
Regularizers for EstimatingDistributions ofAmino Acids from Small SamplesKevin Karplusucsc-crl-95-1130 March 1995

Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USA

0 abstractThis paper examines several di�erent methods for estimating the distribution of aminoacids in a speci�c context, given a very small sample of amino acids from that distribu-tion. These distribution estimators, sometimes called regularizers, are frequently used whenaligning sequences to each other or to models such as pro�les or hidden Markov models.The distribution estimators considered here are zero-o�sets, pseudocounts, substitutionmatrices (with several variants), feature alphabets, and Dirichlet mixture regularizers.A new method is presented for setting the parameters of the regularizers to minimizethe encoding cost (also called the entropy) of the training data, for all possible samples fromthe training data. The optimal parameter settings depend on the size of the sample, butthe optimization method can also be used to get good performance over a range of samplesizes. The optimal settings with this method are not the same as the traditional values usedfor the parameters.The regularizers are evaluated based on how well they estimate the distributions of thecolumns of a multiple alignment|speci�cally, the expected encoding cost per amino acidusing the regularizer method and all possible samples from each column.The di�erences between the regularizers are fairly small (less than 0.2 bits per column),but large enough to make a signi�cant di�erence when many columns are combined as isdone in an an alignment.In general, the pseudocounts have the lowest encoding costs for samples of size zero,substitution matrices have the lowest encoding costs for samples of size one, and Dirichletmixtures have the lowest for larger samples. One of the substitution matrix variants, whichadded pseudocounts and scaled counts, does almost as well as the best Dirichlet mixtures,but with a lower computation cost.Keywords: regularizers, pseudocounts, Gribskov average score, substitution matrices,data-dependent pseudocounts, Dirichlet mixture priors, feature alphabets, entropy, encodingcost

CONTENTS 1Contents1 Why estimate amino acid distributions? : 12 Quantitative measure for regularizers : 22.1 Encoding cost : 32.2 More e�cient computation of encoding cost : : : : : : : : : : : : : : : : : : : 43 Estimation methods : 53.1 Zero-o�set : 63.2 Pseudocounts : 63.3 Gribskov average-score method : 73.4 Substitution matrices : 83.5 Substitution matrices plus pseudocounts : 103.6 Substitution matrices plus pseudocounts plus scaled counts : : : : : : : : : : 103.7 Feature alphabets : 113.8 Dirichlet mixtures : 134 Optimizing parameters of estimation methods : 145 Experimental method : 156 Results for training and testing on full database : 156.1 Zero-o�set : 166.2 Pseudocounts : 166.3 Gribskov average score : 166.4 Substitution matrices : 166.5 Substitution matrices plus pseudocounts : 176.6 Feature alphabets : 176.7 Dirichlet mixtures : 197 Results for separate training and testing : 208 Conclusions and future research : 20References : 21A Partial derivatives for Dirichlet mixtures : 23B Bayesian interpretation of pseudocount regularizers : : : : : : : : : : : : : : : : : : : 23C Bayesian interpretation of Dirichlet mixture regularizers : : : : : : : : : : : : : : : : 261 Why estimate amino acid distributions?For many search and comparison algorithms involving protein sequences, we need to estimatethe probability of seeing each of the twenty amino acids in a given context. This probability is oftenexpressed indirectly as a score for each of the amino acids, with positive scores for expected aminoacids and negative scores for unexpected ones.For example, in sequence-sequence alignment, the traditional scoring matrices assign a positivescore for each amino acid that would be a good match to the one in the reference sequence, and anegative score to each that would be a poor match.As Altschul pointed out [Alt91], any alignment scoring system is really making an assertion aboutthe probability of the test sequences given the reference sequence. The score for an alignment is thesum of the scores for individual matched positions, plus the costs for insertions and deletions. We'llonly look at the match positions here, although one could make similar arguments for the aminoacids in insert positions. For sequence-sequence alignment, the only information about a matchposition that we can use for alignment is what amino acid was seen in that position in the referencesequence.

2 2. Quantitative measure for regularizersFor each match position, there are twenty scores|one for each of the possible amino acids in thetest sequence. Each match score can be interpreted as the logarithm of the ratio of two estimatedprobabilities: the probability of the test amino acid given the amino acid in the reference sequenceand the probability of the the test amino acid in the background distribution.Let's de�ne P̂j(i) as the estimated probability that amino acid i will be seen in the test sequencealigned with amino acid j in the reference sequence and P̂0(i) as the estimated probability that anamino acid i will be seen in any position of the test sequence. Then the score for matching test aminoacid i to reference amino acid j is logb(P̂j(i)=P̂0(i)) for some arbitrary logarithmic base b. [Alt91]Any method for estimating the probabilities P̂j(i) and P̂0(i) de�nes a match scoring systemfor sequence-sequence alignment. Rather than looking at the �nal scoring system, this paper willconcentrate on the methods that can be used for estimating the probabilities themselves.In more sophisticated models than single sequence alignments, such as multiple alignments,pro�les [GME87], and hidden Markov models [KBM+94, BCHM94], we may have more than onereference sequence in our training set. Each position of such a model will de�ne a context for whichwe to want to estimate the probabilities of the twenty amino acids. The only information we will useabout the context is the sampling of the amino acids we have seen in that position in the referencesequences. In this paper, I'll use s to refer to a sample of amino acids and s(i) to the number oftimes that amino acid i appears in that sample. Our problem, then is to compute the estimatedprobabilities P̂s(i) for the context from which sample s was taken, given only the twenty numberss(i).Note that aligning a test sequence to a single reference sequence is a special case of this problem,in which the sample consists of just a single amino acid. Similarly, estimating the background P̂0(i)is a special case in which the sample is empty (8i; s(i) = 0).For alignment and search problems, we usually add scores frommany positions, and so fairly smallimprovements in computing the individual match scores can add up to signi�cant overall di�erences.For example, the small di�erences between the PAM scoring matrices and the BLOSUM scoringmatrices have been shown to make a signi�cant di�erence in the quality of search results [HH92].The di�erences between regularizers is often fairly small. In this paper we attempt to quantifythese small di�erences for several di�erent methods for estimating the distributions. Section 2explains the measure used to quantify the tests, Section 3 lists the di�erent methods tested, Section 4explains how the parameters of the di�erent methods are set, Section 5 describes the data used fortraining and testing, and Section 6 gives the quantitative comparisons of the di�erent methods.2 Quantitative measure for regularizersThe traditional way in computational biology to demonstrate that a technique or set of parame-ters is better is to pick a biologically interesting problem and compare methods for solving it. Manyof the regularizers in Section 3 have been validated in this way [HH92, BHK+93, TAK94].This sort of anecdotal evidence is very valuable for establishing that techniques are useful inreal biological problems, but is very di�cult to quantify. It is di�cult to determine how muchimprovement is expected on di�erent problems, and whether the improved technique is better ingeneral, or just on the speci�c problem it was applied to.In this paper, the regularizers are compared quantitatively on a rather generic problem|independently encoding the columns of multiple alignments. This generic problem has some at-tractive features:� There are large data sets of multiple alignments available for training, making it easy tooptimize the parameters of methods.� Many of the search and alignment techniques that will use the regularizers are attemptingto produce multiple alignments, and so �nding a good regularizer for the encoding problemshould produce a good regularizer for the search and alignment algorithms.

2. Quantitative measure for regularizers 3� By using trusted alignments, we have fairly high con�dence that each amino acid distributionwe see is for amino acids from a single biological context, and not just an artifact of a particularsearch or alignment algorithm.Throughout this paper, the trusted alignments used are the BLOCKS database [HH91] with thesequence weighting scheme mentioned in Section 5.2.1 Encoding costThe encoding cost (sometimes called conditional entropy) is a good measure of the residualvariation among sequences of the multiple alignment. Since entropy is additive, the encoding costfor independent columns can be added to get the encoding cost for entire sequences, and strictsigni�cance tests can be applied by looking at the di�erence in encoding cost between a hypothesizedmodel and a null model [Mil93].Each column t of a multiple alignmentwill give us a count of amino acids, Ft(i). If we use sequenceweights (such as those suggested in [ACL89] or [HH94]), then Ft(i) is the sum of the sequence weightsfor sequences having amino acid i in column t. These \counts" need not be integers.If we write the sum of all the counts for a column as jFtj, we can estimate the probability of eachamino acid in the column as P̂t(i) = Ft(i)=jFtj. This is known as the maximum-likelihood estimateof the probabilities. Note: throughout this paper the notation jyj will mean Pamino acid i y(i) forany vector of values y.Unfortunately, we have no way to get the true probabilities of the amino acids for a column, andthe maximum-likelihood estimator is the best estimate we can make.Because we don't have true probabilities of amino acids for each column, we can't evaluateregularizers applied to the whole column in a meaningful way. Instead, we will take a small sampleof amino acids from the column, apply a regularizer to it, and see how well the regularizer estimatesthe probabilities for the whole column.Let's use s(i) to be the number of occurrences of amino acid i in the sample, and jsj =Pi s(i)to be the size of the sample. The estimated probability of amino acid i given the sample s will bewritten as P̂s(i). The Shannon entropy or optimal encoding cost of amino acid i given the sample is� log2 P̂s(i). The encoding cost for column t given sample s is the weighted average over all aminoacids in the column of the encoding for that amino acid:Hs(t) = �Xi Ft(i)jFtj log2 P̂s(i) :The better the estimation P̂s(i) is of P̂t(i), the lower the encoding cost Hs(t) will be. The lowestpossible value would be obtained if the estimate were exact (Shannon's Theorem):Hmin(t) = �Xi Ft(i)jFtj log2 P̂t(i) = �Xi Ft(i)jFtj log2 Ft(i)jFtj :To make a fair comparison of regularizers, we should not look at a single sample s, but at theexpected value when a sample of size k is chosen at random:Hk(t) = Xsample s;jsj=kP (sjt)Hs(t) :The weighting for each of the encoding costs Hs(t) is the probability of obtaining that particularsample from that column. If the samples of size jsj are drawn by independent selection withreplacement from the density P̂t, then the probability of each sample can be computed from thecounts Ft: P (sjt) = jsj!Yi P̂t(i)s(i)=s(i)!= jsj!jFtj�jsjYi Ft(i)s(i)=s(i)! :

