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Outline of Talk

What is Bioinformatics?

What is a protein?

The folding problem and variants on it:
Local structure prediction
Fold recognition with HMMs

What is a null model?
Why use the reverse-sequence null?
Two approaches to statistical significance.
What distribution do we expect for scores?
Fitting the distribution.

Comparative modeling
“Ab initio” methods
Contact prediction
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What is Bioinformatics?

Bioinformatics: using computers and statistics to make
sense out of the mountains of data produced by
high-throughput experiments.

Genomics: finding important sequences in the genome
and annotating them.

Phylogenetics: “tree of life”.

Systems biology: piecing together various control
networks.

DNA microarrays: what genes are turned on under
what conditions.

Proteomics: what proteins are present in a mixture.

Protein structure prediction.
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What is a protein?

There are many abstractions of a protein: a band on a
gel, a string of letters, a mass spectrum, a set of 3D
coordinates of atoms, a point in an interaction
graph, . . . .

For us, a protein is a long skinny molecule (like a string
of letter beads) that folds up consistently into a
particular intricate shape.

The individual “beads” are amino acids, which have 6
atoms the same in each “bead” (the backbone atoms: N,
H, CA, HA, C, O).

The final shape is different for different proteins and is
essential to the function.

The protein shapes are important, but are expensive to
determine experimentally.
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Folding Problem

The Folding Problem:
If we are given a sequence of amino acids (the letters on a
string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK

ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN

YFDVPPHKYR MTNMQGESRF LHPLNHYNS

↓

Too hard!
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Fold-recognition problem

The Fold-recognition Problem:
Given a sequence of amino acids A (the target sequence)
and a library of proteins with known 3-D structures (the
template library),
figure out which templates A match best, and align the
target to the templates.

The backbone for the target sequence is predicted to be
very similar to the backbone of the chosen template.

Progress has been made on this problem, but we can
usefully simplify further.

protein-folding: not just opt – p.6/68



Remote-homology Problem

The Homology Problem:
Given a target sequence of amino acids
and a library of protein sequences,
figure out which sequences A is similar to and align them to
A.

No structure information is used, just sequence
information. This makes the problem easier, but the
results aren’t as good.

This problem is fairly easy for recently diverged, very
similar sequences, but difficult for more remote
relationships.
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New-fold prediction

What if there is no template we can use?

We can try to generate many conformations of the
protein backbone and try to recognize the most
protein-like of them.

Search space is huge, so we need a good conformation
generator and a cheap cost function to evaluate
conformations.
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Secondary structure Prediction

Instead of predicting the entire structure, we can predict
local properties of the structure.

What local properties do we choose?

We want properties that are well-conserved through
evolution, easily predicted, and useful for finding and
aligning templates.

One popular choice is a 3-valued helix/strand/other
alphabet—we have investigated many others. Typically,
predictors get about 80% accuracy on 3-state
prediction.

Many machine-learning methods have been applied to
this problem, but the most successful is neural
networks.
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CASPCompetition Experiment

Everything published in literature “works”

CASP set up as true blind test of prediction methods.

Sequences of proteins about to be solved released to
prediction community.

Predictions registered with organizers.

Experimental structures compared with solution by
assessors.

“Winners” get papers in Proteins: Structure, Function, and
Bioinformatics.
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Predicting Local Structure

Want to predict some local property at each residue.

Local property can be emergent property of chain (such
as being buried or being in a beta sheet).

Property should be conserved through evolution (at
least as well as amino acid identity).

Property should be somewhat predictable (we gain
information by predicting it).

Predicted property should aid in fold-recognition and
alignment.

For ease of prediction and comparison, we look only at
discrete properties (alphabets of properties).
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Using Neural Net

We use neural nets to predict local properties.

Input is profile with probabilities of amino acids at each
position of target chain, plus insertion and deletion
probabilities.

Output is probability vector for local structure alphabet
at each position.

Each layer takes as input windows of the chain in the
previous layer and provides a probability vector in each
position for its output.

We train neural net to maximize∑
log(P (correct output)).
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Neural Net

Typical net has 4 layers and 6471 weight parameters:
input/pos window output/pos weights
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DSSP

DSSP is a popular program to define secondary
structure.

