP(B) =

∨m
i=1 QDi ).

Then CSP(B) is FO-definable; hence, it is in P.
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CSP and First-Order Logic

Fact

Assume that B is a structure such that ¬CSP(B) is definable by
a finite union of conjunctive queries (i.e., ¬CSP(B) =

∨m
i=1 QDi ).

Then CSP(B) is FO-definable; hence, it is in P.

Theorem (Atserias, 2005)

For every structure B, the following statements are equivalent.
1 CSP(B) is FO-definable.
2 ¬CSP(B) is definable by a finite union of conjunctive

queries.
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CSP and First-Order Logic

Example (Gallai-Hesse-Roy Theorem, circa 1965)

Let Tk be the linear order with k elements and Pk+1 be the
directed path with k + 1 elements. Then, for every directed
graph G, we have that

G → Tk ⇐⇒ Pk+1 6→ G.

Consequently,

¬CSP(Tk ) = {G : G |= QPk+1}.
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Beyond First-Order Logic

Fact

CSP(K2) is 2-COLORABILITY.

CSP(K2) is in P, but it is not FO-definable.

Hence, ¬CSP(K2) is definable by an infinite union of
conjunctive queries, but it is not definable by any finite
union of conjunctive queries.

Question

Can the tractability of CSP(K2) be explained via definability in a
logic other than FO?
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Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of ¬CSP(B) in Datalog is a unifying explanation for
many tractability results about CSP(B), including CSP(K2).
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Datalog

Note: Recall that every CQ can be written as a rule:
P2(x1, x2) : − E(x1, z),E(z, x2)

Definition

Datalog = Conjunctive Queries + Recursion
Function, negation-free, and 6=-free logic programs

A Datalog program is a finite set of rules given by
conjunctive queries

T (x) : − S1(y1), . . . ,Sr (y r ).

Intensional DB predicates (IDBs): those that occur both in
the heads and the bodies of rules (recursive predicates).

Extensional DB predicates (EDBs): all other predicates.
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Example (TRANSITIVE CLOSURE Query TC)

TC(H) = {(a,b) : there is a path from a to b in H}.

A Datalog program for TC (linear Datalog)
∣

∣

∣

∣

S(x , y) : − E(x , y)
S(x , y) : − E(x , z),S(z, y)

Another Datalog program for TC (non-linear Datalog)
∣

∣

∣

∣

S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

E is the EDB.

S is the IDB; it defines TC.
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Semantics of Datalog Programs

Example

A Datalog program for TC
∣

∣

∣

∣

S(x , y) : − E(x , y)
S(x , y) : − E(x , z),S(z, y)

Operational Semantics: “Bottom-up" Evaluation
∣

∣

∣

∣

S0 = ∅
Sm+1 = {(a,b)) : ∃z(E(a, z) ∧ Sm(z,b))}

Fact: The following statements are true:

Sm = {(a,b) : there is a path of length ≤ m from a to b}
TC =

⋃

m Sm = S|V |.
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Datalog and 2-Colorability

Example

CSP(K2) = 2-COLORABILITY.

Recall that a graph is 2-colorable if and only if it does not
contain an odd cycle.

Datalog program for NON-2-COLORABILITY:
∣

∣

∣

∣

∣

∣

O(X ,Y ) : − E(X ,Y )
O(X ,Y ) : − O(X ,Z ),E(Z ,W ),E(W ,Y )
Q : − O(X ,X )
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Data Complexity of Datalog

Theorem

Every Datalog query is definable by an “effective and
uniform" union of conjunctive queries.

Every Datalog query is in P.

The data complexity of Datalog is P-complete.

Proof.

The “bottom-up" evaluation of Datalog programs
converges in polynomially-many steps.

Each iteration is definable by a finite union of conjunctive
queries.