4 2. Quantitative measure for regularizersWe can do a weighted average of the encoding costs over all columns to get the expected costper amino acid for a given sample size:Hk = Pcolumn t jFtjHk(t)Pcolumn t jFtj= Pcolumn t jFtjPsample s;jsj=k P (sjt)Hs(t)Pcolumn t jFtj= �Pcolumn tPsample s;jsj=k P (sjt)Pi Ft(i) log2 P̂s(i)Pcolumn t jFtj :2.2 More e�cient computation of encoding costThe �nal formula for Hk looks formidable, but we can reduce the CPU time required forcomputing it by rearranging the summations and precomputing some of them. If we precomputethe total count T =Pcolumn t jFtj, and summary frequencies for each sampleTs(i) = Xcolumn tP (sjt)Ft(i) ;then we can simplify the computation toHk = � 1T Xsample s;jsj=kXi Ts(i) log2 P̂s(i) : (2:1)We can see that the average encoding cost Hk would be minimized if P̂s(i) = Ts(i)=jTsj, givingus a lower bound on how well a regularizer can do for samples of size k:Hmin;k = � 1T Xs;jsj=k jTsjXi Ts(i)jTsj log2 Ts(i)jTsj= � 1T Xs;jsj=kXi Ts(i) log2 Ts(i)jTsj :Table 2.1 shows this lower bound on average encoding cost of the columns of the Blocks multiplealignment [HH91] (see Section 5 for details on how the database is used in this paper), given thatwe have sampled jsj amino acids from each column. A large encoding cost means that there is a lotof variation in which amino acids occur, while a small encoding cost means that a few amino acidshave very high probability, and the rest have very low probability.The last row of the table is the average encoding cost for the columns if we use the full knowledgeof the probabilities for the column P̂t, rather than just a random sample. This is the best we canhope to do with any method that treats the columns independently. It is probably not obtainablewith any �nite sample size, but we can approach it if we use information other than just a sampleof amino acids to identify the column.The relative entropy in the last column of Table 2.1 measures how much information we havegained by seeing a sample of jsj amino acids (rather than jsj � 1). The larger the sample we takefrom a distribution, the better we can estimate the distribution, and the fewer bits it takes to encodea column drawn from the distribution. We get the greatest gain (1.4 bits) from knowing one aminoacid (as in sequence-sequence alignment) rather than zero amino acids. Each additional amino acid(for example, in a pro�le based on a multiple alignment) contributes less information: 0.39, 0.22,0.14, and 0.10 bits for the next four amino acids known.

3. Estimation methods 5sample size encoding cost in bits relative encoding costjsj Hjsj Hjsj�1�Hjsj0 4.196661 2.78084 1.415822 2.38691 0.393933 2.16913 0.217784 2.02703 0.142105 1.92380 0.10323full 1.32961Table 2.1: Encoding cost of columns from the weighted Blocks database, given that asample of jsj amino acids is known. The encoding cost is a lower bound on the encodingcost for any regularizer. The last row (labeled \full") is the encoding cost if we know thedistribution for each column of the alignment exactly, not just a sample from the columnThe relative encoding cost is the information gain from seeing one more amino acid.jsj Number of samples0 11 202 2103 15404 88555 425046 1771007 6578008 2220075Table 2.2: The number of distinct samples of size jsj grows exponentially with jsj, butremains manageable for jsj � 5.The extra 0.86 bits from knowing a sample of �ve amino acids from a column, rather than onemay seem small, but is quite important. Since searching a fairly large database may require a scoredi�erence of only 20 bits to identify a sequence as signi�cant, the small increase of 0.86 bits perposition could make an enormous di�erence in the quality of the searches, permitting many moreshort sequences to be signi�cantly found. This extra information is what makes pro�les and linearhidden Markov models so much more successful than simple sequence alignment for searching.One disadvantage of the encoding cost computation used in this paper is the cost of pre-computingthe Ts(i) values and computing the P̂s(i) values for each of the possible samples. The number ofdistinct samples to be examined is �20+jsj�1jsj �, which grows exponentially with jsj, but remainsmanageable for jsj � 5 (see Table 2.2).3 Estimation methodsIn Section 2.1, the simplest method for estimating probabilities from counts. was introduced. Themaximum-likelihood method, P̂s(i) = s(i)=jsj is asymptotically optimal as jsj ! 1, but performsvery badly for small sample sizes. Using the maximum-likelihood method, the encoding cost forany amino acid not seen in the sample is � log2 0 = 1. To avoid this in�nitely high cost, we willconstrain regularizers to provide non-zero estimates for all probabilities: 0 < P̂s(i) < 1.Many of the regularizers make a small adjustment to the sample counts to produce what we atUCSC refer to as posterior counts. If we use Xs to refer to the posterior counts produced by somemethod from sample s, then the estimated probability is

6 3. Estimation methodsP̂s(i) = Xs(i)PiXs(i) :To get legal estimated probabilities, the primary constraint on Xs is that the result be positiveXs(i) > 0.Note: there will be several di�erent formulas given for computing Xs, corresponding to di�erentregularizers. The symbols Xs(i) will be used for de�ning the di�erent methods.The rest of this section will describe how the posterior counts are determined for each of themethods we'll be comparing. The notations P0(i) and P̂0(i) refer to the background probabilitiesand their estimates (that is, the probabilities given a sample of size zero).3.1 Zero-o�setThe simplest method for ensuring that no probability is estimated as zero is to add a smallpositive zero-o�set to each count to generate the posterior counts:Xs(i) s(i) + z :For large sample sizes, the zero-o�set has little e�ect on the probability estimation, and P̂s(i)!Ps(i) as jsj ! 1.For jsj = 0, the estimated probability distribution will be at (P̂0(i) = 1=alphabet size = 0:05),which is generally a poor approximation to the amino acid distribution in an context about whichnothing is known yet.It is fairly traditional to use z = 1 when nothing is known about the distributions beingapproximated, but this value is much too large for highly conserved regions like the Blocks database|the optimal value is between 0.048 and 0.054. Using a zero o�set of 1=n for an n-character alphabet(0.05 for amino acids) works much better than the add-one prior for the blocks database.3.2 PseudocountsPseudocount methods are a slight variant on the zero-o�set, intended to produce more reasonabledistributions when jsj = 0. Instead of adding a constant zero-o�set, a di�erent positive constant isadded for each amino acid: Xs(i) s(i) + z(i) :These zero-o�sets are referred to as pseudocounts, since they are used in a way equivalent to havingcounted amino acids.Again, as jsj ! 1 the pseudocounts have diminishing inuence on the probability estimate andP̂s(i) ! Ps(i). For jsj = 0, we can get P̂0(i) = P0(i), by setting z(i) = aP0(i), for any positive con-stant a. This setting of the pseudocounts has been referred to as background pseudocounts [LAB+93]or the Bayesian prediction method [TAK94] (for the Bayesian interpretation of pseudocounts, seeAppendix B). For the Blocks database and jsj > 0, the optimal value of a is near 1.0.For non-empty samples, the pseudocounts that minimize the encoding cost of Section 2.1 arenot necessarily multiples of P0(i) (see Section 4 to see how the pseudocounts are optimized). Forexample, Figure 3.1 shows the the probability density implied by the optimal pseudocounts fordi�erent values of jsj. To get the actual pseudocounts, multiply the densities by the weight at thetop of each column.For jsj = 0, the weight is arbitrary, since no real counts are added to the pseudocounts, and thenormalization of the posterior counts to probabilities will eliminate the overall weight. Since theweight is arbitrary, the reported weight for jsj = 0 is chosen to get the best performance for jsj = 1,holding the probabilities �xed so that optimality is not lost for jsj = 0.Note that four amino acids (G=glycine, P=proline, W=tryptophan, C=cysteine) consistentlyhave much smaller pseudocounts than would be expected from the background distribution, whilethree (M=methionine, Q=glutamine, and S=serine) have consistently higher pseudocounts thanexpected.

3. Estimation methods 7optimized for jsj =residue 0 1 2 3 0, 1, 2, 3weight 0.989 0.986 1.102 1.150 1.067A 0.078 0.084 0.085 0.086 0.082C 0.024 0.017 0.017 0.018 0.020D 0.052 0.048 0.047 0.046 0.050E 0.058 0.059 0.058 0.057 0.058F 0.043 0.042 0.041 0.040 0.042G 0.083 0.057 0.052 0.049 0.068H 0.024 0.023 0.025 0.025 0.024I 0.062 0.071 0.071 0.070 0.066K 0.055 0.059 0.059 0.059 0.057L 0.091 0.090 0.087 0.084 0.089M 0.024 0.030 0.032 0.034 0.028N 0.042 0.045 0.046 0.047 0.044P 0.044 0.032 0.029 0.028 0.037Q 0.034 0.041 0.043 0.045 0.039R 0.050 0.049 0.049 0.049 0.050S 0.060 0.070 0.073 0.076 0.066T 0.055 0.062 0.064 0.065 0.059V 0.073 0.082 0.082 0.081 0.077W 0.014 0.010 0.009 0.009 0.012Y 0.034 0.032 0.031 0.030 0.033Table 3.1: Density functions corresponding to optimal pseudocounts for di�erent samplesizes jsj. The pseudocounts were optimized for the entire blocks database, with weightedsequences. To get the actual pseudocounts, multiply the density by the weight for thepseudocounts given in the �rst row. Note that G, P, C, and W have smaller optimalpseudocounts than would be expected from scaling the background distribution (jsj = 0).The pseudocounts roughly reect the chances of seeing the amino acid in a context in whichwe have not previously seen it. A low pseudocount for an amino acid means that the amino acidis not often seen in a context in which some other amino acid has already been observed. If thepseudocount is lower than we would expect from the background probabilities, then the amino acidmust be more highly conserved than other amino acids. Using this reasoning, we expect that G, P,W, and C are often highly conserved. Using symmetric reasoning for pseudocounts that are higherthan expected from the background probabilities, we also expect that M, Q, and S are less conservedthan other amino acids.3.3 Gribskov average-score methodThe Gribskov pro�le [GME87] or average-score method [TAK94] computes the weighted averageof scores from a score matrix M . There are several standard scoring matrices in use, most notablythe Dayho� matrices [DSO78] and the BLOSUM matrices [HH92], which were originally created foraligning one sequence with another (jsj = 1).The scores are best interpreted as the logarithm of the ratio of the probability of the amino acidin the context to the background probability [Alt91]:Mi;j = log P̂s(i)=P0(i) ;where s is a sample containing exactly one amino acid: j.The averaging of the score matrices is intended to create a new score. With the interpretationof scores given above, and assuming natural logarithms are used, the posterior counts are

