
Schema Mappings

&

Data Exchange

Phokion G. Kolaitis

IBM Almaden Research Center

2

The Data Interoperability Problem

� Data may reside
� at several different sites
� in several different formats (relational, XML, …).

� Two different, but related, facets of data interoperability:

� Data Integration (aka Data Federation):

� Data Exchange (aka Data Translation):

3

Data Integration
Query heterogeneous data in different sources via a virtual
global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q

4

Data Exchange

Transform data structured under a source schema into data
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

5

Data Exchange

Data Exchange is an old, but recurrent, database problem

� Phil Bernstein – 2003
“Data exchange is the oldest database problem”

� EXPRESS: IBM San Jose Research Lab – 1977
EXtraction, Processing, and REStructuring System
for transforming data between hierarchical databases.

� Data Exchange underlies:
� Data Warehousing, ETL (Extract-Transform-Load) tasks;
� XML Publishing, XML Storage, …

6

Foundations of Data Interoperability

Theoretical Aspects of Data Interoperability
Develop a conceptual framework for formulating and studying
fundamental problems in data interoperability:

� Semantics of data integration & data exchange

� Algorithms for data exchange

� Complexity of query answering

7

Outline of the Course

� Schema Mappings and Data Exchange: Overview

� Conjunctive Queries and Homomorphisms

� Data Exchange with Schema Mappings Specified by Tgds
and Egds

� Solutions in Data Exchange
� Universal Solutions
� Universal Solutions via the Chase
� The Core of the Universal Solutions

� Query Answering in Data Exchange

8

Outline of the Course - continued

� Bernstein’s Model Management Framework and Operations
on Schema Mappings

� Composing Schema Mappings

� Inverting Schema Mapping

� Extensions of the Framework: Peer Data Exchange

� Open Problems and Research Directions

9

Credits

Much (but not all) of the material presented here is
based on joint work with:

• Ron Fagin & Lucian Popa, IBM Almaden
• Ariel Fuxman (now at Microsoft Search Labs) &

Renée J. Miller, U. of Toronto
• Jonathan Panttaja & Wang-Chiew Tan, UC Santa Cruz

and draws on papers in:
• ICDT ‘03, PODS ‘03, PODS ‘04, PODS ‘05, PODS ‘06
• TCS, ACM TODS

10

Basic Concepts: Relational Databases

� Relation Symbol: R(A1, …, Ak)
R: relation name; A1, …, Ak attribute names

� Schema:
a sequence S = (R1, …, Rm) of relation symbols

� Instance (Relational Database) over S: a sequence

I = (R’1, …, R’m) of relations (tables) such that
arity (Ri) = arity (R’i), for i = 1, …, m.

� Example:
� Relation Symbols:
Enrolls(Student, Course), Teaches(Instructor, Course)
� Schema: (Enrolls, Teaches)

11

Schema Mappings

� Schema mappings:
high-level, declarative assertions that specify the
relationship between two schemas.

� Ideally, schema mappings should be
� expressive enough to specify data interoperability tasks;
� simple enough to be efficiently manipulated by tools.

� Schema mappings constitute the essential building blocks in
formalizing data integration and data exchange.

� Schema mappings play a prominent role in Bernstein’s
metadata model management framework.

12

Schema Mappings & Data Exchange

Source S Target T

� Schema Mapping M = (S, T, Σ)
� Source schema S, Target schema T
� High-level, declarative assertions Σ that specify the

relationship between S and T.
� Data Exchange via the schema mapping M = (S, T, Σ)

Transform a given source instance I to a target instance J,
so that <I, J> satisfy the specifications Σ of M.

I
J

Σ

13

Solutions in Schema Mappings

Definition : Schema Mapping M = (S, T, Σ)

If I is a source instance, then a solution for I is a
target instance J such that <I, J > satisfy Σ.

Fact: In general, for a given source instance I,
� No solution for I may exist (Σ overspecifies)

or

� Multiple solutions for I may exist; in fact, infinitely many
solutions for I may exist (Σ underspecifies).

14

Schema Mappings: Fundamental Problems

Definition : Schema Mapping M = (S, T, Σ)

� The existence-of-solutions problem Sol(M) : (decision problem)

Given a source instance I, is there a solution J for I?

� The data exchange problem associated with M: (function problem)

Given a source instance I, construct a solution J for I, provided a
solution exists.

Schema S Schema T

I J

Σ

15

Schema Mapping Specification Languages

� Question : How are schema mappings specified?

� Answer : Use logic. In particular, it is natural to try to use
first-order logic as a specification language for schema
mappings.

� Fact : There is a fixed first-order sentence specifying a
schema mapping M* such that Sol(M*) is undecidable.

� Hence, we need to restrict ourselves to well-behaved
fragments of first-order logic.

16

Queries

� Definition: Schema S
� k-ary query Q on S-instances

function I → Q(I) such that

• Q(I) is a k-ary relation on the active domain of I
• Q is preserved under isomorphisms, i.e.,

if h: I → J is an isomorphism, then Q(J) = h (Q(I)).
� Boolean query : function I → Q(I) ∈ {0,1} and preserved

under isomorphisms: Q(J) = Q(I).
� Example:

� Edge relation E → TC(E) (Transitive Closure; binary query)

� Is E connected? (Boolean query)

17

Definability of Queries

� A k-ary query Q is definable by a formula φ(x1, …, xk) if for
all S-instances I

Q(I) = {(a1, …, ak): I � φ(x1/a1, …, xk /ak) }

� A Boolean query Q is definable by a sentence ψ if for all
S-instances I, we have that

Q(I) = 1 if and only if I � ψ

Note: These are uniform definability notions
(the formula/sentence must work on all instances)

18

Conjunctive Queries

� Definition: A conjunctive query is a query definable by a
FO-formula in prenex normal form built from atomic formula
using ∃ and Æ only.
∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk)

� Examples:
� Path of Length 2: (binary query)

� ∃ z (E(x,z) Æ E(z,y))
� Written as a rule:

� P(x,y) :-- E(x,z), E(z,y)
� Cycle of Length 3: (Boolean query)

� ∃ x∃ y∃ z(E(x,y) Æ E(y,z) Æ E(z,x))
� Written as a rule:

� Q :-- E(x,z), E(z,y), E(z,x)

19

Conjunctive Queries

� Every relational join is a conjunctive query:
P(A,B,C), R(B,C,D) two relation symbols

P98R (x,y,z,w) :-- P(x,y,z), R(y,z,w)

� Conjunctive queries are the most-frequently asked database
queries; they are also known as SPJ queries

� The main construct of SQL expresses conjunctive queries:
SELECT P.A, P.B, P.C, R.D
FROM P, R
WHERE P.B = R.B AND P.C = R.C

20

Conj. Query Evaluation and Containment

� Definition: Two fundamental problems about CQs
� Conjunctive Query Evaluation (CQE):

Given a conjunctive query Q and an instance I, find Q(I).

� Conjunctive Query Containment (CQC):
� Given two k-ary conjunctive queries Q1 and Q2,

is it true that for every instance I, we have that
Q1(I) ⊆ Q2(I)?

� Given two Boolean queries Q1and Q2, is it true that
Q1� Q2? (that is, for all I, if I � Q1, then I � Q2)?

CQC is logical implication.

21

CQE vs. CQC

Theorem: Chandra & Merlin, 1977
CQE and CQC are the same problem.

Question: What is the common link?

Answer: The Homomorphism Problem

22

Homomorphisms

� Definition: Let I and I’ be two instances over the same schema.
A homomorphism h: I→ I’ is a function from the active domain of I
to the active domain of I’ such that
if P(a1,…,am) is in I, then P(h(a1),…,h(am)) is in I’.

� Definition: The Homomorphism Problem
Given two instances I and I’, is there a homomorphism h: I→ I’?

� Examples:
� A graph G = (V,E) is 3-colorable

if and only if
there is a homomorphism h: G → K3

� 3-SAT can be viewed as a Homomorphism Problem

23

Canonical CQs and Canonical Instances

� Definition: Canonical Conjunctive Query
Given an instance I = (R1, …,Rm), the canonical CQ of I is
the Boolean conjunctive query QI with the elements of I as
variables and the facts of I as conjuncts.

