Karplus lab: protein structure prediction and design

Kevin Karplus
karplus@soe.ucsc.edu

Biomolecular Engineering Department
Undergraduate and Graduate Director, Bioinformatics
University of California, Santa Cruz

Outline of Talk

What is Bioengineering? Biomolecular Engineering? Bioinformatics?
\& What is a protein?
\& The folding problem and variants on it:

- Local structure prediction
- Fold recognition
- Comparative modeling
- "Ab initio" methods
- Contact prediction
\Leftrightarrow Protein Design

What is Bioengineering?

Three concentrations:
\& Biomolecular

- Drug design
- Biomolecular sensors
- Nanotechnology
- Bioinformatics
\& Rehabilitation
\& Bioelectronics

What is Bioengineering?

Three concentrations:
\& Biomolecular
\& Rehabilitation

- Systems to held individuals with special needs
- Cell-phone-based systems to reach large numbers of people.
- Novel hardware to assist the blind
- Robotics for rehabilitation and surgery applications.
\& Bioelectronics

What is Bioengineering?

Three concentrations:
\& Biomolecular
\& Rehabilitation
\& Bioelectronics

- Implantable devices
- Interfacing between organisms and electronics
- Artificial retina project

What to take early

\& Mathematics
Chemistry and then biology
\& Introductory bioengineering courses:

- BME80G, Bioethics (F)
- BME5, Intro to Biotechnology (W, S)
- CMPE80A: Universal Access: Disability, Technology, and Society (W, S)
E Declare your major immediately!!
You can always change to another one latter. Bioengineering is one of the most course-intensive majors on campus Many courses have prerequisites. It's important to get advising office and faculty advise early.

What is Biomolecular Engineering?

Engineering with, of, or for biomolecules. For example,
with: using proteins (or DNA, RNA, ...) as sensors or for self-assembly.
of: protein engineering-designing or artificially evolving proteins to have particular functions
for: designing high-throughput experimental methods to find out what molecules are present, how they are structured, and how they interact.

What is Bioinformatics?

Bioinformatics: using computers and statistics to make sense out of the mountains of data produced by high-throughput experiments.
\& Genomics: finding important sequences in the genome and annotating them.
E Phylogenetics: "tree of life".
\& Systems biology: piecing together various control networks.
\& DNA microarrays: what genes are turned on under what conditions.
\& Proteomics: what proteins are present in a mixture.
Protein structure prediction.

What is a protein?

\& There are many abstractions of a protein: a band on a gel, a string of letters, a mass spectrum, a set of 3D coordinates of atoms, a point in an interaction graph,
\& For us, a protein is a long skinny molecule (like a string of letter beads) that folds up consistently into a particular intricate shape.
E The individual "beads" are amino acids, which have 6 atoms the same in each "bead" (the backbone atoms: N , H, CA, HA, C, O).
The final shape is different for different proteins and is essential to the function.
\& The protein shapes are important, but are expensive to determine experimentally.

Folding Problem

The Folding Problem:
If we are given a sequence of amino acids (the letters on a string of beads), can we predict how it folds up in 3-space?

Fold-recognition problem

The Fold-recognition Problem:
Given a sequence of amino acids A (the target sequence) and a library of proteins with known 3-D structures (the template library),
figure out which templates A match best, and align the target to the templates.
\& The backbone for the target sequence is predicted to be very similar to the backbone of the chosen template.

New-fold prediction

What if there is no template we can use?
We can try to generate many conformations of the protein backbone and try to recognize the most protein-like of them.
\& Search space is huge, so we need a good conformation generator and a cheap cost function to evaluate conformations.

Secondary structure Prediction

\& Instead of predicting the entire structure, we can predict local properties of the structure.
What local properties do we choose?
\& We want properties that are well-conserved through evolution, easily predicted, and useful for finding and aligning templates.
\& One popular choice is a 3-valued helix/strand/other alphabet-we have investigated many others. Typically, predictors get about 80% accuracy on 3-state prediction.
Many machine-learning methods have been applied to this problem, but the most successful is neural networks.

Contact prediction

\& Use mutual information between columns.
\& Thin alignments aggressively (30\%, 35\%, 40\%, 50\%, 62\%).
\& Compute e-value for mutual info (correcting for small-sample effects).
\& Compute rank of log(e-value) within protein.
Feed log(e-values), log rank, contact potential, joint entropy, and separation along chain for pair, and amino-acid profile, predicted burial, and predicted secondary structure for each residue of pair into a neural net.

(Rational) Protein Design

\& New direction for lab.
\& Use local-structure neural nets in reverse (find sequences highly predicted to have right local structure).
\& Use undertaker to build models.
\& Use RosettaDesign to modify sequences.
Target application: specific binding of carbon nanotubes.

Sequence logos (MSA)

Summarize multiple alignment:

nostruct-align/3chy.t2k w0.5

Sequence logos (NN)

Summarize local structure prediction:

nostruct-align/3chy.t2k EBGHTL

Fold recognition results

Contact prediction results

Weighted-accuracy of contact prediction, by protein

CASP Competition Experiment

Everything published in literature "works"
CASP set up as true blind test of prediction methods.
\leftrightarrow Sequences of proteins about to be solved released to prediction community.

Eredictions registered with organizers.
E Experimental structures compared with solution by assessors.

E "Winners" get papers in Proteins: Structure, Function, and Bioinformatics.

T0298 domain 2 (130-315)

RMSD $=2.468 \AA$ all-atom, $1.7567 \AA C_{\alpha}$, GDT=82.5\% best model 1 submitted to CASP7 (red=real)

Comparative modeling: T0348

RMSD $=11.8 \AA C_{\alpha}$, GDT=58.2\% (cartoon=real) best model 1 by CASP7 GDT, Robetta1 slightly better.

Target T0201 (NF, CASP6)

We tried forcing various sheet topologies and selected 4 by hand.

E Model 1 has right topology (5.912Å all-atom, 5.219Å C_{α}).
\& Unconstrained cost function not good at choosing topology (two strands curled into helices).
\& Helices were too short.

Target T0201 (NF, CASP6)

Target T0230 (FR/A, CASP6)

E Good except for C-terminal loop and helix flopped wrong way.
\& We have secondary structure right, including phase of beta strands.
\& Contact prediction helped, but we put too much weight on it-decoys fit predictions better than real structure does.

Target T0230 (FR/A, CASP6)

Target T0230 (FR/A)

Real structure with contact predictions:

Web sites

These slides:

```
http://www.soe.ucsc.edu/~karplus/papers/what-lab-does-jul-2008.pdf
```

CASP6 and CASP7-all our results and working notes:

```
http://www.soe.ucsc.edu/~karplus/casp6/
http://www.soe.ucsc.edu/~karplus/casp7/
```


SAM-T06 prediction server:

http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html
Predictions for all yeast proteins:
http://www.soe.ucsc.edu/~karplus/yeast/
UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/