8 3. Estimation methodsXs(i) P0(i)exp�PjMi;js(j)jsj � :We can avoid recording the extra parameters P0(i) by rede�ning the score matrix slightly. If we letM 0i;j = Mi;j + lnP0(i), then Xs(i) exp�PjM 0i;js(j)jsj � :The BLOSUM substitution matrices provide a score matrixMi;j = log� P (i; j)P0(i)P0(j)�for matching amino acid i and amino acid j, where P (i; j) is the probability of i and j appearingas an ordered pair in any column of a correct alignment. Let's take natural logarithms in creatingthe score matrix (to match the exponential in the computation of Xs(i)). If we use j to name thesample consisting of a single amino acid j, thenP̂j(i) = Xj(i) = P (i; j)P0(j) :This is the optimal value for P̂j, and so the Gribskov average score method is optimal for jsj = 1(with a properly chosen score matrix).Although the Gribskov average score method is optimal at jsj = 1, it does not perform well atthe extremes. For jsj = 0, it predicts a completely at distribution (just as zero-o�set methods do).As jsj ! 1, the Gribskov average-score method does not approach a maximum-likelihood estimatefor P̂s(i).We can get much better performance for jsj > 1 by optimizing the score matrix as described inSection 4, but the Gribskov average-score method does not generalize to other values of jsj as wellthe substitution matrix method described in Section 3.4.3.4 Substitution matricesA substitution matrix computes the posterior counts as a linear combination of the counts:Xs(i) Xj Mi;js(j) :This method is similar to the Gribskov average-score method of Section 3.3, with one majordi�erence|the matrix M is not a logarithmic score matrix.Note that for jsj = 0, all the sample counts s(j) are zero, and so the posterior counts X0(i) arealso zero. This violates the constraints on posterior counts, and so some other method of derivingposterior counts is needed for jsj = 0. For the experiments in this paper, all-zero count vectors arereplaced by all-one count vectors (s(j) = 1 and X0(i) =PjMi;j). This is equivalent to adding anin�nitesimal zero-o�set to the count vectors before multiplying by the substitution matrix M .Substitution matrices, like score matrices, are designed for use in sequence-sequence alignment,where the sample always consists of exactly one amino acid (jsj = 1). If we let Pj be the distributionwe expect in a column in which amino acid j has been seen, we can can get P̂j(i) = Pj(i) by settingMi;j = ajPj(i), for arbitrary positive constants aj.If we set aj = aP0(j), then X0(i) =Pj aP0(j)Pj(i) = aP0(i), and we get optimal estimation forjsj = 0 (P̂0(i) = P0(i)) as well as jsj = 1.If we set Mi;j = P (i; j)=P0(j) = P (ijj), and choose s to be the sample for which s(m) = 1 ands(j 6= m) = 0, then P̂s(i) = P (ijm). The value P (i; j)=P0(j) is known as the relatedness odds ratioand has been widely used, for example [JTT92].

3. Estimation methods 9eigenvectorsbackground frequency subst subst+pseudo subst+pseudo+scaledresidue density matrix 0{3 2 0{3 2 0{3 2A 0.078 0.099 0.073 0.072 0.063 0.068 0.071 0.066C 0.024 0.011 0.013 0.010 0.008 0.009 0.009 0.009D 0.052 0.036 0.063 0.069 0.099 0.079 0.071 0.076E 0.058 0.043 0.077 0.090 0.117 0.104 0.101 0.097F 0.043 0.031 0.037 0.031 0.022 0.024 0.028 0.030G 0.083 0.168 0.071 0.065 0.085 0.060 0.056 0.067H 0.024 0.011 0.022 0.021 0.020 0.020 0.020 0.019I 0.062 0.072 0.059 0.055 0.042 0.053 0.054 0.056K 0.055 0.040 0.070 0.078 0.091 0.086 0.088 0.083L 0.091 0.144 0.086 0.081 0.061 0.074 0.078 0.082M 0.024 0.021 0.022 0.020 0.016 0.019 0.020 0.018N 0.042 0.028 0.044 0.046 0.051 0.046 0.047 0.045P 0.044 0.027 0.050 0.050 0.042 0.050 0.041 0.055Q 0.034 0.022 0.039 0.044 0.048 0.046 0.048 0.041R 0.050 0.034 0.057 0.061 0.064 0.069 0.064 0.062S 0.060 0.055 0.056 0.056 0.052 0.056 0.057 0.051T 0.055 0.048 0.053 0.052 0.046 0.049 0.052 0.047V 0.073 0.088 0.068 0.064 0.048 0.060 0.063 0.063W 0.014 0.005 0.011 0.009 0.007 0.007 0.007 0.007Y 0.034 0.018 0.030 0.026 0.019 0.021 0.024 0.024Table 3.2: Principal eigenvectors of substitution matrices for the blocks database, scaledso that each vector sums to one. Each gives the stationary distribution for a mutationprocess modeled by the substitution matrix. The eigenvectors are remarkably consistent,except for the frequency matrix, which is just P (i; j), not an optimal substitution matrix.The headings \2" and \0{3" indicate that the regularizer was optimized for jsj = 2 orsimultaneously for jsj = 0; 1; 2; 3 on the weighted blocks database. See Sections 3.5 and 3.6for details on the substitution matrices used with pseudocounts and scaled counts.If we are only interested in samples with a single amino acid, we can even use Mi;j = P (i; j),since the normalization makes dividing by P0(j) irrelevant. Indeed, for jsj = 1 we can multiply eachcolumn by a di�erent arbitrary number without a�ecting the resulting estimate of the distribution.The pure frequency matrix sets the column weights to be P0(j), while using the relatedness oddratio sets the column weights to 1.0.Pure frequency matrices do not work well for larger samples, and using the relatedness odds ratiois not much better. In optimal substitution matrices, the column weights vary over a range of about2 to 1, not 7 to 1 (as they would be for P (i; j)) or uniform (as they would be for P (i; j)=P0(j)).Furthermore, the heaviest column weight is not necessarily for the most frequent amino acids|the most frequent amino acids in the data are L and G, but the heaviest weights in the optimumsubstitution matrices are on columns K and E.For large values of jsj, the substitution matrix does not guarantee that the estimated distributionapproaches the true distribution, unless the count vector s happens to be an eigenvector of thematrix. If the substitution matrix is interpreted as a mutation process modeled as a Markov chainwith transition probabilities assigned by the substitution matrix, then the principal eigenvectorshould be the background distribution.Eigenvectors were determined for several substitution matrices, and only the eigenvector withthe largest eigenvalue had all positive components. Table 3.2 shows these principal eigenvectorsfor several substitution matrices. These principal eigenvectors are very similar to the backgrounddistribution, as one would expect. Eigenvectors have been used to examine distance matrices [TJ93,Hig92], but I have not yet found a reference to the use of eigenvectors with substitution matrices.

10 3. Estimation methodsNote that each diagonal element of an optimal substitution matrix, divided by the total weightof the column, reects how conserved that amino acid is. Based on the observations on the optimalpseudocounts, we expect the diagonal elements GG, PP, WW, and CC to be large, and the diagonalelements MM, QQ, and SS to be small. This indeed turns out to be the case.3.5 Substitution matrices plus pseudocountsIn an attempt to avoid the rather ad hoc approach for handling jsj = 0 with substitution methods,I created a new method which combines substitution matrices and pseudocount methods:Xs(i) z(i) +Xj Mi;js(j) :If one thinks of a substitution matrix as a mutation model, then the pseudocounts representa mutation or substitution that does not depend on what is currently in the sequence. For doingsingle alignments, where there is exactly one s(i) that is non-zero, one could get the same e�ect byadding the pseudocounts to each column of the substitution matrix, but for other sample sizes, theseparation of residue-speci�c and background substitutions turns out to be quite useful.If z(i) is set to aP0(i) for a very small positive number a, then the method is essentially identicalto the pure substitution matrix method. If M is set to be the identity matrix, then the method isidentical to the pure pseudocount method. In practice, the optimal matrix is closer to the identitymatrix than the simple substitution matrix is, but still has signi�cant o�-diagonal elements. Thepseudocounts sum to between 0.15 and 0.45 (assuming the matrix M is scaled so that the diagonalelements sum to 20), rather than around 1.0 as they would in a pure pseudocount method.As with substitution matrices, substitution matrices plus pseudocounts do not converge to theoptimal distribution as jsj ! 1. They do a little better than pure substitution matrices, since thematrix is closer to being an identity matrix.The eigenvectors of the substitution matrices for this combined approach may be even moreinteresting than the ones for the simple substitution matrix, since any \noise" introduced by randommutation uninuenced by what was previously in the position is modeled by the pseudocounts, ratherthan blurring the substitution matrix.Eigenvectors were determined for several substitution matrices optimized for use with pseudo-counts. As with the other substitution matrices, only the dominant eigenvector had all positiveelements. Table 3.2 includes these eigenvectors.We can apply the same analysis for which amino acids tend to be highly conserved as we didfor straight substitution matrices. Again the diagonal elements GG, PP, WW, and CC are large,indicating that they are more highly conserved, and MM, QQ, and SS are small. The diagonalelements II and KK are also quite small.3.6 Substitution matrices plus pseudocounts plus scaled countsSubstitution matrices can be modi�ed to work better for jsj = 0 by adding pseudocounts asdescribed in Section 3.5, but they still do not converge to the maximum-likelihood estimate asjsj ! 1. This problem can be solved by adding one more term to the posterior counts, proportionalto the counts and growing faster than the vector Ms does. One easy way to accomplish this is toadd the counts scaled by their sum:Xs(i) jsjs(i) + z(i) +Xj Mi;js(j) :The method here is almost equivalent to the data-dependent pseudocount method [TAK94]. Thedata-dependent method sets Xs(i) s(i) + Pj BP0(i)e�Ai;j s(j)jsj ;