� Example:
I consists of E(a,b), E(b,c), E(c,a)

� QI is given by the rule:
QI :-- E(x,z), E(z,y), E(z,x)

� Alternatively, QI is

∃ x ∃ y ∃ z (E(x,z) Æ E(z,y) Æ E(z,x))

24

Canonical Databases

� Definition: Canonical Instance
Given a Boolean CQ Q, the canonical instance of Q is the
instance IQ with the variables of Q as elements and the
conjuncts of Q as facts.

� Example:
Conjunctive query Q :-- E(x,y),E(x,z)

Canonical instance IQ consists of the facts E(x,y), E(x,z)

25

Homomorphisms, CQE, and CQC

Theorem: Chandra & Merlin – 1977

For instances I and I’, the following are equivalent:
� There is a homomorphism h: I→ I’

� I’ � QI

� QI’ ⊆ QI

In dual form:
Theorem: Chandra & Merlin – 1977

For CQs Q and Q’, the following are equivalent:
� Q ⊆ Q’

� There is a homomorphism h: IQ’→ IQ

� IQ � Q’.

26

Illustrating the Chandra-Merlin Theorem

Example: 3-Colorability
For a graph G=(V,E), the following are equivalent:
� G is 3-colorable

� There is a homomorphism h: G → K3

� K3 � QG

� QK3
⊆ QG.

27

Combined complexity of CQC and CQE

Corollary: The following problems are NP-complete:
� Given two conjunctive queries Q and Q’ is Q ⊆ Q’ ?
� Given a conjunctive query Q and an instance I, does I � Q ?

Proof:
(a) Membership in NP follows from Chandra & Merlin:

Q ⊆ Q’ iff there is a homomorphism h: IQ’ → IQ

(b) NP-hardness follows from 3-Colorability.

28

Combined Complexity vs. Data Complexity

Vardi’s Taxonomy of Query Evaluation (1982):
� Combined Complexity: Both the query and the instance are

part of the input.
� Data Complexity: Fix the query; the input consists of the

instance only.

Complexity of Conjunctive Queries:
� The combined complexity of conjunctive queries is

NP-complete.
� For each fixed conjunctive query Q, the data complexity of Q

is in P (in fact, it is in LOGSPACE).

29

Course Outline – Progress Report

���� Schema Mappings and Data Exchange: Overview

���� Conjunctive Queries and Homomorphisms

� Data Exchange with Schema Mappings Specified by Tgds and Egds

� Solutions in Data Exchange

� Universal Solutions
� Universal Solutions via the Chase

� The Core of the Universal Solutions

� Query Answering in Data Exchange

30

Embedded Implicational Dependencies

� Dependency Theory: extensive study of constraints in
relational databases in the 1970s and 1980s.

� Conjunctive queries are used as building blocks in specifying
constraints in relational databases.

� Embedded Implicational Dependencies: Fagin, Beeri-Vardi, …
Class of constraints with a balance between high expressive
power and good algorithmic properties:
� Tuple-generating dependencies (tgds)
Inclusion and multi-valued dependencies are a special case.
� Equality-generating dependencies (egds)
Functional dependencies are a special case.

31

Data Exchange with Tgds and Egds

� Joint work with R. Fagin, R.J. Miller, and L. Popa
in ICDT 2003 and TCS

� Studied data exchange between relational schemas for
schema mappings specified by
� Source-to-target tgds
� Target tgds
� Target egds

32

Schema Mapping Specification Language

The relationship between source and target is given by formulas of
first-order logic, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)

∀ x ∀ x’ (ϕ(x, x ’) → ∃y ψ(x, y)), where

� ϕ(x, x ’) is a conjunction of atoms over the source;

� ψ(x, y) is a conjunction of atoms over the target.

Fact: Every s-t tgd asserts that the result of a CQ over the source is

contained in the result of a CQ over the target.

∀ x (∃ x’ ϕ(x, x ’) → ∃y ψ(x, y)),

33

Schema Mapping Specification Language

� From now on, we will drop the universal quantifiers in the front.
So, instead of ∀ x ∀ x’ (ϕ(x, x ’) → ∃y ψ(x, y)),
we will write (ϕ(x, x ’) → ∃y ψ(x, y)).

� Example:
Student(s) ∧ Enrolls(s,c,y) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

This s-t tgd asserts that the result of the conjunctive query

∃ y (Student(s) ∧ Enrolls(s,c,y))

is contained in the resut of the conjunctive query

∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g)).

34

Schema Mapping Specification Language

� Full tgds are tgds of the form
φ(x,x ’) → ψ(x),

where φ(x) and ψ(x) are conjunctions of atoms
(no existential quantifiers in the right-hand side)

E(x,z)Æ E(z,y) → F(x,z)
� Full tgds of the form

φ(x) → ψ(x)
express the containment between two relational joins.

E(x,z)Æ E(z,y) → F(x,z)Æ C(z)

� Note: Full tgds have “good” algorithmic properties in data
exchange.

35

Constraints in Data Integration

Fact: s-t tgds generalize the main specifications used in data

integration:

� They generalize LAV (local-as-view) specifications:

P(x) → ∃y ψ(x, y), where P is a source schema.

� They generalize GAV (global-as-view) specifications:

ϕ(x) → R(x), where R is a target schema.

Note:

At present, most commercial II systems support GAV only.

36

Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies:

� Target Tgds : ϕT(x,x ’) → ∃y ψT(x, y)

� Dept (did, dname, mgr_id, mgr_name) → Mgr (mgr_id, did)
(a target inclusion dependency constraint)

� F(x,y) Æ F(y,z) → F(x,z)

� Target Equality Generating Dependencies (egds):
ϕT(x) → (x1=x2)

� (Mgr (e, d1) ∧ Mgr (e, d2)) → (d1 = d2)
(a target key constraint)

37

Data Exchange Framework

Schema Mapping M = (S, T, Σst , Σt), where

� Σst is a set of source-to-target tgds

� Σt is a set of target tgds and target egds

Source
Schema S

Target
Schema T

Σst

I J

Σt

38

Algorithmic Problems in Data Exchange

Definition : Schema Mapping M = (S, T, Σst,Σt),

If I is a source instance, then a solution for I is a
target instance J such that <I, J > satisfy Σst∪ Σt.

Definition : Schema Mapping M = M = (S, T, Σst,Σt),
� The existence-of-solutions problem Sol(M) : (decision problem)

Given a source instance I, is there a solution J for I?

� The data exchange problem associated with M: (function problem)

Given a source instance I, construct a solution J for I, provided a
solution exists.

39

Underspecification in Data Exchange

� Fact: Given a source instance, multiple solutions may exist.

� Example:
Source relation E(A,B), target relation H(A,B)

Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1 = {H(a,b), H(b,b)} constants:

� J2 = {H(a,a), H(a,b)} a, b, …

� J3 = {H(a,X), H(X,b)} variables (labelled nulls):

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} X, Y, …

� J5 = {H(a,X), H(X,b), H(Y,Y)}

40

Main issues in data exchange

For a given source instance, there may be multiple target
instances satisfying the specifications of the schema
mapping. Thus,

� When more than one solution exist, which solutions are
“better” than others?

� How do we compute a “best” solution?

� In other words, what is the “right” semantics of data
exchange?

41

Universal Solutions in Data Exchange

We introduced the notion of universal solutions as the
“best”solutions in data exchange.

Definition : a solution is universal if it has homomorphisms that
preserve constants to all other solutions
(thus, it is a “most general” solution).

� Constants: entries in source instances
� Variables (labeled nulls): other entries in target instances

� Homomorphism h: J1 → J2 between target instances:
� h(c) = c, for constant c

� If P(a1,…,am) is in J1, then P(h(a1),…,h(am)) is in J2

42

Universal Solutions in Data Exchange

Schema S Schema T

I
J

Σ

J1
J2

J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms

43

Example - continued

Source relation S(A,B), target relation T(A,B)
Σ : E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1 = {H(a,b), H(b,b)} is not universal

� J2 = {H(a,a), H(a,b)} is not universal

� J3 = {H(a,X), H(X,b)} is universal

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal

� J5 = {H(a,X), H(X,b), H(Y,Y)} is not universal

44

Structural Properties of Universal Solutions

� Universal solutions are analogous to most general unifiers in logic
programming.

� Uniqueness up to homomorphic equivalence:
If J and J’ are universal for I, then they are homomorphically
equivalent.