HORN 3-UNSAT is P-complete and expressible in Datalog.
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Horn 3-SAT and Datalog

Fact (HORN 3-UNSAT is expressible in Datalog)

Horn 3-CNF formula ϕ viewed as a finite structure
Aϕ = ({x1, . . . , xn}),U,P,N), where

U is the set of unit clauses x
P is the set of clauses (¬x ∨ ¬y ∨ z)
N is the set of clauses (¬x ∨ ¬y ∨ ¬z).

Datalog program for HORN 3-UNSAT: encodes the
unit propagation algorithm for Horn Satisfiability.

∣

∣

∣

∣

∣

∣

T (z) : − U(z)
T (z) : − P(x , y , z),T (x),T (y)
Q : − N(x , y , z),T (x),T (y),T (z)

Provably non-linearizable.
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Tractability via Definability in Datalog

Fact (Feder and Vardi, 1993)

Definability of ¬CSP(B) in Datalog is a unifying explanation for
many tractability results about CSP(B).

Theorem (Feder and Vardi, 1993)

If B = (B,R1, . . . ,Rk ) is such that Pol({R1, . . . ,Rk})
contains a near-unanimity function, then ¬CSP(B) is
Datalog-definable.

Special Case: 2-SAT

If B = (B,R1, . . . ,Rk ) is such that Pol({R1, . . . ,Rk})
contains a semi-lattice function, then ¬CSP(B) is
Datalog-definable.

Special Case: HORN k -SAT, DUAL HORN k -SAT, k ≥ 2.
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Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

FOk : FO-formulas with at most k variables.

Lk : FOk -formulas built from atomic formulas, ∧, and ∃ only.

Note: Each Lk -formula defines a conjunctive query.
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Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

FOk : FO-formulas with at most k variables.

Lk : FOk -formulas built from atomic formulas, ∧, and ∃ only.

Note: Each Lk -formula defines a conjunctive query.

Example

Pn(x , y): there is a path of length n from x to y .
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Logics with Finitely Many Variables

An old, but fruitful, idea: the number of variables is a resource.

Definition

FOk : FO-formulas with at most k variables.

Lk : FOk -formulas built from atomic formulas, ∧, and ∃ only.

Note: Each Lk -formula defines a conjunctive query.

Example

Pn(x , y): there is a path of length n from x to y .

Pn(x , y) is L3-definable.

P1(x , y) ≡ E(x , y)

Pn+1(x , y) ≡ ∃z(E(x , z) ∧ ∃x((x = z) ∧ Pn(x , y))).
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k -Datalog

Definition
A k-Datalog program is a Datalog program in which each rule
t0 : − t1, . . . , tm has at most k distinct variables.

Example

NON 2-COLORABILITY revisited
∣

∣

∣

∣

∣

∣

O(X ,Y ) : − E(X ,Y )
O(X ,Y ) : − O(X ,Z ),E(Z ,W ),E(W ,Y )
Q : − O(X ,X )

Therefore, NON 2-COLORABILITY is definable in 4-Datalog.

Exercise: NON 2-COLORABILITY is definable in 3-Datalog.
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Datalog and Finite-Variable Logics

Theorem (K ... and Vardi, 1990)

Every k-Datalog definable query is also definable by a
formula of the form

∨

n≥1 ψn, where ψn is an Lk -formula.

Consequently, k-Datalog ⊆ ∃Lk ,+
∞ω.

Note

In general, k-Datalog is a proper fragment of ∃Lk ,+
∞ω.

(The latter can express non-recursive queries using arbitrary
infinite disjunctions.)
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Datalog, Finite-Variable Logics, and CSP

Theorem (K ... and Vardi, 1998)

For every B and every k ≥ 1, the following are equivalent:
1 ¬CSP(B) is definable in k-Datalog.

2 ¬CSP(B) is definable by a formula of the form
∨

n≥1 ψn,
where each ψn is an Lk -formula.

3 ¬CSP(B) is definable in ∃Lk ,+
∞ω.

Note
Recall that

¬CSP(B) = {A : A |=
∨

D 6→B QD}

and each QD is a conjunctive query.
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CSP and Logic

Summary

For every structure B and for every k ≥ 1:

¬CSP(B) is definable by an (infinite) union of conjunctive
queries.