3. Estimation methods 11for arbitrary parameters B and � and a substitution matrix A. Scaling this by jsj and absorbingthe constants and exponentiation into the matrix gives usXs(i) jsjs(i) +Xj Mi;js(j) ;which is identical to the method here, if the pseudocounts z(i) are all zero. However, the constructionof their matrices is rather ad hoc, and probably not optimized for the task.A similar method was proposed by Claverie [Cla94]. His method is equivalent to setting z(i) = 0and scaling the s(i) by max(pjsj; jsj=20), instead of jsj. It might be interesting to try other scalingfunctions, besides jsj or pjsj|any positive function such that f(jsj) ! 1 as jsj ! 1 would givethe correct convergence to the maximum-likelihood estimate. Since there is not yet any theoreticaljusti�cation for choosing one scaling function over another, I have chosen the simplest one.3.7 Feature alphabetsThe feature-alphabet method partitions the set of amino acids into disjoint feature sets, thentreats the di�erent feature sets as a reduced alphabet, with all amino acids in a feature set consideredequivalent. This partition of the amino acids into disjoint feature sets is called a feature alphabet.For a feature alphabet f , let's call the set to which amino acid i belongs f(i).A single feature alphabet would not provide very good matches to the amino acid distributions(since all the amino acids in a particular feature get identical estimates), and so distributionestimation needs to combine the e�ects of several di�erent feature alphabets.Although any of the distribution estimation methods could be used for each feature alphabet,I've chosen to use the simplest method (zero-o�sets), since the intent of the method is to capturethe relationships between the amino acids in the feature sets, not in a large set of parameters. Tocombine the feature alphabets, I multiply the posterior counts together.Xs(i) Yfeature alphabet fXs;f (i)Xs;f (i) = zf + Xj;f(j)=f(i) s(j)With four properly chosen feature alphabets and only 4 parameters, this method does betterthan pseudocount methods (which require 20 parameters) for jsj = 1; 2; 3.One would not expect feature sets to work well for jsj = 0 since the zero-o�set methods alwayspredict a at distribution for jsj = 0, and combining the at predictions still results in a atprediction.For large samples (jsj ! 1), we again expect the feature alphabets to do poorly compared tothe pseudocount methods, but are superior to the substitution matrix methods (unless scaled countsare added to the substitution matrix pseudocounts, as in Section 3.6).Feature alphabets have been used for creating patterns for searching protein databases [SS90],and feature sets have been quite popular for describing sets of amino acids (for example, [Tay86]).The feature alphabets are used in quite a di�erent way by Smith and Smith [SS90] than the onespresented here, since their scores were computed based only on the set of amino acids previouslyseen in a context, not on the frequencies. Their method could be roughly approximated by thefeature alphabet in Table 3.3.A few feature alphabet sets were created by hand from the Taylor features [Tay86], with from fourto �fty-eight feature alphabets. The largest one consisted of one alphabet for the individual aminoacids and 57 binary alphabets corresponding to the \most relevant" feature sets given in [Tay86,

12 3. Estimation methodsfeatures zero o�setsA, C, D, E, F, G, H, I, V, K, L, M, N, P, Q, R, S, T, W, Y 0.168058DE, FRH, NQ, ST, ILV, FWY, C, M, AG, P 0.764163DEKRHNQST, ILVFWYCM, AG, P 2.062930Table 3.3: Feature alphabet set based on the amino acid class hierarchy [SS90]. Zero o�setswere chosen for best performance on jsj = 1; 2.features zero o�setsA, C, D, E, F, G, H, I, V, K, L, M, N, P, Q, R, S, T, W, Y 0.102741FILMPV, ACGHNQSTWY, DEKR 2.348270DE, HKR, NQSTWY, ACFGILMPV 3.031990AGS, C, DNPTV, EFHIKLMQRWY 3.624300Table 3.4: Four-alphabet feature alphabet set based on Taylor's feature set [Tay86]. Zeroo�sets were chosen for best performance on jsj = 1; 2.features zero o�setsA, C, D, E, F, G, H, I, V, K, L, M, N, P, Q, R, S, T, W, Y 0.172476AGS, C, P, DE, ILV, KMNQRT, FHWY 1.87884ACFGILMTVWY, DEHKNPQRS 2.59881ACDEGIKLMNPQRSTV, FHWY 2.65647CFILMPV, ADEGHKNQRSTWY 2.91754ACDEFGILMNPQSTVWY, HKR 5.04085CEFHIKLMQRVWY, ADGNPST 5.64207FHILMVWY, ACDEGKNPQRST 6.23212ACDEGIKLNPQRSTV, FHMWY 6.19452ACDFGIKLMNSTV, EHPQRWY 7.54467Table 3.5: Ten-alphabet feature alphabet set based on Taylor's feature set [Tay86]. Zeroo�sets were chosen for best performance on jsj = 1; 2.Figure 5].1 The smaller sets attempted to improve performance and reduce the size of the regularizerby grouping non-overlapping features into the same feature alphabet, and omitting the less usefulfeature alphabets. Two of these are shown in Tables 3.4 and 3.5. The ten-alphabet set works wellfor jsj = 1 and jsj = 2, but does poorly for larger values of jsj, and the four-alphabet set worksmoderately well for larger jsj. None of these hand-created feature sets did as well as the automaticallycreated ones, and none of the feature-based techniques worked particularly well.The automatically generated feature sets used in these experiments were chosen with a simplegreedy algorithm (after months of playing around with fancy search programs!). The algorithmstarts with the empty set (0 alphabets), which predicts a at distribution, then repeatedly adds analphabet to the set, re-optimizing the zero o�sets after each addition.The new alphabet is chosen by starting with the alphabet that assigns each amino acid its ownfeature and gradually merging features together. A trial merge is made for every pair of features,and whichever produces the smallest entropy is chosen, until any merging will increase the entropy.For e�ciency in computing the entropy in the inner loop, the zero o�sets are not modi�ed for anyof the existing alphabets, and the entropy is only computed for samples with a single amino acid inthem. Not changing the existing regularizer while doing the merging also makes it possible to applythe partitioning algorithm to other regularizers, since all that is needed are the Xs(i) values for the20 samples consisting of a single amino acid each.1Figure 5 of [Tay86] lists 61 sets, but several of them are complements of others in the list and complementary setsgenerate the same feature alphabet, giving only 57 distinct feature alphabets.

3. Estimation methods 13zero o�setsfeatures 4 alphabets 8 alphabetsA, C, D, E, F, G, H, IV, K, L, M, N, P, Q, R, S, T, W, Y 0.104006 0.179209ADEGKNPQRSTV, CFHILMWY 0.976318 1.034ADEFGHIKLMNQRSTVY, CPW 0.892489 0.882162ACFGILMPSTVWY, DEHKNQR 1.52301 1.77172ACDEILMNPSTV, FGHKQRWY 3.18251ACDEGHNQSTWY, FIKLMPRV 3.41063ACGHIKLMNPQRSTV, DEFWY 3.32751AEFIKLMPQRSTVWY, CDGHN 2.96088Table 3.6: Feature alphabet set for the entire blocks database, found by the greedyalgorithm in Section 3.7. Note that the smaller the zero o�set, the greater the e�ect of thefeature alphabet on the estimated probabilities. Zero o�sets are given for the four-alphabetand the eight-alphabet regularizers.Table 3.6 gives an example of a feature alphabet produced by this algorithm, trained on theentire blocks database using position-speci�c weighting for the sequences. The zero o�sets have beenoptimized to minimize the average entropy for jsj = 1 and jsj = 2 (though the feature alphabetsthemselves were selected using just jsj = 1, as explained above). Note, it is not claimed that thesefeature alphabets are the best one can do, but they are better than any of the hand-created featuresets tried, and as good as the ones found by my earlier search programs.3.8 Dirichlet mixturesThe Dirichlet mixture method [BHK+93] has similarities to the pseudocount methods, but issomewhat more complex. They have been used quite successfully by several researchers [BHK+93,TAK94, HH95]. In Section 6, we'll see that Dirichlet mixtures are superior to all the other regularizersexamined, and that there is not much room for improvement to better regularizers.One way to view the posterior counts of Dirichlet mixtures is as a linear combination of pseudo-count regularizers, where the weights on the combination vary from one sample to another, but theunderlying regularizers are �xed. Each pseudocount regularizer is referred to as a component of themixture. The weights for the components are the product of two numbers|a prior weight qc calledthe mixture coe�cient and a weight that is proportional to the likelihood of the sample given thecomponent.Each pseudocount regularizer de�nes a Dirichlet density function (�1 through �k) on the possiblesamples, with �c characterized by the pseudocounts zc(i). Thus a 9-component Dirichlet mixturefor the amino acids will have 168 degrees of freedom: 9 pseudocount vectors with 20-componentseach and 9 mixture coe�cients (whose sum can be normalized to 1.0).We need to introduce some notation|the Gamma and Beta functions. The Gamma function isthe continuous generalization of the integer factorial function �(n + 1) = n! and the Beta functionis a generalization of the binomial coe�cients:B(a) = Qi �(a(i))�(Pi a(i)) :With this notation, we can de�neXs(i) X1�c�k qcB(zc + s)B(zc) (zc(i) + s(i)) ;where zc + s should be interpreted as the component-wise sum of the two vectors. The derivationof this formula using Bayesian statistics can be found in Appendices B and C.

14 4. Optimizing parameters of estimation methodsIt is tempting to combine the qc and B(zc) terms, since neither depends on s, but the B valuescan get quite large and quite small, and so it is useful to take the ratio of the two Bs, to keep thecoe�cients conveniently scaled. In any case, it is a good idea to compute and store logB ratherthan B, to avoid range problems with oating-point numbers.Because each of the pseudocount regularizers approaches the maximum-likelihood estimate asjsj ! 1, the Dirichlet mixture will also have the correct behavior in the limit. For jsj = 0, the Betafunctions cancel, and we have X0(i) X1�c�k qczc(i) ;which can easily be made to �t the background distribution.4 Optimizing parameters of estimation methodsOnce we have decided that the goal is to minimize the average encoding cost of the columns,and chosen a method to try, we can try to optimize the parameters of the method, using Newton'smethod or gradient descent to �nd parameter values at which all the �rst derivatives of the encodingcost are zero, and all the second derivatives are positive.We can compute the derivatives of the encoding cost Hk (as given in Equation 2.1) with respectto some parameter p fairly easily from Xs and its derivatives:@Hk@p = � log2 eT Xs Xi Ts(i)0@@Xs(i)@p =Xs(i) �Xj @Xs(j)@p =Xj Xs(j)1A@2Hk@p2 = � log2 eT Xs Xi Ts(i) @2Xs(i)@p2 Xs(i)�1 ��@Xs(i)@p =Xs(i)�2�Xj @2Xs(j)@p2 0B@Xj Xs(j))�1 +0@Xj @Xs(j)@p =Xj Xs(j)1A21CA1CAFor many of the methods, the second derivative of Xs is 0 for all the parameters, simplifying theoptimization further.Newton's method for optimizing the parameter vector v consists of iterating the assignmentv(i) v(i) � @Hk@v(i)@2Hk@v(i)2 :For most of the methods, if the second partial is negative, then the parameter is too large, andwe replace it by a smaller value, not using Newton's method. Some care needs to be taken indoing the iterations to make sure that the parameters stay within legal range. There are varioustechniques that can be tried for accelerating the convergence, such as multiplying the correctionterm by a constant that is less than one if the iterations seem to be oscillating, or greater than oneif the iterations seem to be approaching the optimum from one side. These tricks for acceleratingconvergence are beyond the scope of this tech report, but can be found in books on non-linearoptimization. None of the tricks are particularly robust, and the optimization problem to be solvedhere is often ill-conditioned, with many rather di�erent settings of the parameters giving very similarresults.Starting o� with good estimates of the parameters helps a lot. Zero o�sets were started at 0.05(so that they sum to 1.0 over the alphabet). Pseudocounts were started at the observed probabilitiesfor the individual amino acids in the entire data set. Substitution matrices were started with eachcolumn being the correct probabilities (from the summary Ts) for a sample consisting of the singleamino acid corresponding to the column number. Pseudocounts that were added to substitutionmatrices were initialized like other pseudocounts, but scaled to sum to 0.2 instead of 1.0.