� Representation of the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’.
Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent.

45

The Existence-of-Solutions Problem

Question: What can we say about the existence-of-solutions

problem Sol(M) for a fixed schema mapping M = (S, T, Σst,Σt)
specified by s-t tgds and target tgs and egds?

Fact: Depending on the target constraints in Σt,
� Sol(M) can be trivial (solutions always exist).
� …
� Sol(M) can be in PTIME.
� …
� Sol(M) can be undecidable.

46

Algorithmic Problems in Data Exchange

Proposition: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a
set of full target tgds , then:

� Solutions always exist; hence, Sol(M) is trivial.

� There is a Datalog program π over the target T that can be
used to compute universal solutions as follows:
Given a source instance I,
1. Compute a universal solution J* for I w.r.t. the schema

mapping M* = (S, T, Σst) using the naïve chase algorithm.
2. Run the Datalog program π on J* to obtain a universal

solution J for I w.r.t. M.

� Consequently, universal solutions can be computed in
polynomial time.

47

Algorithmic Problems in Data Exchange

Naïve chase algorithm for M* = (S, T, Σst) : given a source
instance I, build a target instance J* that satisfies each s-t tgd in Σst

� by introducing new facts in J as dictated by the RHS of the s-t tgd
and
� by introducing new values (variables) in J each time existential

quantifiers need witnesses.

Example: M = (S, T, Σst,Σt)
Σst: E(x,y) → ∃ z(F(x,z)Æ F(z,y))
Σt: F(u,w) Æ F(w,v) → F(u,v)

1. The naïve chase returns a relation F* obtained from E by adding a
new node between every edge of E.

2. The Datalog program π computes the transitive closure of F*.

48

Algorithmic Problems in Data Exchange

Fact: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a set of
full target tgds , then

� Solutions always exist; hence, Sol(M) is trivial.
� There is a Datalog program π over the target T that can be

used to compute universal solutions as follows:
Given a source instance I,

1. Compute a universal solution J for I w.r.t. the schema

mapping M = (S, T, Σst) using the naïve chase .
2. Run the Datalog program π on J.

Consequently, universal solutions can be computed in polynomial
time.

49

Algorithmic Problems in Data Exchang

Fact: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a
set of full target tgds and target egds, then:

� Solutions need not always exist.
� The existence-of-solutions problem Sol(M) may be

P-complete.

Proof: Reduction from Horn 3-SAT.

50

Algorithmic Problems in Data Exchange

Reducing Horn 3-SAT to the Existence-of-Solutions Problem Sol(M)
� Σst: U(x) → U’(x)

P(x,y,z) → P’(x,y,z)
N(x,y,z) → N’(x,y,z)
V(x) → V’(x)

� Σt: U’(x) → M’(x)
P’(x,y,z) Æ M’(y) Æ M’(z) → M’(x)
N’(x,y,z) Æ M’(x) Æ M’(y) Æ M’(z) Æ V’(u) → W’(u)
W’(u) Æ W’(v) → u = v

� U(x) encodes the unit clause x
P(x,y,z) encodes the clause (¬ y Ç ¬ z Ç x)
N(x,y,z) encodes the clause (¬ x Ç¬ y Ç ¬ z)
V = {0, 1}

51

Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?

52

Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan):
There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single source-to-target tgd;
� Σ*t consists of one egd, one full target tgd, and one

(non-full) target tgd;
� The existence-of-solutions problem Sol(M) is undecidable.

Hint of Proof:
Reduction from the
Embedding Problem for Finite Semigroups :
Given a finite partial semigroup, can it be embedded to a finite
semigroup?

53

The Embedding Problem & Data Exchange

� Theorem (Evans – 1950s):
K class of algebras closed under isomorphisms.
The following are equivalent:
� The word problem for K is decidable.
� The embedding problem for K is decidable.

� Theorem (Gurevich – 1966):
The word problem for finite semigroups is undecidable.

54

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst: R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

55

The Existence-of-Solutions Problem

Summary: The existence-of-solutions problem
� is undecidable for schema mappings in which the target

dependencies are arbitrary tgds and egds;
� is in P for schema mappings in which the target dependencies

are full tgds and egs.

Question: Are classes of target tgds richer than full tgds and
and egds for which the existence-of-solutions problem is in P?

56

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such that:
� Σst is a set of source-to-target tgds;
� Σt is the union of a weakly acyclic set of target tgds with a

set of target egds.
Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M), the existence-of-solutions problem for M, is in P.

� A canonical universal solution (if solutions exist) can be
produced in polynomial time using the chase procedure.

57

Weakly Acyclic Set of Tgds

� The concept of weakly acyclic set of tgds was formulated
by Alin Deutsch and Lucian Popa.

� It was first used independently by Deutsch and Tannen
and by FKMP in papers that appeared in ICDT 2003.

� Weak acyclicity is a fairly broad structural condition:
it contains as special cases several other concepts studied
earlier.

58

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

� Sets of full tgds
ϕT(x,x ’) → ψT(x),

where ϕT(x.x ’) and ψT(x) are conjunctions of target atoms.

Example: H(x,z) ∧ H(z,y) → H(x,y) ∧ M(z)

� Acyclic sets of inclusion dependencies
Large class of dependencies occurring in practice.

59

Weakly Acyclic Sets of Tgds: Definition

� Dependency graph of a set Σ of tgds:
� Nodes: (R,A), with R relation symbol, A attribute of R
� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ, for every x in x

occurring in ψ, for every occurrence of x in ϕ as (R,A):
� For every occurrence of x in ψ as (S,B),

add an edge (R,A) (S,B)
� In addition, for every existentially quantified y that occurs in ψ

as (T,C), add a special edge (R,A) (T,C).

� Σ is weakly acyclic if the dependency graph has no cycle
containing a special edge .

� A tgd θ is weakly acyclic if so is the singleton set {θ} .

60

Weakly Acyclic Sets of Tgds: Examples

� Example 1:
E(x,y) → ∃ z E(x,z) is weakly acyclic

(E,A) (E,B)

� Example 2:
E(x,y) → ∃ z E(y,z) is not weakly acyclic

(E,A) (E,B)

61

Weakly Acyclic Sets of Tgds: Examples

Example 3: Weak Acyclicity is not preserved under unions
� E(x,y) → ∃ z E(x,z) is weakly acyclic

(E,A) (E,B)

� E(x,y) → ∃ z E(z,y) is weakly acyclic

(E,A) (E,B)

� {E(x,y) → ∃ z E(x,z), E(x,y) → ∃ z E(z,y) } is not weakly acyclic

62

Weakly Acyclic Sets of Tgds: Examples

� Example 3: The target tgd

R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)

R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)

R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

is not weakly acyclic (Why?)

63

Data Exchange with Weakly Acyclic Tgds

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds;

� Σt is the union of a weakly acyclic set of target tgds with a set of
target egds.

There is an algorithm, based on the chase procedure, so that:

� Given a source instance I, the algorithm determines if a solution for I
exists; if so, it produces a canonical universal solution for I.

� The running time of the algorithm is polynomial in the size of I.

� Hence, the existence-of-solutions problem Sol(M) for M, is in P.

64

Chase Procedure for Tgds and Egds

Given a source instance I,
1. Use the naïve chase to chase I with Σst and obtain a

target instance J*.
2. Chase J * with the target tgds and the target egds in Σt to obtain a target

instance J as follows:
2.1. For target tgds introduce new facts in J as dictated by the RHS of the

s-t tgd and introduce new values (variables) in J each time existential
quantifiers need witnesses.

2.2. For target egds φ(x) → x1 = x2

2.2.1. If a variable is equated to a constant, replace the variable by that
constant;

2.2.2. If one variable is equated to another variable, replace one
variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and report
“failure”.

65

Weak Acyclicity and the Chase Procedure

Note: If the set of target tgds is not weakly acyclic, then the
chase may never terminate.

Example: E(x,y) → ∃ z E(y,z) is not weakly acyclic

E(1,2) ⇒
E(2,X1) ⇒
E(X1,X2) ⇒
E(X2, X3) ⇒

…
infinite chase

66

The Complexity of Data Exchange

� The results presented thus far assume that the schema
mapping is kept fixed , while the source instance varies .

� In Vardi’s taxonomy, this means all preceding results are
about the data complexity of data exchange.

