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ABSTRACT

This paper presents two new algorithms for doing mapping from multi-level logic to field-
programmable gate arrays. One algorithm, Xmap, is for mapping to table-lookup gates (for
example, the Xilinx chip); the other, Amap, is for mapping to selector-based architectures
(for example, the Actel chip). Mapping to the Actel architecture can also be achieved by
mapping to 3-input tables, and replacing them with cquivalent Actel cells (XAmap).

The algorithms are based on an il-then-else DAG representation of the functions. The
technology mappers differ from previous mappers in that the circuit is not decomposed into
fan-out-free trees.

The gate counts and CPU time are compared with three previous mappers for these
architectures: misll, Chortle, and mis-pga. The Xmap algorithm for table-lookup architec-
tures gets 7% fewer cells than Chortle, 11% fewer than misll, and 14% fewer than mis-pga,
and is 4.5 times faster than Chortle, 17 times faster than mislI, and at least 150 times faster
than mis-pga. The Amap algorithm for Actel cells use 6% fewer cells than misll and about
8% more cells than the best achieved by mis-pga, and is at least 25 times as fast as misll
and at least 586 times as fast as mis-pga.

Keywords: Xilinx, Actel, logic minimization, Xmap, Amap, XAmap, if-then-else DAG,
table-lookup gates
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1 Why a new technology mapper?

Previous generations of logic minimization tools have generally used technology mappers that
work by choosing out of a library of available cells [GBJdH86,Keu87,DGR*87,BJ88]. Field-
programmable gate arrays, such as those made by Xilinx and Actel, do not use a library of dif-
ferent cell types, but use an array of identical cells, cach of whichy can be used quite flexibly. The
cell-library-based mappers do not work particularly well when ma.pj)ing to such flexible cells, and so
dummy cell libraries are usually created, where each library entry is one of the many ways of using
the basic cells of the gate array. The cell-library approach allows existing technology mappers to
be used, but does not scale well as the size of the basic cells increases, because the library tends to
grow exponentially with the size of the basic cell. ‘

At the 1990 Design Automation Conference, two papers were presented on new technology
mappers for programmable gate arrays: Chortle and mis-pga [FRC90,MNST90]. These techniques
avoid the need for a cell library, but are still based on decomposing the circuit into fan-out-free trees
before mapping. That is, the DAG is decomposed into a number of trees, each of which has only
one output. Any node which has fan-out greater than one in the original DAG will be the root of

one of these trees. Even if the trees are optimally mapped, the decomposition may be worse than a
non-optimal mapping of the original pag.
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Because the problem is relatively new, there are many different approaches being tried, and
considerable improvement is still possible. The approach taken in this paper is to build quick-and-
dirty technology mappers that get good results without rearranging the circuit. The intent is to
have a technology mapper that is fast enough to be included in an iterative improvement loop for a
higher-level logic minimization algorithm.

Two new algorithms are presented in this paper: one for mapping to table-lookup-based gate
arrays, such as Xilinx, and one for mapping to selector-based gate arrays, such as Actel. Both
algorithms handle only combinational logic.

The Xmap algorithm is much faster than Chortle or mis-pga, and the results are better. The
results on Actel arrays are mixed—Amap and XAmap are very much faster, but not quite as effective
as mis-pga.

2 Conversion from BLIF to If-then-else DAGs

The data structure used to represent the circuits is a multiply-rooted if-then-else directed acyclic
graph [Kar89]. Each root corresponds to a primary output of the circuit, and each leaf to a primary
input. Intermediate nodes can be thought of as 2-to-1 selectors, with the control input connected
to the node on the if-branch, and the “1” and “0” inputs connected to the then- and else-branches.
The connections between the selectors can be either wires or inverters—the polarity of a function is
stored as a label on the edge pointing to the DAG node, rather than using extra nodes for inversion.

In order to compare the new mapping algorithms fairly with existing mappers, they have been
run on the output of the mislI logic minimizer [BRSW87], which is in Berkeley Logic Interchange
Format (BLIF). Because BLIF represents a circuit as a network of sum-of-products representations,
rather than as an if-then-else DAG, a conversion needs to be made.

Building an if-then-else DAG from a network of gates is easy if each gate is described as an il-
then-else DAG—we simply glue together the gate functions to build the DAG for the entire circuit.
The only tricky part is converting the sum-of-products descriptions of the gates into if-then-else
DAGs. We liave several choices:

o Build a canonical DAG for the function expressed by the gate. For gates of the form ab + ¢d +

ef + gh+ .-, the wrong variable ordering can cause an exponential blowup in size.

o Preserve the original and-or structure of the sum-of-products expression. This is guaranteed
not to be exponentially large, but is much larger than it needs to be.

e Build a partially factored expression for the gate.

The conversion technique used was described at the 1989 Caltech conference [Kar89]. The terms
of the sum-of-products expression are collected in a set T'. Then the variables are sorted in decreasing
order of the frequency with which they occur in the terms. Next, a recursive [unction is applied to
T to get an if-then-else DAG E. The terms of T are sorted, grouping together those that don’t use
the first input variable (Ty), those that use v} (75), and those that use v; (T}). We then strip the
first variable off the terms in each group, and apply the routine recursively to get expressions Eq,
Ey, and E;. We build the expression £ as (if £4 then TRUE else (if v then E) else Ejp)).

This algorithm is similar to the popular method of factoring out one-literal cubes, and produces
expressions that are often significantly smaller than either the canonical form or the straight sum-
of-products form. A similar technique is used to create binary decision diagrams in mis-pga, but

binary decision diagrams cannot represent the separation of Eg from Eq and E1, and so much of the
factorization is lost.