5. Experimental method 15This optimization method works quite well with all the linear methods (zero-o�set, pseudocount,substitution matrix, feature alphabets), but the Dirichlet mixtures cause a problem: the partialderivatives are di�cult to compute for the zc(i) parameters (see Appendix A). A simpler approach,that seems to work at least as well, is to optimize the mixture coe�cients qc using the correctderivatives, but using approximate derivatives for the components of the mixture|pretending thatP (sj�c) is a constant independent of zc, but recomputing it when the zc values actually do change.One also needs good starting estimates for the components of the mixture. After trying severalmethods, I settled on using the same partitioning method as was used for �nding feature alphabets(Section 3.7). To add n components to an existing (possibly empty) set of components, I mergedfeatures together until the number of features had been reduced to n. A component was createdfor each feature by summing the summary frequencies for all samples in which all elements were inthe feature, and scaling (rather arbitrarily) so that the pseudocounts for the component added to20. This provided good starting points for the optimization, though the best results were obtainedby adding 1, 2, 3, : : :components and optimizing after each addition, rather than adding a lot ofcomponents at once.The optimized Dirichlet mixtures improve with increasing number of components fairly smoothly,though with diminishing returns, making the choice of number of components di�cult.5 Experimental methodTwo slightly di�erent methods were used for evaluating regularizers. Both involve computingthe average entropy of a multiple alignment given a regularizer (as in Equation 2.1). In one method,the parameters of the regularizer are adjusted using the same multiple alignment, while in the otherthe regularizer is trained on a di�erent multiple alignment.The �rst method gives us an estimate of how well we can do with the best tuned regularizer,while the second method gives us an estimate of how well the regularizer generalizes to other similarproblems.The multiple alignments chosen are the BLOCKS database [HH91]. The sequences are weightedusing a slight variant of the Heniko�s' position-speci�c weighting scheme [HH94], as implemented byKimmen Sj�olander. Sj�olander's weighting scheme is proportional to the Heniko�s' position-speci�cweights, but instead of having the weights sum to 1.0 for each block, they sum to the numberof sequences in the block, so that blocks with more sequences in them have more inuence thanblocks with only a few sequences. Other weighting schemes have been used by other researchers (forexample, tree distances [THG94] or weighting for pairs of alignments [ACL89]), and the position-speci�c one used here was chosen rather arbitrarily for its ease of computation.The experiments that used the same set for training and testing used the entire blocks database,but separate train-test sets were created as disjoint random subsets. The subsets were created puttingentire blocks randomly into one of the subsets, not by randomly assigning individual columns.6 Results for training and testing on full databaseThis section contains the average encoding costs obtained for di�erent sample sizes and di�erentregularizers. To simplify the presentation, the results for each class of regularizers will be presentedseparately. For each regularizer and sample size, the excess entropy is reported, that is, the di�erencebetween the average encoding cost per column using the regularizer and the average encoding costper column using the best theoretically possible optimizer. For the entire database, the best possibleencoding costs are reported in Table 2.1.The last row of each table reports the excess entropy if the full column Ft is given to theregularizer, rather than a sample s. Since the entropy for the column is minimized if the Xt(i)values exactly match the observed counts Ft(i), this measures how much the regularizer distorts thedata. Because some of the columns have few counts, it is not the same as letting jsj ! 1, but o�ersa more realistic idea of what can be expected with large sample sizes.

16 6. Results for training and testing on full databaseexcess entropyjsj z = 1 z = 0:04851 z = 0:05420 z = 0:052600 0.12527 0.12527 0.12527 0.125271 1.07961 0.20482 0.20677 0.205852 1.17080 0.18636 0.18457 0.184703 1.16489 0.16843 0.16587 0.166264 1.13144 0.15311 0.15063 0.151055 1.09164 0.14203 0.13989 0.14026full 0.84541 0.08013 0.08884 0.08653Table 6.1: Excess entropy for the zero-o�set regularizers applied to the full blocks database.The popular \add-one" regularizer is clearly a poor choice for this database.excess entropyoptimized for jsj =jsj 0 1 2 3 0,1,2,30 0.00000 0.01910 0.02848 0.03459 0.006101 0.14221 0.13384 0.13643 0.13925 0.136442 0.14499 0.13681 0.13455 0.13497 0.137203 0.13838 0.13127 0.12792 0.12757 0.130974 0.13006 0.12397 0.12060 0.12004 0.123505 0.12369 0.11845 0.11543 0.11484 0.11804full 0.07966 0.07913 0.08767 0.09129 0.08521Table 6.2: Excess entropy for pseudocount regularizers applied to the full blocks database.6.1 Zero-o�setFor the blocks database, the optimal zero o�set is approximately 0.05. When optimizing forjsj = 1, the optimum is 0.04851, for jsj = 2 the optimum is 0.05420, and for the average over allsamples of size 0, 1, 2, and 3, the optimum is 0.05260. Table 6.1 presents the excess entropy for eachof these three regularizers, as well as the popular \add-one" regularizer.6.2 PseudocountsThe pseudocounts were optimized for jsj = 0 through jsj = 3, both separately, and minimizingthe average entropy for all four sample sizes combined. The pseudocounts themselves are presentedin Table 3.1, and the excess entropy for each is given in Table 6.2. The pseudocount regularizersdo much better than the zero-o�set regularizers for jsj = 0 and jsj = 1, but already by jsj = 5, thedi�erence is only 0.025 bits per column.6.3 Gribskov average scoreFour di�erent score matrices were tested: the BLOSUM62 matrix (appropriately modi�ed torepresent lnP (i; j)=P0(j) for the BLOSUM62 data), the log-odds matrix lnP (i; j)=P0(j) for the testdata, a matrix optimized for jsj = 2, and one optimized for jsj = 0; 1; 2; 3. The excess entropies arepresented in Table 6.3.6.4 Substitution matricesFour di�erent substitution matrices were tested: the frequency matrix from which the BLO-SUM62 scoring matrix was derived, a frequency matrix computed from the weighted blocks database,a substitution matrix optimized for jsj = 2, and one optimized for jsj = 0; 1; 2; 3. Table 6.4 presentsthe excess entropies.

6. Results for training and testing on full database 17excess entropyblosum62 log-odds optimized for jsj =jsj 2 0,1,2,30 0.12527 0.12527 0.12527 0.125271 0.13294 0.00000 0.19046 0.084082 0.41066 0.13311 0.01694 0.031363 0.59404 0.27749 0.08442 0.128094 0.71962 0.38475 0.15471 0.212615 0.81315 0.46765 0.21601 0.28223full 1.37003 0.98464 0.65103 0.74889Table 6.3: Excess entropy for Gribskov average score regularizers applied to the full blocksdatabase. excess entropyblosum62 frequency optimized for jsj =jsj matrix 2 0,1,2,30 0.00369 0.00000 0.05348 0.052701 0.13294 0.00000 0.05723 0.036472 0.35455 0.08581 0.02495 0.027083 0.50493 0.17251 0.05577 0.067924 0.61172 0.24275 0.09300 0.110825 0.69341 0.30091 0.12933 0.15083full 1.20369 0.71452 0.44748 0.48373Table 6.4: Excess entropy for substitution matrix regularizers applied to the full blocksdatabase.The pure frequency matrix is optimal for jsj = 0 and jsj = 1, but degrades badly for largersamples, and is worse than pseudocounts for jsj = 3. The blosum62 matrix does not do well forany sample size greater than zero, probably because of the di�erence in weighting schemes used forbuilding the matrix and for testing.Optimizing the substitution matrix can preserve its superiority over pseudocounts up to jsj = 4,but the pseudocounts get closer to the optimum regularizer as the sample size increases, while thesubstitution matrices get farther from the optimum.6.5 Substitution matrices plus pseudocountsAdding pseudocounts, scaled counts, or both to the substitution matrices improves their perfor-mance signi�cantly. Table 6.5 presents the excess entropies for these regularizers. The full method,using scaled counts and pseudocounts as well as the substitution matrix, has the best results of anyof the methods tried so far.The matrix for the best of these substitution matrix methods is shown in Table 6.6. Note thatuse of scaled counts allows the diagonal of the substitution matrix to be negative without riskingnegative or zero posterior counts (as long as Mi;i > �1), but this matrix has no negative entries.6.6 Feature alphabetsThe feature alphabets used are shown in Table 3.6. Because the feature alphabet sets werecreated by adding a new alphabet to an existing feature alphabet set, the n-alphabet set is just the�rst n rows of the table. The zero-o�sets are given in the table for the 4-alphabet and 8-alphabetsets.