� Question:
� Do the results change if both the schema mapping and the

source instance are part of the input to the existence-of-
solutions problem? If so, how do they change?

� In other words, what is the combined complexity of
data exchange?

67

The Existence-of-Solutions Problem

Proposition: Let M = (S, T, Σst,Σt) be a schema mapping such that

Σt = ∅ (no target constraints). Then

� Sol(M) is trivial (for every source instance, there is a solution).
� Universal solutions can be constructed in polynomial time.

Proof: Use a naïve chase algorithm: given a source instance I,

build a target instance J that satisfies each s-t tgd in Σst

� by introducing new facts in J as dictated by the RHS of the s-t tgd
and

� by introducing new values (variables) in J each time existential
quantifiers need witnesses.

68

The Existence-of-Solutions Problem

Example 1: Collapsing paths of length 2 to edges
Σst: E(x,z)Æ E(z,y) → F(x,y) (GAV mapping)

� I1 = { E(1,3}, E(2,4), E(3,4) }
J1 = { F(1,4) } universal solution for I1

� I2 = { E(1,3}, E(2,4), E(3,4), E(4,3)}
J2 = { F(1,4), F(2,3), F(3,3) } universal solution for I2

69

The Existence-of-Solutions Problem

Example 2: Transforming edges to paths of length 2
Σst: E(x,y) → ∃ z (F(x,z) Æ F(z,y)) (LAV mapping)

� I1 = { E(1,2) }
J1 = { F(1,X), F(X,2) } universal solution for I1

� I2 = { E(1,2}, E(3,4)}
J2 = { F(1,X), F(X,2), F(3,Y), F(Y,4) } universal solution for I2

70

Algorithmic Problems in Data Exchange

Fact: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a set of
full target tgds , then

� Solutions always exist; hence, Sol(M) is trivial.
� There is a Datalog program π over the target T that can be

used to compute universal solutions as follows:
Given a source instance I,

1. Compute a universal solution J for I w.r.t. the schema

mapping M = (S, T, Σst) using the naïve chase .
2. Run the Datalog program π on J.

Consequently, universal solutions can be computed in polynomial
time.

71

Algorithmic Problems in Data Exchange

Example:
Σst: E(x,y) → ∃ z(F(x,z)Æ F(z,y))

Σt: F(u,w) Æ F(w,v) → F(u,v)

1. The naïve chase returns a relation F* obtained from E by adding a

new node between every edge of E.

2. The Datalog program computes the transitive closure of F*.

72

Datalog

“ Datalog = Conjunctive Queries + Recursion ”

Definition: A Datalog program π is a finite set of rules each
expressing a conjunctive query.

Example: Transitive Closure
P(x,y) :-- E(x,y)
P(x,y) :-- E(x,z), P(z,y)

Note: A relation symbol may occur both in the head and in the
body of a rule.

73

Datalog

Example 1: Paths of Odd and Even Length
ODD(x,y) :-- E(x,y)
ODD(x,y) :-- E(x,z), EVEN(z,y)
EVEN(x,y) :-- E(x,z), ODD(z,y).

Example 2: Non 2-Colorability

ODD(x,y) :-- E(x,y)
ODD(x,y) :-- E(x,z), EVEN(z,y)
EVEN(x,y) :-- E(x,z), ODD(z,y).
Q :-- ODD(x,x)

74

Datalog Semantics

� Procedural Semantics:
Bottom-up evaluation of recursive predicates (IDBs)

1. Set all recursive to ∅.

2. Apply all rules in parallel; update the recursive predicates.
3. Repeat until no recursive predicate changes.

� Declarative Semantics:
Least fixed-point of an existential positive FO-formula
extracted from the program.

φ(x,y,P): E(x,y) Ç ∃ z (E(x,z) Æ P(z,y))

75

Complexity of Datalog

Fact:
� Data Complexity of Datalog:

Every fixed Datalog program can be evaluated in
polynomial-time.

Reason : Bottom-up evaluation converges in
polynomially-many steps.

� Combined Complexity of Datalog:
EXPTIME-complete.

76

Complexity of Datalog

Fact: The data complexity of Datalog can be P-complete.

Proof : Path Systems Problem

T(x) :-- A(x)
T(x) :-- R(x,y,z), T(y), T(z)

Cook (1974) has shown that evaluating this Datalog program is
P-complete.

77

Algorithmic Problems in Data Exchange

Fact: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a set of
full target tgds , then

� Solutions always exist; hence, Sol(M) is trivial.
� There is a Datalog program π over the target T that can be

used to compute universal solutions as follows:
Given a source instance I,

1. Compute a universal solution J for I w.r.t. the schema

mapping M = (S, T, Σst) using the naïve chase .
2. Run the Datalog program π on J.

Consequently, universal solutions can be computed in polynomial
time.

78

Algorithmic Problems in Data Exchang

Fact: If M = (S, T, Σst,Σt) is a schema mapping such that Σt is a
set of full target tgds and target egds, then:

� Solutions need not always exist.
� The existence-of-solutions problem Sol(M) may be

P-complete.

Proof: Reduction from Horn 3-SAT.

79

Algorithmic Problems in Data Exchange

Reducing Horn 3-SAT to the Existence-of-Solutions Problem Sol(M)
� Σst: U(x) → U’(x)

P(x,y,z) → P’(x,y,z)
N(x,y,z) → N’(x,y,z)
V(x) → V’(x)

� Σt: U’(x) → M’(x)
P’(x,y,z) Æ M’(y) Æ M’(z) → M’(x)
N’(x,y,z) Æ M’(x) Æ M’(y) Æ M’(z) Æ V’(u) → W’(u)
W’(u) Æ W’(v) → u = v

� U(x) encodes the unit clause x
P(x,y,z) encodes the clause (¬ y Ç ¬ z Ç x)
N(x,y,z) encodes the clause (¬ x Ç¬ y Ç ¬ z)
V = {0, 1}

80

Algorithmic Problems in Data Exchange

Question:

What about arbitrary target tgds and egds?

81

Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan):
There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single source-to-target tgd;
� Σ*t consists of one egd, one full target tgd, and one

(non-full) target tgd;
� The existence-of-solutions problem Sol(M) is undecidable.

Hint of Proof:
Reduction from the
Embedding Problem for Finite Semigroups :
Given a finite partial semigroup, can it be embedded to a finite
semigroup?

82

The Embedding Problem & Data Exchange

� Theorem (Evans – 1950s):
K class of algebras closed under isomorphisms.
The following are equivalent:
� The word problem for K is decidable.
� The embedding problem for K is decidable.

� Theorem (Gurevich – 1966):
The word problem for finite semigroups is undecidable.

83

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst: R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

84

The Existence-of-Solutions Problem

Summary: The existence-of-solutions problem
� is undecidable for schema mappings in which the target

dependencies are arbitrary tgds and egds;
� is in P for schema mappings in which the target dependencies

are full tgds and egs.

Question: Are classes of target tgds richer than full tgds and
and egds for which the existence-of-solutions problem is in P?

85

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such that:
� Σst is a set of source-to-target tgds;
� Σt is the union of a weakly acyclic set of target tgds with a

set of target egds.
Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M), the existence-of-solutions problem for M, is in P.

� A canonical universal solution (if solutions exist) can be
produced in polynomial time using the chase procedure.

86

Weakly Acyclic Set of Tgds

� The concept of weakly acyclic set of tgds was formulated
by Alin Deutsch and Lucian Popa.

� It was first used independently by Deutsch and Tannen
and by FKMP in papers that appeared in ICDT 2003.

� Weak acyclicity is a fairly broad structural condition:
it contains as special cases several other concepts studied
earlier.

87

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

� Sets of full tgds
ϕT(x,x ’) → ψT(x),

where ϕT(x.x ’) and ψT(x) are conjunctions of target atoms.

Example: H(x,z) ∧ H(z,y) → H(x,y) ∧ M(z)

� Acyclic sets of inclusion dependencies
Large class of dependencies occurring in practice.

88

Weakly Acyclic Sets of Tgds: Definition

� Dependency graph of a set Σ of tgds:
� Nodes: (R,A), with R relation symbol, A attribute of R
� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ, for every x in x

occurring in ψ, for every occurrence of x in ϕ as (R,A):
� For every occurrence of x in ψ as (S,B),

add an edge (R,A) (S,B)
� In addition, for every existentially quantified y that occurs in ψ

as (T,C), add a special edge (R,A) (T,C).