7-letter alphabet: EBGHSTL
E = β strand
B = β bridge
G = 310 helix
H = α helix
I = π helix (very rare, so we lump in with H)
S = bend
T = turn
L = everything else (DSSP uses space for L)
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STR: Extension to DSSP

Yael Mandel-Gutfreund noticed that parallel and
anti-parallel strands had different hydrophobicity
patterns, implying that parallel/antiparallel can be
predicted from sequence.

We created a new alphabet, splitting DSSP’s E into 6
letters:

A

M

P

E

Z

Q
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HMMSTR φ-ψ alphabet

For HMMSTER, Bystroff did k-means classification of
φ-ψ angle pairs into 10 classes (plus one class for cis
peptides).

We used just the 10 classes, ignoring the ω angle.
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ALPHA11: α angle

Backbone geometry can be mostly summarized with
one angle per residue:

CA(i−1)

CA(i)

CA(i+1)

CA(i+2)

We discretize into 11 classes:
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de Brevern’s Protein Blocks

Clustered on 5-residue window of φ-ψ angles:
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Burial alphabets

Our second set of investigations was for a sampling of the
many burial alphabets, which are discretizations of various
accessibility or burial measures:

solvent accessible surface area

relative solvent accessible surface area

neighborhood-count burial measures
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Solvent Accessibility

Absolute SA: area in square Ångstroms accessible to a
water molecule, computed by DSSP.

Relative SA: Absolute SA/ max SA for residue type
(using Rost’s table for max SA).
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Burial

Define a sphere for each residue.

Count the number of atoms or of residues within that
sphere.

Example: center= Cβ, radius=14Å, count= Cβ, quantize
in 7 equi-probable bins.
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Mutual Information

Mutual information between two random variables
(letters of alphabet):

MI(X,Y ) =
∑
i,j

P (i, j) log
P (i, j)

P (i)P (j)
,

We look at mutual information between different
alphabets at same position in protein. (redundancy)

We look at mutual information with one alphabet
between corresponding positions on alignments of
sequences.
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Information Gain

Information gain is how much more we know about a
variable after making a prediction.

I(X) = average log
P̂i(Xi)

P0(Xi)

P̂i is predicted probability vector for position i

Xi is actual observation at position i

P0 is background probability vector
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Conservation and Predictability

conservation predictability

alphabet MI info gain

Name size entropy with AA mutual info per residue Q|A|
str 13 2.842 0.103 1.107 1.009 0.561

protein blocks 16 3.233 0.162 0.980 1.259 0.579

stride 6 2.182 0.088 0.904 0.863 0.663

DSSP 7 2.397 0.092 0.893 0.913 0.633

stride-EHL 3 1.546 0.075 0.861 0.736 0.769

DSSP-EHL 3 1.545 0.079 0.831 0.717 0.763

CB-16 7 2.783 0.089 0.682 0.502

CB-14 7 2.786 0.106 0.667 0.525

CB-12 7 2.769 0.124 0.640 0.519

rel SA 7 2.806 0.183 0.402 0.461

abs SA 7 2.804 0.250 0.382 0.447
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Hidden Markov Models

Hidden Markov Models (HMMs) are a very successful way to
capture the variability possible in a family of proteins.

An HMM is a stochastic model—that is, it assigns a
probability to every possible sequence.

An HMM is a finite-state machine with a probability for
emitting each letter in each state, and with probabilities
for making each transition between states.

Probabilities of letters sum to one for each state.

Probabilities of transitions out of each state sum to one
for that state.

We also include null states that emit no letters, but have
transition probabilities on their out-edges.
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Profile Hidden Markov Model

a1

a2 b4

a -

B1

A3

B2

A4

B3

A5

B5

EndStart

a1 a2 A3 - A4 . A5
. . B1 B2 B3 b4 B5

Circles are null states.

Squares are match states, each of which is paired with a
null delete state. We call the match-delete pair a fat state.

Each fat state is visited exactly once on every path from
Start to End.

Diamonds are insert states, and are used to represent
possible extra amino acids that are not found in most of
the sequences in the family being modeled.
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What is single-track HMM looking for?
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What is second track looking for?
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Multi-track HMMs

We can also use alignments to build a two- or three-track
target HMM:

Amino-acid track (created from the multiple alignment).

Local-structure track(s) with probabilities from neural
net.

Can align template (AA+local) to target model.

AA

start stop

AA

2ry

AA AA AA

2ry

2ry2ry2ry
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Target-model Fold Recognition

Find probable homologs of target sequence and make
multiple alignment.