One major difference between the new mappers and Chortle or mis-pga is that the new mappers
make essentially no changes to the DAG that represents the circuit to be implemented. The logic
blocks found by the new mappers are possibly overlapping sub-DaGs of the DAG for the entire
circuit. This fidelity to the original circuit representation is not inherently a virtue, but it does

make the mapping very quick. It also makes the mappers somewhat sensitive to the way in which
the conversion to a DAG is done.
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3 Mapping to table-lookup logic blocks

One popular approach for programmable gate arrays is to provide logic blocks that can implement
_any Boolean function of up to f variables. The logic blocks are easily implemented as a 2/-bit ROM
or RAM for the truth table and a selector controlled by the f inputs. Typically, the fan-in limit f
1s around 4 or 5.

Larger blocks take significantly more space for the truth tables, but fewer of them are needed,
and expensive routing resources are saved. Based on the benchmark results for both Xmap and
Chortle, it appears that 15-18% fewer blocks are needed if they are 5-input blocks rather than
4-input blocks. A technique for deciding on a good block size is presented in Section 6.2.

Because blocks are often used with fewer than the maximum number of inputs, Xilinx allows
their blocks to be split into two (f — 1)-input functions, as long as the total number of inputs to
the block is still no more than f. The truth table storage space remains the same, and the selector
circuitry is only slightly more complex. Early versions of the Xilinx chip used blocks with four inputs
that could be split into two three-input {functions. More recent chips use five-input blocks that can
be split into two four-input funciions.

The algorithm for mapping to logic blocks works in three passes. On the first pass, some nodes
are marked as being outputs from logic blocks, and a set of f or fewer marked nodes is stored as
gate inputs for each node. Note that {or any function g, both g and =g are represented by the same
node, and so no polarity choices have been made yet. On the second pass, polarities are chosen for
each marked node, and the function of its gate is determined—the stored set of gate inputs may be
used, or a new set chosen if a smaller one is found. The final pass looks for functions that don’t use
all f inputs and tries to share logic blocks.

3.1 Xmap algorithm—Marking pass

The marking pass can be thought of as a bottom-up lazy marker. A traversal of the DAG is done,
making sure that nodes are visited only after all their inputs have been visited. Nodes that are
principal inputs or outputs of the circuit are always marked, but other nodes are not unless forced
to by some ancestor.

For each node we keep track of the fan-in set: a set of marked nodes used to represent the
function of that node. If the node is a primary input, then the set contains the node itself, otherwise
it contains the signals we would need to use as inputs to a logic block that could compute the
function. When we decide Lo mark a node, we save the fan-in set as the gate inputs, and change
the fan-in set to be the singleton containing just the node. Note that the marking phase pays no
attention to what the function is—only to the variables needed to "'(:ompute 1t.

The fan-in set for a node can be computed as the union of the fan-in sets of the children of the
node, as long as that union is no more than the fan-in limit for logic blocks. Let’s call a node whose
fan-in set is larger than the allowable fan-in an overflow node.

When we reach an overflow node in the postorder traversal, we have to reduce the fan-in by
marking one or more of its descendants, thus hiding the nodes below that descendant. Note that we
only have to examine descendants down to the nodes in the fan-in set—a fairly small piece of the
DAG.

The fan-in reduction for overflow nodes is done in two stages. The first stage attempts to reduce
the fan-in by marking only nodes with high fan-out in the if-then-else paG. This heuristic is called
repeatedly until the fan-in is reduced to f or less, or no progress is made. If the fan-in limit is still
not met, the children of the node are marked one at a time until the fan-in limit is met. Because
each if-then-else triple has at most three children, eventually the fan-in limit will be met for f > 3.

To extend the algorithm to f = 2, we first preprocess the entire DAG, replacing all three-input
if-then-else triples (if @ then b else c) with either ab + a’c or (a + ¢)(a’ + b). This guarantees that
each node has at most two children, not counting TRUE and FALSE, and so marking will eventually
reduce the fan-in to two.
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Conversion to two-input gates could be done belore calling Xmap for higher fan-in blocks as well.
Doing so has mixed results: the number ol blocks before merging reduces by about 0.3%, but the
number of blocks after merging increases by about 2.3%. The initial reduction probably results from
some additional sharing of the new triples generated. The results in Section 5 use the conversion to
two-input gates only for f = 2.

The quality of the mapping algorithm depends heavily on the details of the heuristics used to
choose which nodes to mark.

For the heuristic that marks large fan-out nodes, we use a recursive procedure, reduce_fan-
in{n, h), applied to the node n.

1. We mark all children of n that have a large fan-out (fan-out > h). A new set of block outputs
for n is computed, and recorded if it is smaller than the old set. We return success if the fan-in
of n has been reduced.

2. If marking the high-fan-out children doesn’t reduce the fan-in of the node, we recursively apply
reduce_fan-in(child(n), h + 1) until one of them succeeds, then recompute the fan-in of n and
return success if its fan-in set is also reduced. Note that the effects of marking a node are
not propagated to all the nodes that might be affected, but only to the immediate parent that
requested the fan-in reduction.

The reduce.fan-in(n, k) procedure is repeated for the overflow node until the fan-in is sufficiently
reduced or the procedure fails to to reduce the fan-in. The criterion for high-fan-out, h, seems to
work well if it is set at 2 for the first level, and incremented by one for each deeper layer of recursion.
It also works well to use a constant h = 3, and not increase it in the recursion, but the benchmarks
in Section 5 were done with an increasing limit.