� Σ is weakly acyclic if the dependency graph has no cycle
containing a special edge .

� A tgd θ is weakly acyclic if so is the singleton set {θ} .

89

Weakly Acyclic Sets of Tgds: Examples

� Example 1:
E(x,y) → ∃ z E(x,z) is weakly acyclic

(E,A) (E,B)

� Example 2:
E(x,y) → ∃ z E(y,z) is not weakly acyclic

(E,A) (E,B)

90

Weakly Acyclic Sets of Tgds: Examples

Example 3: Weak Acyclicity is not preserved under unions
� E(x,y) → ∃ z E(x,z) is weakly acyclic

(E,A) (E,B)

� E(x,y) → ∃ z E(z,y) is weakly acyclic

(E,A) (E,B)

� {E(x,y) → ∃ z E(x,z), E(x,y) → ∃ z E(z,y) } is not weakly acyclic

91

Weakly Acyclic Sets of Tgds: Examples

� Example 3: The target tgd

R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)

R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)

R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

is not weakly acyclic (Why?)

92

Data Exchange with Weakly Acyclic Tgds

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds;

� Σt is the union of a weakly acyclic set of target tgds with a set of
target egds.

There is an algorithm, based on the chase procedure, so that:

� Given a source instance I, the algorithm determines if a solution for I
exists; if so, it produces a canonical universal solution for I.

� The running time of the algorithm is polynomial in the size of I.

� Hence, the existence-of-solutions problem Sol(M) for M, is in P.

93

Chase Procedure for Tgds and Egds

Given a source instance I,
1. Use the naïve chase to chase I with Σst and obtain a

target instance J*.
2. Chase J * with the target tgds and the target egds in Σt to obtain a target

instance J as follows:
2.1. For target tgds introduce new facts in J as dictated by the RHS of the

s-t tgd and introduce new values (variables) in J each time existential
quantifiers need witnesses.

2.2. For target egds φ(x) → x1 = x2

2.2.1. If a variable is equated to a constant, replace the variable by that
constant;

2.2.2. If one variable is equated to another variable, replace one
variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and report
“failure”.

94

Weak Acyclicity and the Chase Procedure

Note: If the set of target tgds is not weakly acyclic, then the
chase may never terminate.

Example: E(x,y) → ∃ z E(y,z) is not weakly acyclic

E(1,2) ⇒
E(2,X1) ⇒
E(X1,X2) ⇒
E(X2, X3) ⇒

…
infinite chase

95

The Complexity of Data Exchange

� The results presented thus far assume that the schema
mapping is kept fixed , while the source instance varies .

� In Vardi’s taxonomy, this means all preceding results are
about the data complexity of data exchange.

� Question:
� Do the results change if both the schema mapping and the

source instance are part of the input to the existence-of-
solutions problem? If so, how do they change?

� In other words, what is the combined complexity of
data exchange?

96

Combined Complexity of Data Exchange

Theorem (K …, Panttaja, Tan): M = (S, T, Σst, Σt) such that Σt is the
union of a weakly acyclic set of target tgds with a set of target egds.
� The combined complexity of Sol(M) is 2EXPTIME-complete.

� If S and T are kept fixed, the combined complexity of Sol(M) is
EXPTIME-complete.

� If S and T are kept fixed and Σt is the union of a set of full target tgds with
a set of target egds, the combined complexity of Sol(M) is coNP-complete.

Hint of Proof:
� 2EXPTIME-hardness is via a reduction from EXPSPACE ATMs.
� EXPTIME-hardness is via a reduction from the combined complexity of

Datalog single-rule programs
Gottlob & Papadimitriou – 2003.

97

The Complexity of Data Exchange

2EXPTIME-complete

EXPTIME-complete

coNP-complete

Varies; weakly acyclic target

tgds & egds

Fixed Schemas; Σst, and Σt vary;
weakly acyclic target tgds & egds

Fixed Schemas; Σst, and Σt vary;
full target tgds & egds

Combined
Complexity

Can be undecidable

In P; can be
P-complete

Fixed; arbitrary target tgds

Fixed; weakly acyclic target tgds
and egds

Data
Complexity

Sol(M)Schema Mapping M

98

The Smallest Universal Solution

� Fact: Universal solutions need not be unique.
� Question : Is there a “best” universal solution?
� Answer: In joint work with R. Fagin and L. Popa, we took a

“small is beautiful” approach:
There is a smallest universal solution (if solutions exist); hence,
the most compact one to materialize.

� Definition: The core of an instance J is the smallest subinstance J’
that is homomorphically equivalent to J.

� Fact:
� Every finite relational structure has a core.
� The core is unique up to isomorphism.

99

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h

100

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h

Example: If a graph G contains a , then

G is 3-colorable if and only if core(G) = .

Fact: Computing cores of graphs is an NP-hard problem.

101

Complexity of the Core in Graph Theory

Theorem: Hell & Nesetril – 1992

Core Recognition is coNP-complete: given graph G, is G a core?

Theorem: (FKP)

Core Identification is DP-complete:

given graphs G and H, is H the core of G?

Definition: Papadimitriou & Yannakakis – 1982
DP is the class of all decision problem that can be written as

the conjunction of an NP-problem and a co-NP problem.

Examples: Critical 3-SAT , Critical 3-Colorability

102

Example - continued

Source relation E(A,B), target relation H(A,B)

Σ : (E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}.

Solutions: Infinitely many universal solutions exist.

� J3 = {H(a,X), H(X,b)} is the core.

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not
the core.

� J5 = {H(a,X), H(X,b), H(Y,Y)} is not universal.

103

Core: The smallest universal solution

Theorem (Fagin, K …, Popa - 2003):
Let M = (S, T, Σst , Σt) be a schema mapping:

� All universal solutions have the same core.

� The core of the universal solutions is the smallest
universal solution.

� If every target constraint is an egd, then the core is
polynomial-time computable.

104

Greedy Algorithm for Computing the Core

M = (S, T, Σst, Σt) such that Σst are s-t tgds and Σt are target egds

Algorithm Greedy
Input: Source instance I
Output: The core of the universal solutions for I, if solutions exist;

“failure”, if no solutions exist.
1. Chase I with Σst to produce a pre-universal solution J for I.
2. Chase J with Σt; if the chase fails, return “failure”; otherwise, let J’ be

the canonical universal solution produced by the chase.
3. Initialize J* to J’.
4. While there is a fact R(t) in J* such that (I, J* - {R(t)}) � Σst,

put J* := J* - {R(t)}.
5. Return J* .

105

Computing the Core

Theorem (Gottlob – PODS 2005):
Let M = (S, T, Σst , Σt) be a schema mapping.
If every target constraint is an egd or a full tgd, then the core
is polynomial-time computable.

Theorem (Gottlob & Nash):
Let M = (S, T, Σst , Σt) be a schema mapping.
If Σt is the union of a weakly acyclic set of target tgds with a
set of target egds, then the core is polynomial-time
computable.

106

Course Outline – Progress Report

���� Schema Mappings and Data Exchange: Overview

���� Conjunctive Queries and Homomorphisms

���� Data Exchange with Schema Mappings Specified by Tgds and Egds

���� Solutions in Data Exchange

� Universal Solutions
� Universal Solutions via the Chase

� The Core of the Universal Solutions

� Query Answering in Data Exchange

107

Query Answering in Data Exchange

Schema S Schema T

I
J

Σ
q

Question: What is the semantics of target query answering?

Definition: The certain answers of a query q over T on I

certain (q,I) = ∩ { q(J): J is a solution for I }.

Note: It is the standard semantics in data integration.

108

Certain Answers Semantics

certain(q,I)

q(J1)

q(J2)q(J3)

certain (q,I) = ∩ { q(J): J is a solution for I }.

109

Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:
� Σst is a set of source-to-target tgds, and
� Σt is the union of a weakly acyclic set of tgds with a set of egds.
Let q be a union of conjunctive queries over T.
� If I is a source instance and J is a universal solution for I, then

certain (q,I) = the set of all “null-free” tuples in q(J).

� Hence, certain (q,I) is computable in time polynomial in |I|:
1. Compute a canonical universal J solution in polynomial time;
2. Evaluate q(J) and remove tuples with nulls.