¬CSP(B) is FO-definable if and only if it is definable by a
finite union of conjunctive queries.

¬CSP(B) is definable in k-Datalog if and only if it is
definable by an (infinite) union of conjunctive queries each
of which is Lk -definable.
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Existential k -Pebble Games

Spoiler and Duplicator play on two structures A and B. Each
player uses k pebbles, labeled 1, . . . , k . In each move,

Spoiler places a pebble on or removes a pebble from an
element of A.

Duplicator tries to duplicate the move on B using the
pebble with the same label.

A : a1 a2 . . . al

↓ ↓ · · · ↓
B : b1 b2 . . . bl l ≤ k

Spoiler wins the (∃, k)-pebble game if at some point the
mapping ai 7→ bi , 1 ≤ i ≤ l , is not a partial homomorphism.

Duplicator wins the (∃, k)-pebble game if the above never
happens.
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Fact (Cliques of Different Size)

Let Kk be the k-clique. Then

Duplicator wins the (∃, k)-pebble game on Kk and Kk+1.

Spoiler wins the (∃, k)-pebble game on Kk and Kk−1.

Example
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Winning Strategies in the (∃, k)-Pebble Game

Definition

A winning strategy for the Duplicator in the (∃, k)-pebble game
is a non-empty set I of partial homomorphisms from A to B
such that

If f ∈ I and h ⊆ f , then h ∈ I
(I is closed under subfunctions).

If f ∈ I and |f | < k , then for every a ∈ A, there is g ∈ I so
that f ⊆ g and a ∈ dom(g).
(I has the forth property up to k)

Fact

If A → B, then, for every k ≥ 1, the Duplicator wins the
(∃, k)-pebble game on A and B.
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k -Datalog and (∃, k)-Pebble Games

Theorem (K ... and Vardi)

Let Q be a query definable in ∃Lk ,+
∞ω. If A satisfies Q and

the Duplicator wins the (∃, k)-pebble game on A and B,
then also B satisfies Q.

There is a polynomial-time algorithm to decide whether,
given two finite structures A and B, the Spoiler or the
Duplicator wins the (∃, k)-pebble game on A and B.

For every fixed finite structure B, there is a k-Datalog
program that expresses the query: given a finite structure
A, does the Spoiler win the (∃, k)-game on A and B?
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k -Datalog, ∃Lk ,+
∞ω, (∃, k)-pebble games, and CSP

Theorem

Let k be a positive integer and B a finite structure. Then the
following statements are equivalent:

1 ¬CSP(B) is definable in k-Datalog.

2 ¬CSP(B) is definable in ∃Lk ,+
∞ω.

3 CSP(B) =
{A : Duplicator wins the (∃, k)-pebble game on A and B}.

Note

Single canonical polynomial-time algorithm for all CSP(B)’s that
are definable in k-Datalog:
Determine the winner in the (∃, k)-pebble game.
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The Hierarchy Problem for Datalog-definable CSPs

Problem
Prove or disprove:
For every k ≥ 4, there is a directed graph Gk such that

¬CSP(Gk ) is definable in k-Datalog;

¬CSP(Gk ) is not definable in (k − 1)-Datalog.

Note

NON 2-COLORABILITY is definable in 3-Datalog, but not in
2-Datalog.

All ¬CSP(G)’s presently known to be definable in Datalog
are actually definable in 3-Datalog.
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The Meta-problem for Datalog-definable CSPs

Problem

Determine whether or not the following problems are decidable:

Given a structure B, is ¬CSP(B) definable in Datalog?

Given a structure B, is ¬CSP(B) definable in k-Datalog?
(Here k is a fixed positive integer.)

Theorem (Larose, Loten, and Tardif, 2006)

The following problem is NP-complete:
Given a structure B, is CSP(B) definable in first-order logic?
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Epilogue

“Logic is in the eye of the logician."

Outrageous Acts and Everyday Rebellions

Gloria Steinem, 1986.
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