The marking algorithm is fast, as each node is visited exactly once by the outer traversal, and
the fan-in reduction algorithm only visits a few nodes.

3.2 Xmap algorithm—Building the logic blocks

After nodes have been marked, another traversal is done to clioose polarities and assign gale
functions. The polarities of the outputs are already set, and the polarities of the inputs are all
positive. For all the intermediate nodes the choice of polarity is arbitrary, as long as it is consistent
in all uses. The only times that inverters are created are when a primary output is the negation of
a primary input or both polarities of a primary output are needed.

For each marked node that isn’t a primary input we need to create a logic block, choose
appropriate inputs for it, and determine its function. A legal set of inputs for a logic block form a
vertex cut in the DAG separating the node from the primary inputs. The cut must contain no more
than f nodes, and ideally, we would like it to be as small as possible, so that the function is more
likely to be merged with another into a shared logic block.

We know that a legal vertex cut exists—the fan-in set that was recorded when the node was
marked is such a cut. Doing a full min-cut algorithm to find the smallest legal input set for each
logic block seems overly complex, but there is another vertex set that is easy to generate: the cut
closest to the marked node. A simple depth-first traversal stopping at marked nodes will find this
cut quickly. Whichever of the two cuts (the fan-in set or the closest cut) is smaller is the one that
is used as the inputs for the gate.

If we always used the closest cut, then each logic block would cover some portion of the DAG with
no overlap between blocks, minimizing the amount of duplicated logic. Unfortunately, the closest
vertex cut is not guaranteed to meet the fan-in limit.

Once we have chosen the inputs for a logic block, the if-then-else DaG for its function is simply
the DAG for the node truncated at the set of inputs, with appropriate inversions of pointers at the
inputs and outputs to match the assigned polarities.
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3.3 Xmap algorithm—Sharing logic blocks

The Xilinx architecture allows two functions to share a single combinational logic block (CLB)
if each function uses no more than f — 1 inputs, and the combined functions have no more than f
total inputs. The mis-pga mapper takes advantage of this feature.

Murgai et al. correctly identified the problem as finding.a maximum matching between mergeable
blocks [MNS*90], defining two blocks as being mergeable if

o cach has at most f —'1 inputs,
o the number of common inputs is f — 2, and

o the total number of inputs is f.
The second requirement is an unnecessary restriction, as two four-input functions can share a five-
input CLB if they have identical inputs. Of course, to handle two (f — 1)-input functions one of the
inputs will have to be routed to two of the CLB inputs.

The matching algorithm used with Xmap is not a true maximum matching algorithm, as such
an algorithm could take n?% steps to do the matching for a network with n logic blocks, and the
maximal matching algorithms are fairly complicated. Instead, Xmap uses a quick-and-dirty greedy
algorithm to get a good, but usually not maximal, matching.

The algorithm takes a set of logic blocks L and two parameters: i, the maximum number of
inputs for each function in a shared CLB, and t, the maximum total number of inputs in a shared
CLB. Tirst; all blocks with more than ¢ inputs are removed from L as being unmergeable. The
remaining set is sorted by the number of inputs to each block.

The block with the most inputs is removed from L and mergeability is checked with all remaining
blocks, in decreasing order of number of inputs. If a legal merging is found, then the other block is
also removed from L. The removing of blocks is continued until L is empty.

Trying to merge blocks with high fan-in first serves two purposes: it helps ensure that easy-to-
match blocks (blocks with few inputs) are kept available for later matching, and it reduces routing
demands by increasing the number of block inputs that are shared.

Theoretically, the mergeability check could be done as many as n(n —1)/2 times, if all n blocks
have few enough inputs to be pairable but no matches are actually possible. In practice, n is small
enough and the inner loop fast enough, that the matching takes insignificant time.

4 Mapping to Actel cells

4.1 The Actel cell

One approach to designing field-programmable gate arrays is to use many copies of a small,
versatile cell. This approach requires many connection points, and so is most appropriate when the
cost of connections is low. The Actel chip is designed using this approach [EAGG*89]. Their basic
cell (illustrated in Figure 4.1) uses selectors as the basic gates, and can be configured for either
combinational logic or storage. We will only consider the uses for combinational logic in this paper.

Each input of the cell can be connected to 0, 1, or a wire from another cell or chip input. The
cell is quite flexible—the designers claim that all two- and three-input functions can be implemented
in a single cell, as well as several functions with more inputs [EAGG*89, page 753]. All the two
mput functions are trivially implementable, but only 213 of the 256 different three-input functions
can be implemented in a single cell. The missing functions are shown in Table 4.1. If one of the
variables is provided dual-rail, then all three-input functions can be implemented directly from the
truth table—connect So = a, S} =0, 5, = S, = b, and connect A B, C,and Dto 0,1, ¢, orc as
needed.
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Figure 4.1: Basic cell used in Actel chips field-programmable-gate-array chips.
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Table 4.1: The 43 three-input functions that cannot be implemented with a single Actel
gate. The first 26 can’t be implemented in either polarity; the negations'of the remaining 17
can be implemented in one gate.
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4.2 Amap algorithm—overview

The Amap algorithm consists of two passes. In the first pass, Amap does some minor, local
manipulation of the if-then-else DAG to make the actual mapping in the second pass work a little
better.