Note: This is a data complexity result (M and q are fixed).

110

Certain Answers via Universal Solutions
q(J1)

q(J2)q(J3)

certain (q,I) = set of null-free tuples of q(J).

q(J)certain (q,I)

q(J)

universal solution J for I

q: union of conjunctive queries

111

Computing the Certain Answers

Theorem (FKMP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds, and

� Σt is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (gggg).

� If q has at most one inequality per conjunct, then

certain (q,I) is computable in time polynomial in |I|
using a disjunctive chase.

� If q is has at most two inequalities per conjunct, then

certain (q,I) can be coNP-complete, even if Σt = π.

112

Universal Certain Answers

� Alternative semantics of query answering based on universal
solutions.

� Certain Answers:
“Possible Worlds” = Solutions

� Universal Certain Answers:
“Possible Worlds” = Universal Solutions

Definition: Universal certain answers of a query q over T on I

u-certain (q,I) = ∩ { q(J): J is a universal solution for I }.

Facts:
� certain (q,I) ` u-certain (q,I)
� certain (q,I) = u-certain (q,I), q a union of conjunctive queries

113

Computing the Universal Certain Answers

Theorem (FKP): Schema mapping M = (S, T, Σst, Σt) such that:

� Σst is a set of source-to-target tgds

� Σt is a set of target egds and target tgds.
Let q be an existential query over T.

� If I is a source instance and J is a universal solution for I, then

u- certain (q,I) = the set of all “null-free” tuples in q(core(J)).

� Hence, u-certain (q,I) is computable in time polynomial in |I|
whenever the core of the universal solutions is polynomial-time
computable.

Note: Unions of conjunctive queries with inequalities are a special
case of existential queries.

114

Universal Certain Answers via the Core
q(J1)

q(J2)q(J3)

u-certain (q,I) = set of null-free tuples of q(core(J)).

q(J)u-certain (q,I)

q(core(J))

universal solution J for I

q: existential

115

Course Outline – Progress Report

���� Schema Mappings and Data Exchange: Overview

���� Conjunctive Queries and Homomorphisms

���� Data Exchange with Schema Mappings Specified by Tgds and Egds

���� Solutions in Data Exchange

� Universal Solutions
� Universal Solutions via the Chase

� The Core of the Universal Solutions

���� Query Answering in Data Exchange

116

Course Outline – Remaining Topics

� Bernstein’s Model Management Framework and Operations
on Schema Mappings

� Composing Schema Mappings

� Inverting Schema Mapping

� Extensions of the Framework: Peer Data Exchange

� Open Problems and Research Directions

117

Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to manage schema mappings
automatically.

� Metadata Management Framework – Bernstein 2003
based on generic schema-mapping operators:
� Composition operator
� Inverse operator
� Match operator
� Merge operator …

118

Composing Schema Mappings

� Given ΜΜΜΜ12 = (S1, S2, Σ12) and ΜΜΜΜ23 = (S2, S3, Σ23), derive a
schema mapping ΜΜΜΜ13 = (S1, S3, Σ13) that is “equivalent” to
the sequence ΜΜΜΜ12 and ΜΜΜΜ23.

Schema S1 Schema S2 Schema S3

ΜΜΜΜ12 ΜΜΜΜ23

ΜΜΜΜ13

What does it mean for ΜΜΜΜ13 to be “equivalent” to the
composition of ΜΜΜΜ12 and ΜΜΜΜ23?

119

Earlier Work

� Metadata Model Management (Bernstein in CIDR 2003)
� Composition is one of the fundamental operators
� However, no precise semantics is given

� Composing Mappings among Data Sources
(Madhavan & Halevy in VLDB 2003)
� First to propose a semantics for composition
� However, their definition is in terms of maintaining the

same certain answers relative to a class of queries.
� Their notion of composition depends on the class of

queries; it may not be unique up to logical equivalence.

120

Semantics of Composition

� Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M)
between instances:

Inst(M) = { <I,J> | < I,J > ~ Σ }.

� Definition: (FKPT)
A schema mapping M13 is a composition of M12 and M23 if

Inst(M13) = Inst(M12) ° Inst(M23), that is,
<I1,I3> ~ Σ13

if and only if
there exists I2 such that <I1,I2> ~ Σ12 and <I2,I3> ~ Σ23.

� Note: Also considered by S. Melnik in his Ph.D. thesis

121

The Composition of Schema Mappings

Fact: If both ΜΜΜΜ = (S1, S3, Σ) and ΜΜΜΜ’ = (S1, S3, Σ’) are
compositions of ΜΜΜΜ12 and ΜΜΜΜ23, then Σ are Σ’ are logically
equivalent. For this reason:

� We say that ΜΜΜΜ (or ΜΜΜΜ’) is the composition of ΜΜΜΜ12 and ΜΜΜΜ23.

� We write ΜΜΜΜ12 ° ΜΜΜΜ23 to denote it

Definition: The composition query of ΜΜΜΜ12 and ΜΜΜΜ23 is the set

Inst(ΜΜΜΜ12) ° Inst(ΜΜΜΜ23)

122

Issues in Composition of Schema Mappings

� The semantics of composition was the first main issue.

Some other key issues:

� Is the language of s-t tgds closed under composition?

If ΜΜΜΜ12 and ΜΜΜΜ23 are specified by finite sets of s-t tgds, is
ΜΜΜΜ12 ° ΜΜΜΜ23 also specified by a finite set of s-t tgds?

� If not, what is the “right” language for composing schema
mappings?

123

Composition: Expressibility & Complexity

in NP;

can be

NP-complete

may not be
definable:

by any set of s-t
tgds;
in FO-logic;

in Datalog

finite set of (full)

s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of

s-t tgds

ϕ(x) → ∃y ψ(x,y)

in PTIMEfinite set of

s-t tgds

ϕ(x)→∃yψ(x,y)

finite set of

s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of full

s-t tgds

ϕ(x) → ψ(x)

Composition

Query

ΜΜΜΜ12 ° ΜΜΜΜ23

Σ13

ΜΜΜΜ23

Σ23

ΜΜΜΜ12

Σ12

124

Lower Bounds for Composition

� Σ12 :
∀x∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v)))
∀x∀y (E(x,y) → F(x,y))

� Σ23 :
∀x∀y∀u∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v))

� Given graph G=(V, E):
� Let I1 = E
� Let I3 = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) }

Fact:
G is 3-colorable iff <I1, I3> ∈ Inst(Μ12) ° Inst(Μ23)

� Theorem (Dawar – 1998):
3-Colorability is not expressible in Lω∞ω

125

Employee Example

� Σ12 :

� Emp(e) → ∃m Rep(e,m)

� Σ23 :
� Rep(e,m) → Mgr(e,m)

� Rep(e,e) → SelfMgr(e)

� Theorem: This composition is not definable by any finite set
of s-t tgds.

� Fact : This composition is definable in a well-behaved
fragment of second-order logic, called SO tgds, that extends
s-t tgds with Skolem functions.

Emp
e

Rep
e
m

Mgr
e
m

SelfMgr
e

126

Employee Example - revisited

Σ12 :
� ∀e (Emp(e) → ∃m Rep(e,m))

Σ23 :
� ∀e∀m(Rep(e,m) → Mgr(e,m))
� ∀e (Rep(e,e) → SelfMgr(e))

Fact: The composition is definable by the SO-tgd
Σ13 :

� ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧
∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

127

Second-Order Tgds

Definition: Let S be a source schema and T a target schema.
A second-order tuple-generating dependency (SO tgd) is a
formula of the form:

∃f1 … ∃fm((∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn))), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of
terms.

� Each ψi is a conjunction of atoms from T.

Example: ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧
∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

128

Composing SO-Tgds and Data Exchange

Theorem (FKPT):
� The composition of two SO-tgds is definable by a SO-tgd.

� There is an (exponential-time) algorithm for composing SO-
tgds.

� The chase procedure can be extended to schema mappings
specified by SO-tgds, so that it produces universal solutions in
polynomial time.

� For schema mappings specified by SO-tgds, the certain
answers of target conjunctive queries are polynomial-time
computable.

129

Synopsis of Schema Mapping Composition

� s-t tgds are not closed under composition.

� SO-tgds form a well-behaved fragment of second-order logic.

� SO-tgds are closed under composition; they are
a “good” language for composing schema mappings.