Make secondary structure probability predictions based
on multiple alignment.

Build an HMM based on the multiple alignment and
predicted 2ry structure (or just on multiple alignment).

Score sequences and secondary structure sequences
for proteins that have known structure (all sequences for
AA-only, 8,000-11,000 representatives for multi-track).

Select the best-scoring sequence(s) to use as
templates.
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Template-library Fold Recognition

Build an HMM for each protein in the template library,
based on the template sequence (and any homologs
you can find).

The T2K library has over 11,000 templates from PDB.

For the fold-recognition problem, structure information
can be used in building these models (though we
currently don’t).

Score target sequence with all models in the library.

Select the best-scoring model(s) to use as templates.
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Combined SAM-T02 method

template HMMs

combined scores

target model scores template model scores

template alignments

template sequences
target sequence

target alignment

target HMM

local structure
prediction

Combine the costs from the template library search and
the target library searches using different local structure
alphabets.

Choose one of the many alignments of the target and
template (whatever method gets best results in testing).

http://www.soe.ucsc.edu/research/compbio/HMM-apps/T02-query.html

protein-folding: not just opt – p.32/68



Fold recognition results
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Scoring HMMs and Bayes Rule

The model M is a computable function that assigns a
probability Prob (A |M) to each string A.

When given a string A, we want to know how likely the
model is. That is, we want to compute something like
Prob (M | A).

Bayes Rule:

Prob
(
M

∣∣∣ A
)

= Prob
(
A

∣∣∣ M
) Prob(M)

Prob(A)
.

Problem: Prob(A) and Prob(M) are inherently
unknowable.
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Null models

Standard solution: ask how much more likely M is than
some null hypothesis (represented by a null model).

Prob (M | A)

Prob (N | A)
=

Prob (A |M)

Prob (A | N)

Prob(M)

Prob(N)
.

Prob(M)

Prob(N)
is the prior odds ratio, and represents our belief in

the likelihood of the model before seeing any data.

Prob
“
M|A”

Prob
“
N|A” is the posterior odds ratio, and represents our

belief in the likelihood of the model after seeing the
data.
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Standard Null Model

Null model is an i.i.d (independent, identically
distributed) model.

Prob
(
A

∣∣∣ N, len (A)
)

=

len(A)∏
i=1

Prob(Ai) .

Prob
(
A

∣∣∣ N
)

= Prob(string of length len (A))

len(A)∏
i=1

Prob(Ai) .

The length modeling is often omitted, but one must be
careful then to normalize the probabilities correctly.
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Problems with standard null

When using the standard null model, certain sequences
and HMMs have anomalous behavior. Many of the
problems are due to unusual composition—a large
number of some usually rare amino acid.

For example, metallothionein, with 24 cysteines in only
61 total amino acids, scores well on any model with
multiple highly conserved cysteines.
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Reversed model for null

We avoid composition bias (and several other problems)
by using a reversed model M r as the null model.

The probability of a sequence in M r is exactly the same
as the probability of the reversal of the sequence given
M .

If we assume that M and M r have equal prior
likelihood, then

Prob (M | S)

Prob (M r | S)
=

Prob (S |M)

Prob (S |M r)
.

This method corrects for composition biases, length
biases, and several subtler biases.
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Composition as source of error

A cysteine-rich protein, such as metallothionein, can match
any HMM that has several highly-conserved cysteines,
even if they have quite different structures:

cost in nats
model − model −

HMM sequence standard null reversed-model
1kst 4mt2 -21.15 0.01
1kst 1tabI -15.04 -0.93
4mt2 1kst -15.14 -0.10
4mt2 1tabI -21.44 -1.44
1tabI 1kst -17.79 -7.72
1tabI 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)

protein-folding: not just opt – p.40/68



Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)
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Helix examples

Apolipophorin III (1aep)

Apolipoprotein A-I (1av1A)
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What is Statistical Significance?

The statistical significance of a hit, P1, is the probability
of getting a score as good as the hit “by chance,” when
scoring a single “random” sequence.

When searching a database of N sequences, the
significance is best reported as an E-value—the
expected number of sequences that would score that
well by chance: E = P1N .

Some people prefer the p-value: PN = 1 − (1 − P1)
N ,

For large N and small E, PN ≈ 1 − e−E ≈ E.