The second pass is a top-down recursive function that is called once for each output. The function
is passed a node of the paG, and generates an Actel cell whose output corresponds to that node.
The function matches the Actel cell to some portion of the top of the DAG, making the inputs to the
cell correspond to lower nodes in the DAG, then calls itself on the inputs that haven’t already been
mapped to Actel cells. Most of the complexity of the function comes in deciding how much of the
DAG to cover. '

4.3 Amap algorithimm—Ilocal manipulation

The mapper does a traversal of the DAG, looking for triples that have only two non-constant
children. These triples represent two-input commutative functions. Each such triple is checked to
see if exactly one of its inputs is a literal. If so, the triple is commuted, if necessary, to make the
literal be in the if-part, rather than in the then- or else-parts of the triple. Because the if-parts
will later be matched to the selector inputs of the Actel cells, this reorganization tends to use the
selectors more efficiently, resulting in about 0.5% lewer cells. The commute order determined in
this pre-pass may not be the final one used, as the mapping algorithm frequently checks two-input
triples to see if the commuted form has become cheaper. .

Because the symbol table that stores the nodes will merge identical triples, but not triples that
differ only in the commute order, standardizing the commute order may reduce the size of the DAG
slightly. This reduction is not enough to be responsible for the improved mapping, as the number of
nodes was reduced by only about 0.1%, noticeably less than the 0.5% improvement in the number of
Actel cells. Doing the commute ordering before running Xmap results in a 0.1-0.2% improvement in
mapping to Xilinx cells, about what one would expect from the change in the number of nodes. The
same commute ordering was done for both Xmap and Amap in the results reported in Section 5.

Because standardizing the commute order when one input was a literal seemed to work well,
some attempts were made to reduce the DAG further by standardizing the commute order when
neither or both inputs were literals. These experiments resulted in 0.5-2% increases in the number
of Actel cells produced by the mapper, and so were discarded.

After the commute order is chosen, a preferred polarity is chosen for each node in the Dag.
The normalization of pointers done in storing the triples {Kar89, p. 105] ensures that all if- and
then-branches are non-inverting pointers, and so every node has a non-inverting path through then-
branches to a principal input or to 1. The prelerred polarily for each node is to use it uninverted,
except for the outputs, which are used in whatever polarity is needed.

Various heuristics were tried to find a better initial assignment of polarities, but none of them
decreased the number of Actel cells by more than about 0.1%. Doing a random assignment of
initial polarities costs only about 0.5%, and so the initial assignment of polarities is apparently not
particularly important. 1 found this surprising, as I expected the polarity assignment to be crucial.

The concepts of commute order and polarity are important, but the first pass has surprisingly
little effect on the success of the mapper, causing only about a 1% reduction in the number of cells
used. The second pass ends up making most of the decisions about polarity and commute order
independent of the first pass.

4.4 Amap algorithm-—matching Actel cell to DAG

After the commute order and initial polarity assignment are done, the if-then-else DAG has to
be covered with the selectors of Actel cells. The covering is done in a single pass over the DAG. A
recursive function is called for each root of the DAG, that is, for each principal output of the circuit.
The function chooses nodes in the DAG to be the inputs for an Actel cell, then calls itself recursively
to map those inputs.
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The recursion stops when the node that Amap is trying to map is a literal, or is already
implemented in either polarity. In either case, Amap either creates no cells, or creates a cell set up
to act as a simple inverter, depending on what polarity is needed.

For non-trivial nodes, the function has to decide how much of the Actel cell to use. Being greedy,
stuffing as much as possible into the cell, results in considerable duplication of functions, as nodes
that could have been shared get hidden inside Actel cells. If too little is stuffed into the Actel cell,
then the cells are used inefficiently, and more of them are needed. For example, if we only ever
use one input to the oR-gate, we’ll need about 5% more cells than if we use both inputs wisely.
Sections 4.5, 4.6, and 4.7 describe the heuristics used to choose how much of the DAG to include in
the Actel cell.

To simplify the discussion of the heuristics, let’s define a free OR as a triple that is already
implemented in either polarity, or is the OR or NOR of two signals that exist in the correct polarity.
Note that a free OR can be implemented as the control input for the output selector with no additional
Actel cells.

Similarly, let’s define a free selector as a node in the if-then-else DAG that exists in either polarity,
or the if-branch exists in either polarity and the then- and else-branches exist in the appropriate

polarities. Note that a free selector can be implemented as an input selector of an Actel cell, with
no additional Actel cells.

4.5 Amap—mapping to the output selector

The top selector of the Actel cell is matched to the if-then-else triple at the node being mapped.
The obvious mapping associates the if-branch with the control input, and the then- and else-branches
with the two data inputs.

If the triple represents a two-input function, we have another choice—we can commute the triple
before doing the mapping. Commuting can affect whether or not the oR-gate is usable, and can
affect the polarity of the inputs. For example, a + b’ can be represented as (if a then TRUE else V')
or (if b then « else TRUE).

We commute the triple if doing so will make it easier for us to use the oR-gate or the input
selectors. The heuristics for deciding to use the commuited or uncommuted form of the triple are

o If only one of the forms has a free oRr in the if-branch, use that form.

o Otherwise, if only one form has (ree selectors as the then- and else-branches, use that form.

e Otherwise, use the uncommuted form.

Having chosen the commute order for the triple, we now have to map each of the branches. The
if-branch maps to the oR-gate, and the then- and else-branches map to the input selectors. For each
branch, we can either choose to use the branch as an input to the Actel cell, making part of the

cell be a simple buffer or inverter, or try to map the triple at the branch into the or-gate or input
selector. '

4.6 Amap—mapping to the OR-gate

Let’s call the if-branch a. We will use a or its complement as an input to the Actel cell (So = a
or 5o =a’ and S; =0), if

¢ « already exists in some polarity (no need to use OR-gate), or

o all three branches of a are non-constant (can’t represent @ as an Or),

e ais not a free OR, and the node for a has three or more pointers to it in the DAG (don’t expand

high fan-out nodes).

