Tweaking structures: working on the fiddly bits

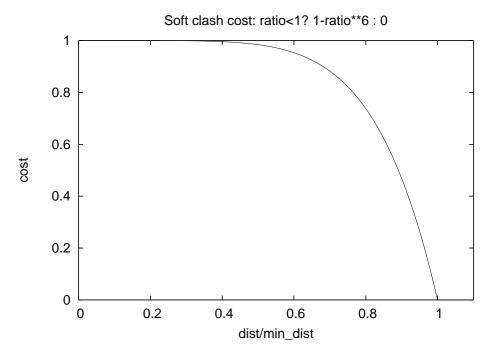
Kevin Karplus

karplus@soe.ucsc.edu

Biomolecular Engineering Department

University of California, Santa Cruz

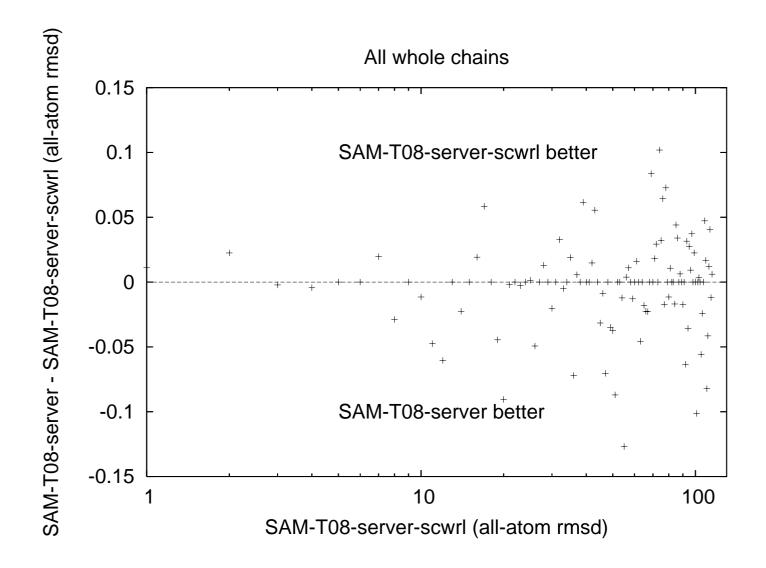
Tweaking structures - p.1/12


Outline of Talk

- Cost functions
 - Clash detection
 - Sidechain quality
 - H bond quality
 - Predicted backbone structure
- Conformation change operators
 - JiggleSegment JiggleSubtree
 - TweakHbond
 - TweakPsiSegment TweakPsiSubtree
 - TweakPhiSegment TweakPhiSubtree
 - TweakPeptide
 - TweakPsiPhiSegment TweakPsiPhiSubtree
 - BackRub BigBackRub

Clash Detection

- Simple clash detector with minimum legal distance for each pair of atoms (no attractive term).
- Distances trained (badly) on large set of high-quality structures.



Sidechain quality

- 9-dimensional space (where are CA-1, CA+1, and distal point on sidechain)
- Gaussian mixture for "rotamer library"
- Estimates joint probability of backbone and rotamer, not rotamer conditioned on backbone.
- Redoing our sidechains with SCWRL gives about equal number of better and worse models.

Our sidechains are not supremely good

Hbonds

A Different cost functions for different types of H-bonds.

- separation=3
- separation=4
- other separation
- 4 non-backbone classes
- Backbone H-bonds most carefully done:
 - distance
 - non-planarity
 - asymmetry
 - donor-acceptor-carbon angle

Predicted backbone structure

- Local structure prediction using neural nets
- Several alphabets:
 - Bystroff's ϕ - ψ classification
 - de Brevern's protein blocks
 - CA-CA-CA-CA α torsion angle
- Cost function uses

$$\log \frac{P(\text{class}|\text{neural net})}{P(\text{class}|\text{amino acid})}$$

Jiggle, TweakHbond

- JiggleSegment JiggleSubtree: make a small rigid transform. Move either
 - the segment (between chain breaks)
 - a subtree consisting of several segments.
- TweakHbondSegment or TweakHbondSubtree
 - same idea, but donor or acceptor has very small change to position.
 - other atoms of segment or subtree may move further

TweakPhi, TweakPsi, TweakPeptide

- TweakPhiSegment, TweakPhiSubtree, TweakPsiSegment, TweakPhiSegment: Make small change to angle.
- TweakPsi generally more productive than TweakPhi.
- TweakPeptide: rotates peptide plane about axis through two CA atoms.

TweakPsiPhi Segment/Subtree

- Make small change to psi angle and opposite change to next phi angle.
- A Note: axes of rotations almost parallel on opposite ends of peptide plane.
- Moves rest of segment (or subtree) along circular arc without reorienting it much.

BackRub, BigBackRub

- A Rotate chain segment about line between two CA atoms.
- For Backrub, CA are 2 apart on backbone.
- Reposition first and last peptide planes to try to get optimal superposition on new CA positions but old N and O positions (to preserve Hbonds).
- A These tweaks tend to have high success rate and so can be done with larger angular changes than other tweaks.

Web sites

CASP8 working files: http://www.soe.ucsc.edu/~karplus/casp8/

List of my papers:

http://www.soe.ucsc.edu/~karplus/papers/paper-list.html

These slides: http://www.soe.ucsc.edu/~karplus/papers/

tweak-slides-2008-dec.pdf

UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/