I prefer E-values, because our best scores are often not
significant, and it is easier to distinguish between
E-values of 10, 100, and 1000 than between p-values of
0.999955, 1.0 − 4E-44, and 1.0 − 5E-435
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Approaches to Statistical Significance

(Markov’s inequality) For any scoring scheme that uses

ln
Prob (seq |M1)

Prob (seq |M2)

the probability of a score better than T is less than e−T

for sequences distributed according to M2. This method
is independent of the actual probability distributions.

(Classical parameter fitting) If the “random” sequences
are not drawn from the distribution M2, but from some
other distribution, then we can try to fit some
parameterized family of distributions to scores from a
random sample, and use the parameters to compute P1

and E values for scores of real sequences.
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Our Assumptions

Bad assumption 1: The sequence and reversed sequence
come from the same underlying distribution.

Bad assumption 2: The scores with a standard null model are
distributed according to an extreme-value distribution:

P
(
ln Prob

(
seq

∣∣∣ M
)
> T

)
≈ Gk,λ(T ) = 1− exp(−keλT ) .

Bad assumption 3: The scores with the model and the
reverse-model are independent of each other.

Result: The scores using a reverse-sequence null model
are distributed according to a sigmoidal function:

P (score > T ) = (1 − eλT )−1 .
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Derivation of sigmoidal distribution

(Derivation for costs, not scores, so more negative is better.)

P (cost < T ) =

∫ ∞

−∞
P (cM = x)

∫ ∞

x−T
P (cM ′ = y)dydx

=

∫ ∞

−∞
P (cM = x)P (cM ′ > x− T )dx

=

∫ ∞

−∞
kλ exp(−keλx)eλx exp(−keλ(x−T ))dx

=

∫ ∞

−∞
kλeλx exp(−k(1 + e−λT )eλx)dx
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Derivation of sigmoid (cont.)

If we introduce a temporary variable to simplify the
formulas: KT = k(1 + exp(−λT )), then

P (cost < T ) =

∫ ∞

−∞
(1 + e−λT )−1KTλe

λx exp(−KT e
λx)dx

= (1 + e−λT )−1

∫ ∞

−∞
KTλe

λx exp(−KT e
λx)dx

= (1 + e−λT )−1

∫ ∞

−∞
gKT ,λ(x)dx

= (1 + e−λT )−1
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Fitting λ

The λ parameter simply scales the scores (or costs)
before the sigmoidal distribution, so λ can be set by
matching the observed variance to the theoretically
expected variance.

The mean is theoretically (and experimentally) zero.

The variance is easily computed, though derivation is
messy:

E(c2) = (π2/3)λ−2 .

λ is easily fit by matching the variance:

λ ≈ π

√√√√N/(3
N−1∑
i=0

c2i ) .
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Two-parameter family

We made three dangerous assumptions: reversibility,
extreme-value, and independence.

To give ourselves some room to compensate for
deviations from the extreme-value assumption, we can
add another parameter to the family.

We can replace −λT with any strictly decreasing odd
function.

Somewhat arbitrarily, we chose

− sign(T )|λT |τ

so that we could match a “stretched exponential” tail.
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Fitting a two-parameter family

For two-parameter symmetric distribution, we can fit using
2nd and 4th moments:

E(c2) = λ−2/τK2/τ

E(c4) = λ−4/τK4/τ

where Kx is a constant:

Kx =

∫ ∞

−∞
yx(1 + ey)−1(1 + e−y)−1dy

= −Γ(x+ 1)

∞∑
k=1

(−1)k/kx .
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Fitting a two-parameter family (cont.)

The ratio E(c4)/(E(c2))2 = K4/τ/K
2
2/tau is independent

of λ and monotonic in τ , so we can fit τ by binary
search.

Once τ is chosen we can fit λ using E(c2) = λ−2/τK2/τ .
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Student’s t-distribution

On the advice of statistician David Draper, we tried
maximum-likelihood fits of Student’s t-distribution to our
heavy-tailed symmetric data.

We couldn’t do moment matching, because the degrees
of freedom parameter for the best fits turned out to be
less than 4, where the 4th moment of Student’s t is
infinite.

The maximum-likelihood fit of Student’s t seemed to
produce too heavy a tail for our data.

We plan to investigate other heavy-tailed distributions.
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Use database, not random sequences

Calibration with random sequences works ok for
1-track, but not 2-track HMMs.

“Random” secondary structure sequences (i.i.d. model)
are not representative of real sequences.