Otherwise we express a as an OR or NOR, and connect the two inputs to Sp and S;.

An attempt was made to split @ into 2y + 'z to take full advantage of the oR-gate, whenever it

was a three-input if-then-else triple with low fan-out, but this increased the number of cells needed
by about 0.5%.
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If we choose to use only one input of the OoR-gate, we can make its input either ¢ or a’. The
polarity choice here makes no difference to the cost of the cell we are currently mapping, but may
aflect how many cells are needed to generate the signal for Sy. We will have similar polarity choices
to make for the control inputs of the input selectors S, and Sj.

Currently, Amap uses the same simple heuristic as Xmap for making the polarity choice for a
node: . -

e Use literals (primary inputs) in uninverted form.

o If either polarity is already implemented as an Actel cell output, use the one that exists.

o Otherwise use the polarity chosen initially.
Once a polarity decision has been made for a node, it is recorded to maintain consistency.

4.7 Amap—mapping to the input selectors

After we have decided how to use the OR-gate, we are ready to map the then- and else-branches
to the input selectors. :

As with the mapping of the top selector, we have a choice of commute order for triples that
represent two-input functions. The heuristics are fairly simple:

e I( one form is a [ree selector and the other isn’t, use the free selector.

o Otherwise, if only one form has an il-branch that exists in either polarity, use that form.

e Otherwise, use the uncommuted form. -

We have a choice for each input selector: use it as a buffer for a single signal, or grab the next
lower triple in the if-then-else DAG. A simple heuristic is used to decide when to use the input
selector as a buffer—use it as an inverting or non-inverting buffer, if

o cither polarity of the node is already implemented,

e the node is not a free selector and has a high fan-out (> 3), or

o the polarities of the node’s then- and else-branches would both be wrong.

Note that the last condition can never hold for a triple representing a two-input function, because

the polarity of a constant 0 or 1 is never wrong, and the then- and else- pointers from an XOR. triple
point to the same node but with differing polarities, one of which must be right.

4.8 Amap—XOR fixup and recursion

After choosing whether to use the input selectors as buffers, we check to see if the top triple is an
XOR (then-branch the negation of the else-branch) and either of the two input selectors is a buffer.
If one of the selectors is a buffer, we will be generating an Actel cell corresponding to some polarity
of that XOR input, so we might as well make the other selector a buffer also, and use the same
signal for both S, and S,. This XOR fixup rarely applies, and so could be omitted with almost no
loss in average performance. '

Next, we check each input node to see il it is a two-input function and the function with the two
inputs commuted already exists. If so, we use the existing version, rather than creating a new one.

Finally, we map the inputs that aren’t already implemented.

4.9 The XAmap algorithm

We know that of the 256 3-input logic functions, 5 take no cells, 208 can be done in one Actel
cell, and the other 43 require two. An experiment was performed in which each of the 256 functions
was minimized using the Printform transformations [Kar89], then mapped by Amap. Amap got
the 5 no-cell functions right, but mapped only 177 functions in one cell, and took two for the
remaining 74.

Because Actel cells can implement almost any three-input function, and because Xmap with
J = 3 ends up with about as many logic blocks as Actel cells from Amap, it is tempting to try to
use Xmap to map to Actel cells. This is exactly what the XAmap algorithm does.
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First, Xmap is called to generate the three-input functions (no merging is done), then each
function is replaced by the corresponding Actel cell with a simple table lookup. If a logic block is
created that doesn’t correspond to an Actel cell, then one of the inputs has to be made available
in both polarities, and the Actel cell programmed as a generic 4-to-1 selector with the other two
inputs controlling the selector. If none of the inputs are currently available in both polarities, then
an Actel cell programmed as an inverter needs to be added for one of them. XAmap choses to make
the input with the highest fan-out double-rail, as it is most likely to be usable again.

One slight improvement to XAmap, which hasn’t been implemented yet, would use a table lookup
for cells that need double-rail input, rather than building the generic 4-to-1 selector. In this way, we
could minimize the number of connections to the cells that have a double-rail input. There would
not be any savings in the number of cells or routing complexity, but there could be a reduction in
delay, due to reduced fan-out.

The table of Actel cell implementations for the XAmap algorithm was generated by a program
that computed the function of each of the 5% ways of connecting 0, 1, a, b, or ¢ to the inputs of an
Actel cell. For each function, the wiring of the Actel cell that had the fewest inputs other than 0 or
1 was recorded. The table was set up in a way that favored implementations that used the output
selector, rather than the input selectors, to reduce delay.

Note that the XAmap algorithm will always take at least as many cells as Xmap with f = 3, and
will never have more than three different inputs to an Actel cell (four, if you count the double-rail
signal as two). Although this seems to be throwing away much of the flexibility of the Actel cells,
XAmap appears to work almost as well as Amap.

An Actel cell can implement only 4,502 out of the 65,536 possible four-input functions—slightly
less than 7% of them. Even if all inputs are provided double-rail, there are still 42,362 four-input
functions that can’t be implemented in one Actel cell. Because 64% of the four-input functions are
unavailable, it is unlikely that changing XAmap from f = 3 to f = 4 will offer any advantages.

5 Results of benchmarks

Tables 7.1 and 7.2 compare the Xmap, Amap, and XAmap algorithms with results for Chor-
tle [FRCY0] and mis-pga [MNS+90,Mur90]. In all cases the benchmark circuits were minimized with
misID’s standard script before mapping. The time ratios given for mis-pga should probably be dou-
bled, as the programs were run on different machines—Xmap on a SUN 3/80 (a 3 MIPS machine),
and mis-pga on a Vax 8800 (a 6 MIPS machine). Chortle and misIl were run on a SUN 3/60, and
so the CPU times should be directly comparable with Xmap.