� SO-tgds are “chasable”:
Polynomial-time data exchange with universal solutions.

� SO-tgds are the right class for composing s-t tgds:
Every SO-tgd defines the composition of finitely many schema
mappings, each specified by a finite set of s-t tgds

130

Related Work on Schema Mappings

� S. Melnik, Generic Model Management, Ph.D. thesis, 2005

� A. Nash, Ph. Bernstein, S. Melnik (PODS 2005):
Composition of schema mappings given by source-to-target
and target-to-source embedded dependencies

� M. Arenas and L. Libkin (PODS 2005)
XML Data Exchange

� F. Afrati, C. Li, V. Pavlaki
Data exchange with s-t tgds containing inequalities

131

Inverting Schema Mapping

� Given ΜΜΜΜ12, find ΜΜΜΜ21 that “undoes” ΜΜΜΜ12

� Inverting schema mappings can be applied to schema
evolution

Schema S1 Schema S2

ΜΜΜΜ12

ΜΜΜΜ21

132

Applications to Schema Evolution

Schema S Schema T

ΜΜΜΜst

Schema T’

ΜΜΜΜtt’

ΜΜΜΜst’ = ΜΜΜΜst ◦◦◦◦ ΜΜΜΜtt’

Composition

Schema S’

ΜΜΜΜss’ΜΜΜΜs’s

Inverse

ΜΜΜΜs’t’ = ΜΜΜΜs’s◦◦◦◦ (ΜΜΜΜst ◦◦◦◦ ΜΜΜΜtt’)

Fact:

Schema Evolution can be analyzed using the composition and the

Inverse operators.

133

Semantics of the Inverse Operator

� Finding the “right” semantics of the inverse operator is a
delicate task.

� Naïve approach:
� If M = (S, T, Σ) is a schema mapping, let

Inst(M) = { (I,J): (I,J � Σ }

� Define M* = (T, S, Σ*) to be an inverse of M if
Inst(M*) = { (J,I): (I,J) � Σ }

� This does not work if Σ, Σ* are sets of tgds:
The reason is that, for schema mappings specified by tgds,
if (I,J) ∈ Inst(M), I’ ⊆ I, J⊆ J’, then (I’,J’) ∈ Inst(M).

However, { (J,I): (I,J) � Σ } does not have this property.

134

Semantics of the Inverse Operator

Fagin – PODS 2006

� Motivation: an inverse of a function f is a function f’ s.t.
f ◦ f’ = id,

where id is the identity function f(x)=x

� Key Idea:
� Define first the identity schema mapping Id
� Call a schema mapping M’ an inverse of M if

M ◦ M’ = Id

135

The Identity Schema Mapping

Definition: Let S be a schema.
For each relation symbol R in S, let R* be a replica of R.
Let S* = { R*: R ∈ S }.
The identity schema mapping on S is the schema mapping

IdS = (S, S*, ΣΣΣΣ
Id
(S))

where ΣΣΣΣ
Id

(S) consists of the dependencies
R(x) → R*(x),

for every relation symbol R ∈ S.

136

Inverting Schema Mapping

Definition: Fagin – 2006

Let M = (S, T, Σ) be a schema mapping.
A schema mapping M* = (T, S*, Σ*) is an inverse of M if

M ◦ M* = IdS

Example:
An inverse of the identity mapping

IdS = (S, S*, ΣΣΣΣ
Id

(S)) on S
is the identity mapping

IdS* = (S*, S**, ΣΣΣΣ
Id

(S*)) on S*.

137

Inverses of Schema Mappings

Example: Let M be the schema mapping specified by the tgd
P(x) → Q(x,x).

Then:
� The schema mapping M’ specified by the tgd

Q(x,y) → P*(x)
is an inverse of M.

� The schema mapping M’’ specified by the tgd
Q(x,y) → P*(y)

is also an inverse of M.

Conclusion:
Inverses need not be unique up to logical equivalence.

138

The Unique Solutions Property

Theorem: Fagin – 2006
If a schema mapping M has an inverse, then M must have the
unique-solutions property :

If I1 and I2 are source instances such that I1 g I2,
then Sol (M, I1) g Sol (M, I2).

Note:
� The unique-solutions property is a necessary condition for

invertibility.
� Hence, it can be used a sufficient condition for

non-invertibility.

139

Non-invertible Schema Mappings

Fact: None of the following schema mappings is invertible, as
none satisfies the unique-solutions property:

� Projection:
P(x,y) → Q(y)

� Union:
P(x) → Q(x)
R(x) → Q(x)

� Decomposition:
P(x,y,z) → Q(x,y) Æ T(y,z)

140

Inverting Schema Mappings

Good News:
Rigorous semantics of the inverse operator has been given.

Not-so-good News:
It is a rare that a schema mapping has an inverse, so the
applicability of the inverse operator is limited

Ongoing work : (FKPT)
Quasi-inverses of schema mappings,
a relaxation of the notion of inverses of schema mapping.

141

Course Outline – Remaining Topics

���� Bernstein’s Model Management Framework and Operations
on Schema Mappings

���� Composing Schema Mappings

���� Inverting Schema Mapping

� Extensions of the Framework: Peer Data Exchange

� Open Problems and Research Directions

142

Extending the Data Exchange Framework

� The original data exchange formulation models a situation in
which the target is a passive receiver of data from the
source:
� The constraints are “directed ” from the source to the

target.
� Data is moved from the source to the target only;

moreover, originally the target has no data.
� It is natural to consider extensions to this framework:

� Bidirectional constraints between source and target
� Bidirectional movement of data from the source to the

target and from an already populated target to the source.

143

Peer Data Management Systems (PDMS)

� Halevy, Ives, Suciu, Tatarinov – ICDE 2003
� Motivated from building the Piazza data sharing system
� Decentralized data management architecture:

� Network of peers.
� Each peer has its own schema; it can be a mediated global

schema over a set of local, proprietary sources.
� Schema mappings between sets of peers with constraints:

� q1(A1) = q2(A2)
� q1(A1) ⊆ q2(A2),

where q1(A1), q2(A2) are conjunctive queries over sets of
schemas.

144

Peer Data Management Systems

P1

P2

P3

Local Sources
of P1

Local Sources
of P2

Local Sources
of P3

145

Peer Data Management Systems

� Theorem (HIST03): There is a PDMS P* such that:

� The existence-of-solutions problem for P* is undecidable.
� Computing the certain answers of conjunctive queries is an

undecidable problem.

� Moral:
� Expressive power comes at a high cost.
� To maintain decidability, we need to consider extensions of

data exchange that are less powerful than arbitrary PDMS.

146

Peer Data Exchange (PDE)

� Fuxman, K …, Miller, Tan - PODS 2005
� Peer Data Exchange models data exchange between two

peers that have different roles:
� The source peer is an authoritative source peer.
� The target peer is willing to accept data from the source

peer, provided target-to-source constraints are satisfied,
in addition to source-to-target constraints.

� Source data are moved and added to existing data on
the target.

� The source data, however, remain unaltered after the
exchange.

147

Peer Data Exchange

Schema S
Schema T

ΣΣΣΣst ΣΣΣΣt

Source Target

ΣΣΣΣts

� Constraints:
� Σst: source-to-target tgds, Σt target tgds and egds
� Σts target-to-source tgds,

� Extensions to Data Exchange:
� Target-to-source dependencies
� Input target instance

JI

d3

Slide 147

d3 Modeling “authority” relationships

Asymmetry between source and target: source cannot be modified by \Sigma_{ts}
db2admin, 5/22/2005

148

J*

J

Solutions in Peer Data Exchange

� A solution for (I,J) is a target instance J* such that:
1. J ⊆⊆⊆⊆ J*
2. <I,J*> � Σst

3. J � Σt

4. <J*,I> ���� ΣΣΣΣ
ts

Schema S Schema T

I

ΣΣΣΣst ΣΣΣΣt
Source Target

Solution

ΣΣΣΣts

Asymmetry models the
authority of the source

d4

Slide 148

d4 Modeling “authority” relationships

Asymmetry between source and target: source cannot be modified by \Sigma_{ts}
db2admin, 5/22/2005

149

Algorithmic Problems in PDE

� Definition: Peer Data Exchange P = (S,T, Σst, Σt, Σts)
The existence-of-solutions problem Sol(P):
Given a source instance I and a target instance J, is there a
solution J* for (I,J) in P?