Fixes:
Better secondary structure decoy generator
Use real database, but avoid problems with
contamination by true positives by taking only costs
> 0 to get estimate of E(cost2) and E(cost4).
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What went wrong with Protein Blocks?

de Brevern’s protein blocks provided one of our most
predictable local structure alphabets.

The 2-track HMMs using de Brevern’s protein blocks did
much worse than AA-only HMMs. Why?

The protein blocks alphabet strongly violates
reversibility assumption.

Encoding cost in bits for secondary structure strings
using Markov chains:

alphabet 0-order 1st-order reverse-forward
amino acid 4.1896 4.1759 0.0153
stride 2.3330 1.0455 0.0042
dssp 2.5494 1.3387 0.0590
pb 3.3935 1.4876 3.0551
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Undertaker

Undertaker is UCSC’s attempt at a fragment-packing
program.

Named because it optimizes burial.

Representation is 3D coordinates of all heavy atoms
(not hydrogens).

Can replace backbone fragments (a la Rosetta) or full
alignments—chain need not remain contiguous.

Conformations can borrow heavily from fold-recognition
alignments, without having to lock in a particular
alignment.

Use genetic algorithm with many conformation-change
operators to do stochastic search.
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Fragfinder

Fragments are provided to undertaker from 3 sources:

Generic fragments (2-4 residues, exact sequence
match) are obtained by reading in 500–1000 PDB files,
and indexing all fragments.

Long specific fragments (and full alignments) are
obtained from the various target and template
alignments generated during fold recognition.

Medium-length fragments (9–12 residues long) for
every position are generated from the HMMs with
fragfinder , a new tool in the SAM suite.
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Cost function

Cost function is modularly designed—easy to add or
remove terms.

Cost function can include predictions of local properties
by neural nets.

Clashes and hydrogen bonds are important
components.

There are over 40 cost function components available:
burial functions, disulfides, contact order, rotamer
preference, radius of gyration, constraints, ...
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Target T0201 (NF)

We tried forcing various sheet topologies and selected
4 by hand.

Model 1 has right topology (5.912Å all-atom, 5.219Å
Cα).

Unconstrained cost function not good at choosing
topology (two strands curled into helices).

Helices were too short.
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Target T0201 (NF)
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Contact prediction

Use mutual information between columns.

Thin alignments aggressively (30%, 35%, 40%, 50%,
62%).

Compute e-value for mutual info (correcting for
small-sample effects).

Compute rank of log(e-value) within protein.

Feed log(e-values), log rank, contact potential, joint
entropy, and separation along chain for pair, and
amino-acid profile, predicted burial, and predicted
secondary structure for each residue of pair into a
neural net.
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Open problem

Given a contingency table for a small sample of pairs of
independent discrete random variables, what is the
distribution of the mutual information statistic:

MI(X,Y ) =
∑
i,j

P (i, j) log
P (i, j)

P (i)P (j)
,

where the probabilities are the maximum-likelihood
estimates from the observed sample.
Asymptotic results (χ2 distribution) are known, but neither
the shape of the distribution nor how to fit its parameters
have been established theoretically (we have good
empirical fits).
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Evaluating contact prediction

Two measures of contact prediction:

Accuracy: ∑
χ(i, j)∑

1

(favors short-range predictions, where contact
probability is higher)

Weighted accuracy:

∑ χ(i,j)

Prob
“
contact|separation=|i−j|

”
∑

1

(1 if predictions no better than chance based on
separation).
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Contact prediction results
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Target T0230 (FR/A)

Good except for C-terminal loop and helix flopped
wrong way.

We have secondary structure right, including phase of
beta strands.

Contact prediction helped, but we put too much weight
on it—decoys fit predictions better than real structure
does.

protein-folding: not just opt – p.65/68



Target T0230 (FR/A)
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Target T0230 (FR/A)

Real structure with contact predictions:
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Web sites

These slides:

http://www.soe.ucsc.edu/˜karplus/papers/not-just-opt-may-2006.pdf

SAM-T06 prediction server:

http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html

CASP6 all our results and working notes:

http://www.soe.ucsc.edu/˜karplus/casp6/

Predictions for all yeast proteins:

http://www.soe.ucsc.edu/˜karplus/yeast/

UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/

SAM tool suite info:

http://www.soe.ucsc.edu/research/compbio/sam.html
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