5.1 Xmap performance

The Xmap algorithm consistently outperforms Chortle, even without merging blocks, averaging
"7% fewer blocks. It is interesting to note that Xmap outperforms Chortle even for f = 2, where the
Xmap algorithm does almost nothing after the initial removal of 3-input if-then-else triples.

The Xmap algorithm gets the same number of blocks as mis-pga before merging, but gets
14% fewer after merging. Xmap reduces the number of logic blocks by over 30% with merging,
and mis-pga only achieves about 21% reduction. One might think that Xmap’s merging algorithm
is better than mis-pga’s, but this is unlikely, as mis-pga uses a maximum matcher, and Xmap only
a heuristic approximation to one. The difference is probably that Xmap makes more of an effort to
minimize the fan-in of gates, and so more gates are mergeable.

The Xmap algorithm is significantly faster than Chortle or mis-pga. Overall, Xmap is about
4.5 times faster than Chortle, but Xmap does not slow down as the fan-in limit f increases, while
Chortle’s time appears to increase linearly with f. On the most interesting cases (f = 5), Xmap
is about 7 times faster than Chortle. Compared to mis-pga, Xmap is about 150 times faster, and

manages to complete the merging on all benchmarks, while mis-pga runs out of memory despite a
generous swap space.
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Francis et al. also reported times for using misll to map to a large library of cells that simulated
mapping to arbitrary functions [FRC90, Tables 1-4]. For the benchmarks they reported on, Xmap
is about 17 times faster than mislIl, and gets 11% fewer cells.

5.2 Amap and XAmap performance

The average performance of Amap is reasonable: 6% fewer cells then misII’s mapper [MNS+90,
Table 2], and about 8% more than mis-pga. Somewhat surprisingly, XAmap generates only 4%
more cells than Amap, and only 16% more cells than mis-pga, despite restricting itself to three-
input functions.

The Amap and XAmap algorithms are significantly faster than mis or mis-pga—about 25 and
19 times faster than misII and 586 and 445 times faster than mis-pga with Heuristic 3 and iterative
improvement.

It might have been fairer to compare Amap and XAmap with Heuristic 3 of mis-pga without
iterative improvement, as the Amap and XAmap algorithms do no re-minimization of the circuit.

The Amap and XAmap algorithms do 12% and 6% better than Heuristic 3 without iterative
improvement, and are about 73 and 55 times as fast.

6 Hints for choosing or designing programmable gate arrays

This section evaluates different programmable gate array architectures, examining the tradeoff
between cell complexity and the number of cells needed.

The mapping algorithms give us estimates of the number of cells needed for a variety of problems,
and are easily modified for slightly different architectures. To evaluate an architecture, we need to

combine these estimates with an estimate of the area needed for each cell and an estimate of the
area needed for wiring.

6.1 Designing a selector-based architecture

For selector architectures, the cells themselves are quite small, and the area needed for them is
can be estimated by the number of grids (number of inputs plus number of outputs) needed for the
cell. The total routing area needed is proportional to the total number of grids times the height of
the channel.

Unfortunately, the necessary height for the channel is difficult to estimate. For a given circuit,
it will increase somewhat for architectures that take more cells, but probably not linearly with the
number of cells, as the additional wiring will be mainly short wires. Lacking a good model for
channel height, the analysis here will use just the number of grids as the estimate for area.

We can evaluate different cells by making variants of the Amap algorithm to map to them, and
mapping the same benchmarks lor each architecture:

e Using the Actel cell, Amap needs 6789 cells to implement all 34 benchmarks. With eight

inputs and one output per cell, 61,101 grids are needed. Actel cells can implement 213 of the
256 three-input functions.

e Replace the or-gate with 2-to-1 selector, making the cell a full two levels of an if-then-else
DAG. The 34 benchmarks need 6484 of these super-Actel cells, 3% fewer than with the Actel
cells. The number of grids increases from nine to ten per cell, increasing the total number of
grids by 6%. Super-Actel cells can implement 236 of the three-input functions in one cell.

e Omit the oRr-gate from the Actel cell to get a 4-input selector with three control inputs.
Mapping all 34 benchmarks takes 7137 cells, which is 5% more than with Actel cells. This
reduced Actel cell uses eight grids instead of nine, reducing the total number of grids by 7%.
Reduced Actel cells can implement 197 of the three-input functions in one cell, but can

implement all of them if one input is provided double-rail, and so the XAmap algorithm
could be applied.
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cell type grids/cell | cells needed | total grids
super-Actel 10 \ 6484 64840
Actel 9 6789 61101
no-Or Actel 8 7137 57096
2-to-1 selector 4 11711 46844
2-to-1 with inverters 4 10594 42376

Table 6.1: Area estimates for gale arrays based on five different cell types. The second
column is the number of inputs plus outputs for each cell, the third column is the number
of cells needed for all 34 benchmarks by an appropriate variant of the Amap algorithm,
and the fourth column is the estimate of area needed for the circuits.

o Use simple 2-to-1 selectors. Mapping all 34 benchrarks takes 11711 selectors—72% more cells
than using Actel cells. With only four grids per cell, the total number of grids is reduced
by 23%. Simple latches can still be done in one or two cells, but clear and preset functions
would increase the size of the latch. Selectors can implement only 32 of the 256 three-input
functions, making XAmap useless.

e Use 2-to-1 selectors with optional inverters for the two data inputs. Such a cell can implement
the if-then-else DAG directly. The number of if-then-else triples in the 34 benchmarks is
10594, 56% more cells than using Actel cells and 10% fewer than using selectors without
input inverters. The number of grids is 31% smaller than with Actel cells. Programming the
optional inverters may take a couple of extra switches or anti-fuses per input. Selectors with
optional input inverters can implement 54 of the three-input functions.