� Definition: Peer Data Exchange P = (S,T, Σst, Σt, Σts), query q
Computing the certain answers of q with respect to P:

Given a source instance I and a target instance J, compute

certain P(q,(I,J)) = 3333 {q(J*): J* is a solution for (I,J)}

150

Results for Peer Data Exchange: Overview

� Upper Bounds: For every PDE P = (S,T, Σst, Σt, Σts) with Σt weakly
acyclic set of tgds and egds, and every target conjunctive query q:
� Sol(P) is in NP.
� certain P(q,(I,J)) is in coNP.

� Lower Bounds: There is a PDE P = (S,T, Σst, Σt, Σts) with Σt = ∅
and a target conjuctive query q such that:
� Sol(P) is NP-complete.
� certain P(q,(I,J)) is coNP-complete.

� Tractability Results:
� Syntactic conditions on PDE settings and on conjunctive queries

that guarantee tractability of Sol(P) and of certain P(q,(I,J)).

151

Upper Bounds

Theorem: Let P = (S,T, Σst, Σt, Σts) be a PDE setting such that
 Σt is the union of a weakly acyclic set of tgds with a set of egds.
 Then:

� Sol(P) is in NP.
� certain P(q,(I,J)) is in coNP, for every monotone target query q.

Hint of Proof: Establish a small model property:
� Whenever a solution J’ exists, a “small” solution J* must exist

“small” = polynomially-bounded by the size of I and J
Solution-aware chase
� Instead of creating null values, use values from the given

solution J’ to witness the existentially-quantified variables.
� The result of the solution-aware chase of (I,J) with Σst ∪ Σt

and the given solution J’ is a “small” solution J*.

152

Lower Bounds

Theorem: There is a PDE setting P = (S,T, Σst, Σt, Σts) with Σt = ∅ and a
target conjuctive query q such that:
� Sol(P) is NP-complete.
� certain P(q,(I,J)) is coNP-complete.

Proof: Reduction from the 3-COLORABILITY Problem
� S = {D, E} binary symbols, T = {C, F} binary symbols

 Σst: E(x,y) → ∃ uC(x,u)

 E(x,y) → F(x,y)

Σts: C(x,u)Æ C(y,v)Æ F(x,u) → D(u,v)

� Source instance: D = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) }
E = edge relation of a graph.

a2

Slide 152

a2 say that we give an alternative proof using a reduction from the CLIQUE problem.... use this reduction to show the tightness of the

tractable class
afuxman, 6/7/2005

153

Comparison of Complexity Results

Certain P(q,(I,J))SOL(P)

can be
undecidable.

in NP; can be

NP-complete,
even if Σt = ∅.

PTIME;
trivial, if Σt = ∅.

can be

undecidable.

PDMS
(HIST03)

in coNP; can be
coNP-complete,
even if Σt = ∅.

Peer Data Exchange

PTIMEData Exchange
(FKMP03)

154

Tractable Peer Data Exchange

� Goal: Identify syntactic conditions on the dependencies of peer
data exchange settings P that guarantee polynomial-time algorithms
for Sol(P) .

� Key concepts : marked positions and marked variables

� Σst: D(x,y) → ∃ z ∃ w P(x,z,y,w)

2nd and 4th position of P are marked

� Σts: P(x,u,y,v) → E(u,v)

u and v are marked variables

155

Tractable Peer Data Exchange Settings

Definition: Ctract is the class of all PDE P = (S,T, Σst, Σt, Σts) with Σt = ∅
and such that the marked variables obey certain syntactic conditions,
including:

if two marked variables appear together in an atom in the RHS of a dependency in Σts,
then they must appear together in an atom in the LHS of that dependency - or not
appear at all.

Note: Consider the PDE setting P = (S,T, Σst, Σt, Σts) with

Σst: E(x,y) → ∃ uC(x,u)
 E(x,y) → F(x,y)

Σts: C(x,u)Æ C(y,v)Æ F(x,u) → D(u,v)

P is not in Ctract because the marked variables z and z’
violate the above syntactic condition.

156

Practical Subclasses of Ctract

� Full source-to-target dependencies
φs(x,x ’) → ψt(x)

� Arbitrary target-to-source dependencies

� Arbitrary source-to-target dependencies
� Local-as-view target-to-source dependencies

R(x) → ∃ y β(x,y)

157

Existence of Solutions in Ctract

Theorem: If P is a peer data exchange setting in Ctract, then the
existence-of-solutions problem Sol(P) is in PTIME.

Proof Ingredients:
� Solution-aware chase.
� Homomorphism techniques.

158

Maximality of Ctract

Fact: Ctract is a maximal tractable class:

� Minimal relaxations of the conditions of Ctract can lead to
intractability (Sol(P) becomes NP-hard).

� The intractability boundary is also crossed if

Σst and Σ
ts

satisfy the conditions of Ctract, but

� there is a single egd in the target;
or,
� there is a single full tgd in the target.

159

Query Answering in Ctract

Theorem: There is a PDE setting P in Ctract and a target
conjunctive query q such that certain P(q,(I,J)) is coNP-
complete.

Theorem: If P is a PDE setting in Ctract and q is a target
conjunctive query such that each marked variable occurs only
once in q, then certain P(q,(I,J)) is in PTIME.

Corollary: If P is a PDE setting such that Σst is a set of full tgds
and Σt = ∅, then certain P(q,(I,J)) is in PTIME for every target
conjunctive query q.

160

Universal Bases in Peer Data Exchange

Fact: In peer data exchange, universal solutions need not exist
(even if solutions exist).

Substitute: Universal basis of solutions

Definition: PDE P = (S,T, Σst, Σt, Σts)

A universal basis for (I,J) is a set U of solutions for (I,J) such

that for every solution J*, there is a solution Ju in U such that a

homomorphism from Ju to J* exists.

161

Universal Bases in Peer Data Exchange

Theorem: For P = (S,T, Σst, Σt, Σts) with Σt = ∅:

� A solution exists if and only if a universal basis exists.

� There is an exponential-time algorithm for constructing a
universal basis, when a solution exists.

� Every universal basis may be of exponential size

(even for PDEs in Ctract).

162

Synopsis

� Peer Data Exchange is a framework that:
� generalizes Data Exchange;
� is a special case of Peer Data Management Systems.

� This is reflected in the complexity of testing for solutions and
computing the certain answers of target queries.

� We identified a “maximal ” class of Peer Data Exchange
settings for which Sol(P) is in PTIME.

� Much more remains to be done to delineate the boundary of
tractability and intractability in Peer Data Exchange.

163

Theory and Practice

� Clio/Criollo Project at IBM Almaden managed by Howard Ho.
� Semi-automatic schema-mapping generation tool;
� Data exchange system based on schema mappings.

� Universal solutions used as the semantics of data exchange.

� Universal solutions are generated via SQL queries extended
with Skolem functions (implementation of chase procedure),
provided there are no target constraints.

� Clio/Criollo technology is being exported to IBM products
(IBM Information Server).

164

� Supports nested structures

� Nested Relational
Model

� Nested Constraints

� Automatic & semi-
automatic discovery of
attribute correspondence.

� Interactive derivation of
schema mappings.

� Performs data exchange

Some Features of Clio

165

166

Source
Schema S

“conforms to”

data
Data exchange process
(or SQL/XQuery/XSLT)

“conforms to”

Schema Mappings in Clio

Mapping
Generation

Schema Mapping

Target
Schema T

167

Open Problems and Directions for Research

� Investigate further the inverse operator and its variants.

� Develop rigorous semantics for the other operators in Bernstein’s
framework.

� Develop a theory of schema mapping optimization:
identify the key parameters and appropriate “optimization” functions
that will allow us to compare schema mappings and design
algorithms for optimizing them.

� Unify data integration and data exchange:
Develop flexible information integration systems that support both
mediation and materialization.

168

Pasteur’s Quadrant

(Pure) applied research
(Edison)

Quest for
fundamental

understanding?

No

Use-inspired basic research
(Pasteur)

Pure Basic Research
(Bohr)

Quest for
fundamental

understanding?

Yes

Consideration of use?
Yes

Consideration of use?
No

Stokes, Donald E., Pasteur’s Quadrant: Basic Science and Technological Innovation, 1997, Figure 3.5