18 6. Results for training and testing on full databaseexcess entropysubst+pseudo subst+scaled subst+pseudo+scaledoptimized for jsj = optimized for jsj = optimized for jsj =jsj 2 0,1,2,3 2 0,1,2,3 2 0,1,2,30 0.02555 0.00012 1.00651 0.00099 0.43012 0.000001 0.02670 0.01080 0.01970 0.00734 0.02960 0.000802 0.02498 0.02595 0.02502 0.03105 0.02496 0.025093 0.04969 0.04743 0.04099 0.04823 0.04157 0.039754 0.07834 0.06937 0.05093 0.05753 0.05210 0.048495 0.10718 0.09152 0.05833 0.06407 0.05973 0.05548full 0.38692 0.32624 0.07968 0.07789 0.07492 0.09645Table 6.5: Excess entropy for substitution matrix regularizers with pseudocounts andpseudocounts plus scaled counts applied to the full blocks database.residue A C D E F G H I K LA 0.7173 0.0638 0.0782 0.1558 0.0433 0.1378 0.0450 0.0859 0.1374 0.0755C 0.0482 0.1955 0.0065 0.0078 0.0177 0.0098 0.0090 0.0279 0.0120 0.0203D 0.0408 0.0000 1.2001 0.3464 0.0093 0.0475 0.0542 0.0091 0.1001 0.0148E 0.0740 0.0000 0.3192 1.4279 0.0109 0.0293 0.0590 0.0231 0.2112 0.0278F 0.0283 0.0126 0.0144 0.0199 0.6603 0.0102 0.0399 0.0919 0.0244 0.1386G 0.1670 0.0126 0.0957 0.0766 0.0170 1.1503 0.0346 0.0182 0.0865 0.0173H 0.0194 0.0031 0.0406 0.0486 0.0253 0.0129 0.4316 0.0118 0.0599 0.0168I 0.0583 0.0196 0.0135 0.0399 0.1000 0.0079 0.0172 0.6955 0.0473 0.2905K 0.0618 0.0009 0.0852 0.2037 0.0166 0.0326 0.0640 0.0282 1.2676 0.0343L 0.0803 0.0166 0.0321 0.0645 0.2321 0.0117 0.0388 0.4441 0.0834 1.0022M 0.0326 0.0109 0.0108 0.0279 0.0546 0.0068 0.0152 0.1106 0.0335 0.1511N 0.0435 0.0092 0.1982 0.1090 0.0140 0.0555 0.1038 0.0232 0.1328 0.0180P 0.0611 0.0009 0.0426 0.0637 0.0175 0.0219 0.0256 0.0189 0.0624 0.0250Q 0.0498 0.0051 0.0673 0.2092 0.0121 0.0206 0.1006 0.0197 0.1906 0.0337R 0.0450 0.0048 0.0463 0.1057 0.0167 0.0265 0.0847 0.0240 0.4181 0.0383S 0.2358 0.0402 0.1147 0.1288 0.0323 0.0892 0.0650 0.0407 0.1292 0.0348T 0.1214 0.0318 0.0700 0.0991 0.0302 0.0353 0.0384 0.0869 0.1221 0.0614V 0.1464 0.0430 0.0260 0.0681 0.0845 0.0198 0.0197 0.5876 0.0733 0.2238W 0.0040 0.0019 0.0036 0.0074 0.0440 0.0033 0.0095 0.0093 0.0099 0.0171Y 0.0204 0.0092 0.0209 0.0269 0.2502 0.0084 0.1004 0.0359 0.0372 0.0448residue M N P Q R S T V W Y pseudocountsA 0.1040 0.0908 0.1239 0.1502 0.0784 0.2978 0.1729 0.1747 0.0154 0.0423 0.0296C 0.0277 0.0186 0.0071 0.0162 0.0120 0.0381 0.0357 0.0406 0.0109 0.0155 0.0089D 0.0173 0.2266 0.0457 0.1085 0.0438 0.0860 0.0562 0.0154 0.0069 0.0256 0.0197E 0.0372 0.1165 0.0610 0.3041 0.0920 0.0851 0.0706 0.0356 0.0114 0.0283 0.0219F 0.1030 0.0224 0.0204 0.0279 0.0207 0.0287 0.0292 0.0626 0.1249 0.3584 0.0164G 0.0295 0.1318 0.0518 0.0731 0.0541 0.1383 0.0613 0.0306 0.0155 0.0213 0.0314H 0.0209 0.0854 0.0214 0.1138 0.0606 0.0348 0.0249 0.0112 0.0179 0.0938 0.0092I 0.2345 0.0350 0.0271 0.0489 0.0321 0.0379 0.0881 0.4754 0.0213 0.0536 0.0233K 0.0467 0.1337 0.0555 0.2642 0.3582 0.0798 0.0836 0.0373 0.0158 0.0379 0.0207L 0.4788 0.0457 0.0490 0.1110 0.0721 0.0479 0.0884 0.2749 0.0717 0.1012 0.0344M 0.2250 0.0193 0.0158 0.0543 0.0246 0.0234 0.0396 0.0715 0.0199 0.0279 0.0091N 0.0308 0.7723 0.0338 0.1235 0.0775 0.1159 0.0877 0.0195 0.0162 0.0392 0.0157P 0.0285 0.0396 1.3621 0.0588 0.0408 0.0643 0.0446 0.0285 0.0069 0.0185 0.0165Q 0.0573 0.0901 0.0373 0.7495 0.1174 0.0623 0.0573 0.0259 0.0216 0.0281 0.0131R 0.0435 0.0917 0.0438 0.1919 0.9917 0.0668 0.0565 0.0276 0.0270 0.0372 0.0191S 0.0539 0.1876 0.0916 0.1369 0.0844 0.4823 0.2865 0.0524 0.0191 0.0465 0.0224T 0.0864 0.1252 0.0600 0.1147 0.0678 0.2594 0.5980 0.1256 0.0129 0.0376 0.0209V 0.1914 0.0377 0.0478 0.0721 0.0407 0.0581 0.1494 0.6894 0.0254 0.0580 0.0274W 0.0159 0.0084 0.0033 0.0141 0.0110 0.0061 0.0056 0.0082 0.9543 0.0611 0.0054Y 0.0397 0.0370 0.0159 0.0375 0.0300 0.0273 0.0240 0.0313 0.1278 0.8340 0.0128Table 6.6: Substitution matrix and pseudocounts for regularizer using substitution matrixplus scaled counts plus pseudocounts (trained on jsj = 0; 1; 2; 3).The feature alphabets have very few tuning parameters (one per alphabet), and so one wouldexpect them not to do well relative to the pseudocount methods (20 parameters) or the substitutionmatrices (400 parameters). The excess entropy reported in Table 6.7 show the feature alphabetsdoing surprisingly well for having so few parameters.The 8-alphabet set does quite well for the the samples sizes it was tuned for (jsj = 1; 2), butdegrades rather rapidly for larger sample sizes, doing worse than zero-o�sets by jsj = 4. The 4-alphabet and 5-alphabet sets do better than pseudocounts for jsj = 1; 2; 3, but, like the substitutionmatrix method, the feature alphabets continue to get further from the optimum regularizer as jsjincreases, while the pseudocount methods improve.The results for hand-created feature alphabet sets is presented in Table 6.8. On the whole, thesehand-created feature sets did not do as well as the automatically generated ones.Although the tiny number of parameters for the feature alphabets makes them aestheticallyappealing, their performance is not good enough to justify the e�ort of implementing them. Perhaps

6. Results for training and testing on full database 19excess entropy for n alphabetsjsj 1 2 3 4 5 6 7 80 0.12527 0.12527 0.12527 0.12527 0.12527 0.12527 0.12527 0.125271 0.20207 0.14679 0.12551 0.10224 0.09088 0.08432 0.07842 0.071382 0.19704 0.13503 0.11754 0.09424 0.08240 0.07554 0.07132 0.065063 0.19054 0.13383 0.12353 0.11017 0.10720 0.10868 0.11143 0.112684 0.18429 0.13401 0.12991 0.12637 0.13261 0.14280 0.15241 0.161275 0.18040 0.13591 0.13682 0.14165 0.15600 0.17392 0.18952 0.20512full 0.16902 0.14783 0.17308 0.21292 0.26574 0.32444 0.37478 0.43235Table 6.7: Excess entropy for feature alphabet regularizers optimized for jsj = 1; 2, appliedto the full blocks database. excess entropyjsj Smith Taylor-4 Taylor-10 Taylor Taylor-580 0.12527 0.12527 0.12527 0.12527 0.125271 0.12893 0.17180 0.10069 0.11627 0.110192 0.10643 0.14352 0.08221 0.09621 0.086963 0.13251 0.15269 0.13456 0.13175 0.141944 0.16284 0.16989 0.19322 0.17321 0.210095 0.19128 0.18937 0.24832 0.21299 0.27880full 0.29335 0.29341 0.59231 0.44537 1.14868Table 6.8: Excess entropy for hand-generated feature alphabet regularizers optimized forjsj = 1; 2, applied to the full blocks database. The �rst three alphabet sets are presentedin Tables 3.3 through 3.5. The \Taylor" column contains an 11-alphabet set consisting ofthe fundamental sets in [Tay86], and the \Taylor-58" contains an alphabet for each featureset in [Tay86, Figure 5].a di�erent feature-based approach could work better.6.7 Dirichlet mixturesDirichlet mixtures are clearly the luxury choice among regularizers. The need for computingGamma functions in order to evaluate the regularizer makes them much more expensive to use thanany of the other regularizers reviewed here. However, the excess entropy results in Tables 6.9 and6.10 show that the mixtures do perform better than any other regularizer test, and may well beworth the extra computational cost in creating a pro�le or hidden Markov model.The regularizers in the table (except for the 9-component one) were created by adding a singlecomponent to an initially empty mixture or by adding components to a previously created mixture,optimizing after each addition for jsj = 1; 2. The components were added using the greedy strategydescribed in Section 3.8. The 1-component mixture is just a set of pseudocounts, and so performsalmost identically to the pseudocounts optimized for jsj = 1 or jsj = 2.The 9-component mixture was provided by Kimmen Sj�olander, and was optimized for a di�erentfunction on the blocks database with all sequence weights equal. The optimization was to providethe best Bayesian prior for the set of observed count vectors [BHK+93]. Sj�olander's 9-componentmixture is the best we have for jsj = 5, but it does fairly poorly for jsj = 0; 1; 2.The overall best regularizer is the 21-component Dirichlet mixture, which gets within 0.027 bitsof the best possible regularizer for sample sizes up to 5, and probably never takes more than 0.09bits more than the optimum regularizer.