Table 6.1 summarizes the tradeoffs for the architectures described above. Based on the number
of grids, the 2-to-1 selectors with programmable input inverters seem to be the best cells. Even with
reasonable increases in channel height, using these cells should still take significantly less area than
using Actel cells.

6.2 Choosing lookup table size

The Xmap algorithm gives us some guidance in cle.éigning new chips using a table-lookup array
architecture. Tor each additional input to a logic block, we double the size of the truth-table memory
and increase the number of wires that need to be routed to the block, but decrease the number of
blocks needed to implement the function. If we assume that the cost of the wiring is proportional
to the number of inputs and outputs of the block, then the cost of using a single-output, f-input
block is ¢p2f + cg(J + 1). Blocks that have two outputs have cost ¢, 2/ + cy(f + 2). The constants
¢y and ¢y depend on the relative cost of bits of the truth table and of the wiring.

We can use this cost estimate to choose a good block size. The technique is illustrated in Table 6.2,
which shows that 5-input blocks with merging are optimal for the arbitrary set of constants chosen.
Of course, other constants and other benchmarks could give quite different results.

6.3 Comparing Actel and Xilinx

It is interesting to compare apples and oranges: what is the ratio of Actel cells to Xilinx logic
blocks needed for a given function? Comparing Xmap and Amap on all 34 benchmarks, a five-
input Xilinx logic block appears to be the equivalent of about 2.25 Actel cells for combinational
logic. Because the Xilinx cells also contain two flip-flops, and one or two additional Actel cells
are needed for each bit of storage, the actual ratio of the number of cells needed to implement a
sequential function is somewhat higher. If we assume that every one of the 1558 principal outputs
m the 34 benchmarks needs to be stored in a two-cell register, the ratio goes up to 3.3 Actel cells
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block type cost per block | blocks needed | total cost/10°
2-input 124 12013 1.49
3-input 168 6961 1.17
3-input with merge 208 5983 1.24
4-input 216 . 5378 1.16
4-input with merge 256 4212 1.08
S-input 272 4411 1.20
S-input with merge 312 3027 0.94
6-input 344 : 3731 1.28
G-input with merge 384 2479 0.95

Table 6.2: Ilustration of method for choosing a logic block size when designing a new
gate-array chip. Constants were arbitrarily chosen as ¢, = 1 and ¢, = 40. The number of
blocks needed is the sum of the numbers found by Xmap for all 34 benchmarks.

per five-input Xilinx block. Typical examples will probably fall somewhere between these extreme
assumptions.

7 Future Work

The high speed of the mappers make them attractive for evaluation of high-level minimization
techniques. Circuit rearrangement can be done for area or delay reduction, and the entire circuit
remapped to evaluate the changes—the sort of iterative improvement done in mis-pga.. The tech-
niques used in Xmap (ignoring the structure of a function, and looking only at the number of wires
needed to encode the information needed Lo compute it) may also be valuable in high-level logic and
stale-machine minimization algorithins.

A more detailed study of programmable gate array architectures should be made, using better
estimates for the cost of routing. The analysis in Section 6.1 suggests that a smaller cell would be
superior, but the analysis may be underestimating the cost of routing the greater number of nets.

The mappers described in this paper are concerned only with the number of logic blocks used, not
with routability or delay. Adding cost measures that estimate these parameters would increase the
value of the techuology mappers. Unfortunately, the delays in programmable gale arrays are heavily
dependent on the routing, because of the high resistance of the routing switches or anti-fuses. 1t will
be difficult to come up with meaningful delay estimates before routing is done, and good placement
and routing is probably too expensive to put in the inner loop of a logic minimizer.
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=2 F=3 f=4

name Xmap Chortle| Xmap Xmap Chortle| Xmap Xmap Chortle

-merge  +merge -merge +merge
10bitreg 20 20 10 20 10
10count 85 54 41 47 31
180degc 102 60 45 45 29
3to8dmux 92 54 44 11 33
4-16dec 27 26 15 23 14
4cent 54 33 28 23 19
5xpl 105 58 49 46 34
8bappreg 39 57 46 47 32
Scount 123 66 53 51 36
9bcasc2 123 72 55 54 39
9bcsacl 113 69 52 51 36
9symml 193 199 108 93 112 79 65 78
9symml-good 52 23 22 19 14
C1908 301 188 167 154 110
C499 184 118 105 95 75
C5315 1261 655 577 525 407
alu2 358 382 209 177 218 154 120 159
alu4 627 691 362 311 405 264 202 286
apex6 647 665 370 320 390 266 222 261
apex7 179 200 108 96 126 80 59 94
arbiter 102 60 45 45 29
bw 119 98 T7 79 52
clip 97 57 46 46 34
count 95 113 55 47 56 - 39 28 49
des 2841 3049 1644 1418 1805 | 1278 1072 1225
duke2 - 294 184 156 144 105
B51m 107 64 54 48 37
frgl 107 {11 Gl h8 GO 45 38 43
frg2 639 740 111 350 452 305 243 333
k2 758 8111 468 418 4801 385 2065 379
pair 1268 1441 706 614 851 543 446 635
rd34 170 98 85 75 56
rot 526 578 306 272 357 233 182 261
vg2 75 39 37 27 27
total(C) 82388 8980 | 4808 4174 5312 3671 2953 3803
total 12013 6961 5983 5376 4217/

Table 7.1: Number of gates used by different mappers for several benchmarks. Subset C is
the set of benchmarks for which Chortle results are available.
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f=5 Actel
name Xmap Xmap Chortle mis-pga mis-pga | Amap XAmap mis-pga
-merge -merge -merge +merge Heur. 3
10bitreg 20 10 21 10 20 20
10count 36 23 33 23 52 54
180dege 39 22 35 21 54 60
Jto8dmux 36 25 41 30 45 54
4-16dec 24 12 20 12 23 26
4ent 20 13 21 17 32 33
5xpl 34 25 31 23 53 58 41
8bappreg 39 27 37 27 58 a7
Scount 42 26 35 20 69 68
9bcasc? 45 29 52 29 69 72
9besacl 42 29 50 34 62 69
9symml 61 48 63 102 110
9symml-good 12 11 24 23
C1908 125 83 204 200 172
C499 84 61 66 50| 141 139 166
C5315 404 294 497 (fail) 604 685 610
alu2 126 90 131 129 102 196 210
alud 223 150 238 235 229 336 365
apex6 212 159 234 243 191 366 370
apex7 70 45 73 64 50 112 109
arbiter 39 22 35 21 54 60
bw 56 37 94 102 61
clip 37 26 53 57 47
count 31 22 47 31 28 62 55
des 1057 694 1075 1605 1652
duke2 125 82 128 105 169 188 163
f51m 33 26 538 64 47
frgl 29 29 34 36 28 61 61
frg2 291 183 278 246 192 406 412
k2 333 218 335 349 289 482 473
pair 417 307 504 430 (fail) 634 729
rd84 55 43 40 32 93 101 58
rot 192 136 230 200 153 309 309 271
vg2 22 20 30 21 37 39 37
total(C) 3042 2081 3242 4721 4855
total(X) 3030 2102 3135 4649 4876
total(XM) 2209 1501 2208 17371 3361 3462
total{A) 1167 8333 1815 1942 1673
total 4411 3027 6789 7084

Table 7.2: Number of gates used by different mappers for several benchmarks. Subset C is
the set of benchmarks for which Chortle results are available. Subsets X, XM, and A are
subsets for which mis-pga results are available for Xilinx cells before merging, Xilinx cells
after merging, and Actel cells.



References

Xmap (including merge) Amap XAmap |subsets
name f=2 f=3 f=4 f=5
10bitreg 0.78 083 082 0.83| 0.75 1.13 | XT
10count 1.38 1.23 1.25 1.18 1.18 1.70 | XT
180degc 1.68 1.40 1.35 1.35 1.23 1.80 [ XT
Jto8dmux 152 137 138 132 1.17 1.78 | XT
4-16dec 088 0.8 085 0.92| 0.83 1.25 | XT
4ent 1.03 092 090 092 0.78 1.32 | XT
5xpl 1.42 1.15 1.17 1.12 1.00 1.58 | XT A
8bappreg 1.47 1.38 1.38 1.37 1.27 1.80 | XT
8count 1.93 1.60 1.57 1.55 1.42 2.05 | XT
9bcasc? 1.98 1.67 1.65 1.60 1.47 2,151 XT
9bcsacl 1.82 1.58 1.53 1.50 1.40 2.02 | XT
9symml 2.35 1.97 1.93 1.92 1.65 2.50 | C
9symml-good 0.77 0.60 0.60 0.62 0.48 0.95
C1908 432 3.88 392 397 3.60 457 | A
C499 293 265 272 282 252 3.17 | XT A
C5315 17.73 1375 14.60 13.42} 11.68 1537 [ XT A
alu2 460 390 3.85  3.83) 3.27 4.62(C
alu4 797 680 6.63 6.70| 5.72 782|C
apex6 922 78 778 7.63| .87 8.90 | C XT
apex7 263 233 225 228 212 287|CXT
arbiter 1.68 142 1.37 140 1.28 1.82 1 XT
bw 2.03 1.80 1.80 2.87 1.62 . 2.331A
clip 1.32 1.08 1.05 1.08| 0.95 1.501A
count 155 132 123 1.22| 1.13 1.73(C
des 41.75 35.78 41.90 36.85| 31.63 38.58|C
duke2 383 342 335 333 298 4.08 | XT A
f51m 1.43 1.22 1.20 1.20 1.08 1.681 A
frgl 1.53 1.37 1.37 1.30 1.18 1.821C
frg2 10,60 9.28 9.12 928 8.15 1043} C
k2 10.17 917 9.25  9.10| 8.10 10.35 ] C
pair 18.57 1552 16.15 14.72( 13.92 17.271C
rd84 217 1.88 1.85 1.90 1.57 242|XT A
rot 813 697 6.82 6.72| 6.33 785|C XT A
vg2 L1000 095 093 092 0.80 1.35 | XT A
total(C) 119.07 102.26 108.28 101.55| 92.32 114.74
total(XT) 65.31 55.20 55.52 54.08| 48.65 66.41
total(A) 46.41 38.75 39.41 39.35| 34.84 45.90
total 174.27 148.89 155.52 148.74|131.13 172.56

Table 7.3: CPU time in seconds on a Sun 3/80 used by Xmap, Amap, and XAmap for
several benchmarks. Subset C is the set of benchmarks for which Chortle results are
available. Subsets XT and A are subsets for which mis-pga timings are available for Xilinx
cells and Actel cells.