20 7. Results for separate training and testingexcess entropy for n components1 3 4 6 7 9 10 10jsj 1 1+2 1+3 1+2+3 1+2+4 9 1+2+3+4 1+3+60 0.02230 0.02488 0.03134 0.02516 0.02694 0.06123 0.02385 0.017741 0.13437 0.05235 0.04026 0.02336 0.01972 0.05336 0.01115 0.006612 0.13524 0.07353 0.05311 0.03275 0.02678 0.02402 0.02290 0.016103 0.12930 0.08302 0.05933 0.03960 0.03301 0.01970 0.03127 0.025204 0.12206 0.08657 0.06200 0.04367 0.03715 0.02083 0.03620 0.031055 0.11676 0.08886 0.06455 0.04762 0.04119 0.02455 0.04066 0.03624full 0.08308 0.07986 0.08234 0.08365 0.08837 0.10274 0.08607 0.08992Table 6.9: Excess entropy for small Dirichlet mixtures regularizers optimized for jsj = 1; 2,applied to the full blocks database. The mixtures were built by adding new componentsto a previous mixture, except for for the nine-component mixture, which was provided byKimmen Sj�olander. excess entropy for n components15 15 20 21 28 31 35jsj 1+2+3+4+5 1+2+4+8 1+3+6+10 1+2+3+4+5+6 1+2+3+4+5+6+7 1+2+4+8+16 1+3+6+10+150 0.01989 0.01040 0.01111 0.00883 0.00832 0.00786 0.008121 0.00192 0.00227 0.00169 0.00115 0.00470 0.00198 0.005782 0.01137 0.01002 0.01003 0.00757 0.01750 0.00764 0.021003 0.01987 0.01958 0.01957 0.01471 0.02740 0.01776 0.038634 0.02608 0.02613 0.02653 0.02051 0.03380 0.02479 0.049035 0.03186 0.03199 0.03286 0.02636 0.03943 0.03092 0.05650full 0.08603 0.09155 0.08715 0.08589 0.09357 0.09474 0.10174Table 6.10: Excess entropy for larger Dirichlet mixtures regularizers optimized for jsj = 1; 2,applied to the full blocks database. The mixtures were built by adding new components to aprevious mixture, with the history of the additions shown in the name. The 21-componentmixture 1+2+3+4+5+6 is the best overall regularizer for the BLOCKS database.7 Results for separate training and testingTo make sure that the results in Section 6 were not training on noise in the data, but were pickingup phenomena that should generalize, regularizers were created using the same methods on a subsetof the data, and tested on a disjoint subset.The blocks database was divided into three disjoint sets, with about 10% of the blocks in set 10a,10% in 10b, and the remaining 80% in 80c. Regularizers were created separately for each of the 3sets, and tested on the other two. The ordering of the methods produced by these tests was almostidentical to the ordering produced by the self-test presented in Section 6. This separate train-testevaluation lends some extra con�dence to the comparative evaluation of the regularizers, but littlenew information, and so will not be presented in detail here.8 Conclusions and future researchFor applications that can a�ord the computing cost of the Dirichlet mixture regularizers, theyare clearly the best choice. In fact they are so close to the theoretical optimum for regularizers, thatthere doesn't seem to be much point in looking for better regularizers. The evaluations of regularizersfor searches in biological contexts have also found Dirichlet mixtures to be superior [TAK94, HH95],validating the more information-theoretic approach taken here.Although most applications (such as training hidden Markov models or building pro�les frommultiple alignments) do not require frequent evaluation of regularizers, there are some applications

References 21(such as Gibbs sampling) that require recomputing the regularizers inside an inner loop. For theseapplications, the substitution matrix plus pseudocounts plus scaled counts is probably the bestchoice, as it has only about 0.03 bits more excess entropy than the Dirichlet mixtures, but does notrequire evaluating Gamma functions.For applications in which there is little data to train a regularizer, the pseudocounts are probablythe best choice, as they perform reasonably well with few parameters. If you have enough data totrain a substitution matrix technique, then you should have enough data to train a Dirichlet mixture,as they have comparable numbers of parameters.One weakness of the empirical analysis done in this report is that all the data was taken fromthe BLOCKS database, which contains only highly conserved blocks. While this leads us to havehigh con�dence in the alignment, it also means that the regularizers do not have to do much work.The appropriate regularizers for more variable columns may look somewhat di�erent, though onewould expect the pseudocount and substitution matrix methods to degrade more than the Dirichletmixtures, which naturally handle high variability. I plan to build regularizers for the HSSP structuralalignments [SS91] to check that Dirichlet mixtures are the most e�ective in that application as well.To get signi�cantly better performance than a Dirichlet mixture regularizer, we have to stepaway from using a pure regularizer that only knows about the sample of amino acids seen in thecontext. There are at least two ways to do this. One uses other information about the column(such as solvent accessibility or secondary structure) and the other uses other information about thesequence (such as a phylogenetic tree relating it to other sequences).Using extra information about a column could improve the performance of a regularizer up tothe \full" row shown in Table 2.1, but no more, since that entropy reects the best we could do ifthe extra information uniquely identi�ed the column. There is about 0.6 bits that could be gainedby using such information (relative to a sample size of 5), far more than di�erence between the bestregularizer and a crude zero-o�set regularizer.One possible way to use such column information would be to classify each column with one ofa small number of labels, and to tune a di�erent regularizer for each label. For this application,pseudocount regularizers are probably most appropriate, both because the labeling will reduce thesize of the training set, and because a good labeling should provide fairly pure distributions thatshouldn't need the ability of Dirichlet mixtures to match a variety of di�erent distributions. I planto pursue creating such a collection of regularizers in spring and summer 1995.Using sequence-speci�c information may yield even larger gains than using column-speci�c in-formation. Preliminary investigations at UCSC indicate that there may be a full bit per columnto be gained by taking into account phylogenetic tree relationships among sequences in a multiplealignment. Even if phylogenetic tree data is not available, sequence distance information may beuseful.Another way to use sequence-speci�c information is to use modi�ed regularizers for residuesthat are in contact, adjusting the probabilities for one amino acid based on what is present in thecontacting position. I hope to work on this approach in summer 1995 as well.AcknowledgementsI'd like to thank Leslie Grate, who wrote an early version of the program used to test regularizers;Kimmen Sj�olander for providing the 9-component Dirichlet mixture; Michael Brown for providing animplementation of the Dirichlet mixture regularizer (later replaced with a more e�cient implemen-tation); the Heniko�s for providing the BLOCKS database, pre-publication drafts of their papers,and comments on early drafts of this paper; and everyone in the computational biology group atUCSC.References[ACL89] Stephen F. Altschul, Raymond J. Carroll, and David J. Lipman. Weights for data relatedby a tree. JMB, 207:647{653, 1989.

22 References[Alt91] Stephen F. Altschul. Amino acid substitution matrices from an information theoreticperspective. JMB, 219:555{565, 1991.[BCHM94] P. Baldi, Y. Chauvin, T. Hunkapillar, and M. McClure. Hidden Markov models ofbiological primary sequence information. PNAS, 91:1059{1063, 1994.[BHK+93] M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sj�olander, and D. Haussler. UsingDirichletmixture priors to derive hiddenMarkovmodels for protein families. In L. Hunter,D. Searls, and J. Shavlik, editors, ISMB-93, pages 47{55, Menlo Park, CA, July 1993.AAAI/MIT Press.[Cla94] Jean-Michael Claverie. Some useful statistical properties of position-weight matrices.Computers and Chemistry, 18(3):287{294, 1994.[DSO78] M. O. Dayho�, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change inproteins. In Atlas of Protein Sequence and Structure, chapter 22, pages 345{358. NationalBiomedical Research Foundation, Washington, D. C., 1978.[GME87] Michael Gribskov, Andrew D. McLachlan, and David Eisenberg. Pro�le analysis: Detec-tion of distantly related proteins. PNAS, 84:4355{4358, July 1987.[GR65] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. AcademicPress, fourth edition, 1965.[HH91] Steven Heniko� and JorjaG. Heniko�. Automated assembly of protein blocks for databasesearching. NAR, 19(23):6565{6572, 1991.[HH92] Steven Heniko� and Jorja G. Heniko�. Amino acid substitution matrices from proteinblocks. PNAS, 89:10915{10919, November 1992.[HH94] Steven Heniko� and Jorja G. Heniko�. Position-based sequence weights. JMB,243(4):574{578, November 1994.[HH95] Steven Heniko� and Jorja G. Heniko�. Personal communication, January 1995.[Hig92] DesmondG.Higgins. Sequence ordinations: amultivariate analysis approach to analysinglarge sequence data sets. CABIOS, 8(1):15{22, 1992.[JTT92] David T. Jones, William R. Taylor, and Janet M. Thornton. The rapid generation ofmutation data matrices from protein sequences. CABIOS, 8(3):275{282, 1992.[KBM+94] A. Krogh, M. Brown, I. S. Mian, K. Sj�olander, and D. Haussler. Hidden Markovmodels incomputationalbiology: Applications to proteinmodeling. JMB, 235:1501{1531,February1994.[LAB+93] C. E. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. Detectingsubtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science,262:208{214, 1993.[Mil93] Aleksandar Milosavljevi�c. Discovering sequence similarity by the algorithmic signi�cancemethod. In ISMB-93, pages 284{291, Menlo Park, 1993.[SS90] Randall F. Smith and Temple F. Smith. Automatic generation of primary sequencepatterns form sets of related protein sequences. PNAS, 87:118{122, January 1990.[SS91] C. Sander and R. Schneider. Database of homology-derived protein structures and thestructural meaning of sequence alignment. Proteins, 9(1):56{68, 1991.[TAK94] Roman L. Tatusov, Stephen F. Altschul, and Eugen V. Koonin. Detection of conservedsegments in proteins: Iterative scanning of sequence databases with alignment blocks.PNAS, 91:12091{12095, December 1994.[Tay86] William Ramsay Taylor. The classi�cation of amino acid conservation. Journal ofTheoretical Biology, 119:205{218, 1986.[THG94] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. Improved sensitivity ofpro�le searches through the use of sequence weights and gap excision. CABIOS, 10(1):19{29, 1994.[TJ93] WilliamR. Taylor and David T. Jones. Deriving an amino acid distance matrix. Journalof Theoretical Biology, 164:65{83, 1993.

A. Partial derivatives for Dirichlet mixtures 23A Partial derivatives for Dirichlet mixturesThe derivative of the Beta function is@B(zc)@zc(i) = B(zc)��0(zc(i))�(zc(i)) � �0(jzcj))�(jzcj) � :If we introduce the variable R to be the expression��0(zc(n) + s(n))�(zc(n) + s(n)) � �0(jzc + sj)�(jzc + sj) � �0(zc(n))�(zc(n)) + �0(jzcj)�(jzcj) � ;then the derivative of Xs(i) is@Xs(i)@zc(n) = qcB(zc + s)B(zc) ((zc(i) + s(i))R + �(i� n)) ;where �(i � n) is 1 if i = n and 0 otherwise.Using Stirling's approximation�(x+ 1) � p2�x(x=e)x(1 + 1=12x�1 + O(x�2))lets us approximate the derivative of ln �(x)�0(x)�(x) � �12x + lnx� 112x2 + x :Since Stirling's approximation is not good for small x, we may have to use�(x) = �(x+ n+ 1)x(x+ 1)(x+ 2) � � � (x+ n)to move the value of the argument up into a region where the approximation is adequate:�0(x)�(x) � �1x � 1x+ 1 � 1x+ 2 � � � � � 1x+ n� 1 � 12(x+ n) + ln(x+ n)� 112(x+ n)2 + x+ n :Second partial derivatives are easily computed from the �rst partials.B Bayesian interpretation of pseudocount regularizersWe can use Bayesian probability techniques to interpret the pseudocount regularizers. To applythese methods we have to view amino acids as being generated by a two-stage random process. First,a 20-dimensional density vector � over the amino acids is chosen randomly, then amino acids arechosen randomly with probabilities P (i) = �(i). The probability of amino acid i given a sample s isthe integral over all possible vectors � of the probability of choosing that vector times the probabilityof choosing i given that vector: Ps(i) = P (ijs) = Z P (�js)�(i) d� :Computing the probability P (�js) requires applying Bayes' rule:P (�js) = P (�; s)=P (s) = P (sj�)P (�)=P (s) ;giving us a new formula for the probability of amino acid i:Ps(i) = 1P (s) Z �(i)P (sj�)P (�) d� :

24 B. Bayesian interpretation of pseudocount regularizersThe probability P (sj�) is easily computed for any density vector �, but we need to know theprior distribution of � in order to compute the integral. The computation for P (sj�) is the same asin Section 2.1: P (sj�) = jsj!Yj �(j)s(j)s(j)! :There is an obvious generalization to non-integer s(j) values by replacing the factorial function withthe equivalent expression using the Gamma function:P (sj�) = �(jsj+ 1)Yj �(j)s(j)�(s(j) + 1) :In order to compute the integral, we must choose a model for the the prior distribution of �. Onechoice that allows us to compute the integral is to model the prior as a Dirichlet distribution, thatis P̂ (�) =Yj �(j)z(j)�1=C ;for some parameter vector z, where C is a constant chosen so that R P̂ (�) d� = 1.Showing in detail how to compute the integral is beyond the scope of this paper, but the answercan be derived from the standard de�nition of the Beta function [GR65, p. 948]B(x; y) = Z 10 tx�1(1� t)y�1 dt= �(x)�(y)�(x+ y)and the combining formula [GR65, p. 285]:Z b0 tx�1(b � t)y�1 dt = bx+y�1B(x; y) :By writing the integral over all � vectors as a multiple integral over the 20 dimensions of thevector and doing some rearrangement, we can get the solutionC = Z Yj �(j)z(j)�1 d�= B(z(1); z(2) + � � �+ z(20))B(z(2); z(3) + � � �+ z(20)) � � �B(z(19); z(20)= Qj �(z(j))�(jzj)= B(z) ;where we have introduced the B(z) notation as an simple generalization of B(x; y) to the vectorargument z.With this choice of prior distribution for �, we can computeP̂ (�; s) = P (sj�)P̂ (�)= �(jsj+ 1)C Yj �(j)s(j)+z(j)�1�(s(j) + 1)= �(jsj+ 1j)�(jzj)Qj �(j)s(j)+z(j)�1Qj �(s(j) + 1)�(z(j)) :

B. Bayesian interpretation of pseudocount regularizers 25We can now compute the estimated probability of the sampleP̂ (s) = Z P̂ (�; s) d�= Z P (sj�)P̂ (�) d�= �(jsj+ 1j)�(jzj)Qj �(s(j) + 1)�(z(j)) Z Yj �(j)s(j)+z(j)�1 d�= �(jsj+ 1j)�(jzj)Qj �(s(j) + 1)�(z(j))Qj �(z(j) + s(j))�(jz + sj)= �(jsj+ 1j)�(jzj)�(jz + sj) Yj �(z(j) + s(j))�(s(j) + 1)�(z(j))= �(jsj+ 1j)Qj �(s(j) + 1) B(z + s)B(z) :The integral for estimating the conditional probability of amino acid i given sample s is thenP̂s(i) = P̂ (ijs)= P̂ (i; s)=P̂ (s)= 1P̂ (s) Z P̂ (i; s; �) d�= 1P̂ (s) Z �(i)P (sj�)P̂ (�) d�= B(z)Qj �(s(j) + 1)B(z + s)�(jsj+ 1j) �(jsj+ 1j)B(z)Qj �(s(j) + 1) Z �(i)Yj �(j)s(j)+z(j)�1 d�= B(z + s + �i)B(z + s)= �(jz + sj)Qj �(z(j) + s(j))Qj �(z(j) + s(j) + �i;j)�(jz + sj + 1)= z(i) + s(i)jz + sj :Notation: �i is used above to mean the vector consisting of a one in the ith position and a zeroelsewhere. �i;j is one if i = j and zero otherwise.This rather involved computation �nally ends up with the pseudocount method for estimatingthe probability of an amino acid given a sample of amino acids. The regularizer parameters z canbe interpreted as assuming a Dirichlet distribution for the prior probabilities P (�). Previous workwith pseudocounts has relied heavily on this Bayesian interpretation of the parameters, going so faras to assign z(i) = �P0(i), which does indeed provide the optimal estimates for P̂0(i), but which wehave seen in Section 3.2 is not the best setting of the parameters for jsj > 0.The posterior distribution of � after seeing a sample s is P̂ (�js) = P (sj�)P̂ (�)=P̂ (s). As we cansee from the above computations, this posterior distribution is again a Dirichlet distribution, withparameters s(j) + z(j), instead of the prior distribution's parameters z(j). This interpretation ofXs(j) as the parameters of the posterior distribution is what inspired naming them the posteriorcounts. The scaling of Xs does matter for this interpretation, and so not all the posterior countsproduced by regularizers can be automatically interpreted as Dirichlet posterior distributions on �.We can extend the Bayesian analysis to compute the posterior distribution of � given that we haveseen several independent samples: P̂ (�js1; s2; : : : ; sn). The computation is fairly straightforward.First we apply Bayes rule:

26 C. Bayesian interpretation of Dirichlet mixture regularizersP̂ (�js1; s2; : : : ; sn) = P̂ (�; s1; s2; : : : ; sn)=P̂ (s1; s2; : : : ; sn)= P̂ (�)P (s1; s2; : : : ; snj�)=P̂ (s1; s2; : : : ; sn)= P̂ (�) Y1�k�n P (skj�)P̂ (sk) ! :Repeating the mathematics for a single sample would be tedious, but we can take a shortcut.Since the posterior distribution after seeing a sample is again a Dirichlet distribution, we can treatit as the prior distribution for adding the next sample. Using this trick, we can see that the�nal posterior distribution after seeing all n samples is a Dirichlet distribution with parametersz(i) + s1(i) + � � � + sn(i). In other words, we get the same result from observing n independentsamples as we would get from adding all the samples together and using the resulting counts as asingle sample.C Bayesian interpretation of Dirichlet mixture regularizersThe Dirichlet mixture regularizers can also be interpreted using Bayes rule, in a manner verysimilar to that used for interpreting pseudocounts. The main di�erence comes in how we model theprior distribution of �. A mixture distribution consists of a number of component distributions. Wecan regard the process as adding one more step to the random selection|�rst we select a component,then a density vector � from the component, and �nally amino acids from the density.If we use the letter c to designate a component, we can write a mixture distribution asP̂ (�) =Xc P̂ (�jc)P̂ (c)Simple application of Bayes' rule to the de�nition of P̂ (s) gives usP̂ (s) = Z P (s; �) d�= Z P (sj�)P̂ (�) d�= Xc P̂ (c) Z P (sj�)P̂ (�jc) d� :If each component of the mixture is modeled as a Dirichlet distribution, we get a Dirichlet mixturedistribution: P̂ (�) =Xc qcB(zc)Yj �(j)z(j)c�1 ;where the mixture coe�cients qc must sum to one (qc = P̂ (c)).Using our general formulas for mixture distributions, we haveP̂ (�; s) = Xc qcP (sj�)P̂ (�jc)= �(jsj+ 1j)Qj �(s(j) + 1)Xc qcB(zc)Yj �(j)s(j)+zc(j)�1P̂ (s) = Z P̂ (�; s) d�= �(jsj+ 1)Qj �(s(j) + 1)Xc qcB(zc + s)B(zc)

C. Bayesian interpretation of Dirichlet mixture regularizers 27P̂s(i) = Z P (ij�)P (�js) d�= 1P̂ (s)Xc qc Z P (ij�)P (sj�)P̂ (�jc) d�= 1P̂ (s)Xc qc �(jsj+ 1)Qj �(s(j) + 1) B(zc + s + �i)B(zc)= Pc qcB(zc+s+�i)B(zc)Pc qcB(zc+s)B(zc)= Pc qc zc(i)+s(i)jzc+sj B(zc+s)B(zc)Pc qcB(zc+s)B(zc) :Unfortunately, unlike the single Dirichlet case, the summations preclude easy cancellation of the� or Beta functions.The posterior distribution for � is a Dirichlet mixture with components zc + s, but the mixturecoe�cients change in a rather complex way. The posterior mixture coe�cient for the zd + scomponent is qdB(zd + s)B(zd) 1Pc qc B(zc+s)B(zc) :Note that if we just need a set of posterior counts without interpreting them as a posteriorDirichlet mixture distribution (say for computing scores in a pro�le or hidden Markov model), wecan eliminate the scaling factors, gettingXs(i) X1�c�k qcB(zc + s)B(zc) (zc(i) + s(i)) ;exactly as used in Section 3.8. The normalization of the counts to make estimated probabilitiestakes care of whatever scaling we need.Because the posterior distribution is again a mixture of Dirichlet distributions, we can combinemultiple observations in the same way as we do for pseudocounts. The e�ect is again identical toadding all the observation vectors together, and using the single combined observation vector fors. This is the correct posterior distribution if we assume that one � was chosen, and all sampleswere taken from that �. The more interesting assumption is that a separate � is chosen from theprior distribution for each sample. With this assumption, the posterior distribution given n sampless1; : : : ; sn and an m-component Dirichlet mixture prior is an mn-component Dirichlet mixture, withcomponents zc + sj and mixture coe�cientsqcB(zc + sj)CB(zc) ;where C is the appropriate normalizing constant so that the mixture coe�cients sum to one.

