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Outline of Talk

� What is a null model?

� Why use the reverse-sequence null?

� Two approaches to statistical significance.

� What distribution do we expect for scores?

� Fitting the distribution.

� Does calibrating the E-values help?
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ScoringHMMs and Bayes Rule

� ThemodelM is a computable function that assigns a probability Prob(A jM) to each stringA.

� When given a stringA, we want to know how likely the model is. That is, we want to compute

something like Prob(M j A).

� Bayes Rule:

Prob(M j A) = Prob(A jM)
Prob(M)

Prob(A)
:

� Problem: Prob(A) and Prob(M) are inherently unknowable.
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Null models

� Standard solution: ask how much more likelyM is than somenull hypothesis(represented by a

null model).
Prob(M j A)

Prob(N j A)
=

Prob(A jM)

Prob(A j N)

Prob(M)

Prob(N)
:

� Prob(M)

Prob(N)
is theprior odds ratio, and represents our belief in the likelihood of the model before

seeing any data.

�
Prob

�
MjA

�

Prob
�
NjA

� is theposterior odds ratio, and represents our belief in the likelihood of the model

after seeing the data.

� We can generalize to a forced choice among many models (M1; : : : ;Mn)

Prob(Mi j A)
P
j Prob(Mj j A)

=
Prob(A jMi)Prob(Mi)

P
j Prob(A jMj)Prob(Mj)

:

The Prob(Mj) values can be scaled arbitrarily without affecting the ratio.
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Standard Null Model

� Null model is an i.i.d (independent, identically distributed) model, that is, each letter is treated as

being independently drawn from the background distribution.

�
Prob(A j N; len(A)) =

len(A)Y
i=1

Prob(Ai) :

�
Prob(A j N) = Prob(string of lengthlen(A))

len(A)Y
i=1

Prob(Ai) :

� The length modeling is often omitted, but one must be careful then to normalize the probabilities

correctly.
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Reversed model for null

� When using the standard null model, certain sequences andHMMs have anomalous behavior.

Many of the problems are due to unusual composition—a large number of some usually rare

amino acid.

� For example, metallothionein, with 24 cysteines in only 61 total amino acids, scores well on any

model with multiple highly conserved cysteines.

� We avoid this (and several other problems) by using a reversed modelM r as the null model.

� The probability of a sequence inM r is exactly the same as the probability of the reversal of the

sequence givenM .

� If we assume thatM andM r are equally likely, then

Prob(M j S)

Prob(M r j S)
=

Prob(S jM)

Prob(S jM r)
:

� This method corrects for composition biases, length biases, and several subtler biases.

6



Composition as source of error

A cysteine-rich protein, such as metallothionein, can match any HMM that has several

highly-conserved cysteines, even if they have quite different structures:

cost in nats

model� model�

HMM sequencestandard null reversed-model

1kst 4mt2 -21.15 0.01

1kst 1tabI -15.04 -0.93

4mt2 1kst -15.14 -0.10

4mt2 1tabI -21.44 -1.44

1tabI 1kst -17.79 -7.72

1tabI 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)
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Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)
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Long helices as source of error

Long helices can provide strong similarity signals from the periodic hydrophobicity, even when the overall folds are

quite different:

cost in nats, normalized using

HMM sequence Null model reversed-model

1av1A 2tmaA -22.06 2.13

1av1A 1aep -21.25 1.03

1av1A 1cii -13.67 -1.75

1av1A 1vsgA -7.89 -0.51

2tmaA 1cii -20.62 0.46

2tmaA 1av1A -17.96 1.01
2tmaA 1aep -12.01 0.78

2tmaA 1vsgA -8.25 0.08

1vsgA 2tmaA -14.82 -1.20
1vsgA 1av1A -13.04 -2.68

1vsgA 1aep -13.02 -3.52

1vsgA 1cii -11.12 0.28

1aep 1av1A -11.30 1.79

1aep 2tmaA -10.73 1.06

1aep 1cii -8.35 1.38
1aep 1vsgA -6.87 0.53

1cii 2tmaA -23.24 -1.48
1cii 1av1A -19.49 -5.62

1cii 1aep -12.85 -1.77

1cii 1vsgA -10.20 -1.57
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)
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Helix examples

Apolipophorin III (1aep)

Apolipoprotein A-I (1av1A)
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Discrimination Performance as a Function of Null Model
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What is Statistical Significance?

� The statistical significance of a hit,P1, is the probability of getting a score as good as the hit “by

chance,” when scoring a single “random” sequence.

� When searching a database ofN sequences, the significance is best reported as an E-value—the

expected number of sequences that would score that well by chance:E = P1N .

� Some people prefer the p-value:PN = 1� (1� P1)
N , For largeN , PN � 1� e�E, soPN is

essentially the same asE for small E-values.

� I prefer to use E-values, because our best scores are often not significant, and it is easier to

distinguish between E-values of 10, 100, and 1000 than between p-values of 0.999955, 1�

4E-44, and 1� 5E-435
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Two Approaches to Statistical Significance

� (Markov’s inequality) For any scoring scheme that uses

ln
Prob(seqjM1)

Prob(seqjM2)

the probability of a score better thanT is less thane�T for sequences distributed according to

M2. This method is independent of the actual probability distributions. We have had good results

with this method.

� (Classical parameter fitting) If the “random” sequences are not drawn from the distributionM2,

but from some other distribution, then we can try to fit some parameterized family of

distributions to scores from a random sample, and use the parameters to computeP1 andE

values for scores of real sequences.

This calibration needs to be done for each model—which includes each setting of parameters,

such as alignment style.
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What family should we use for reverse-sequence null?

Bad assumption 1:The scores with a standard null model are distributed according to an

extreme-value distribution:

P (lnProb(seqjM) > T ) � Gk;�(T ) = 1� exp(�ke�T ) :

Bad assumption 2:The scores with the model and the reverse-model are independent of each other.

Result: The scores using a reverse-sequence null model are distributed according to a sigmoidal

function:

P (score> T ) = (1� e�T )�1 :
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Derivation of sigmoidal distribution

(Derivation forcosts, notscores, so more negative is better.)

P (cost< T ) =
Z
1

�1

P (cM = x)
Z
1

x�T
P (cM 0 = y)dydx

=
Z
1

�1

P (cM = x)P (cM 0 > x� T )dx

=
Z
1

�1

k� exp(�ke�x)e�x exp(�ke�(x�T ))dx

=
Z
1

�1

k�e�x exp(�k(1 + e��T )e�x)dx

If we introduce a temporary variable to simplify the formulas:KT = k(1 + exp(��T )), then

P (cost< T ) =
Z
1

�1

(1 + e��T )�1KT�e
�x exp(�KTe

�x)dx

= (1 + e��T )�1
Z
1

�1

KT�e
�x exp(�KTe

�x)dx

= (1 + e��T )�1
Z
1

�1

gKT ;�(x)dx

= (1 + e��T )�1
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Fitting �

� The� parameter simply scales the scores (or costs) before the sigmoidal distribution, so� can be

set by matching the observed variance to the theoretically expected variance.

� The mean is theoretically (and experimentally) zero.

� The variance is easily computed, though derivation is messy:

E(c2) = (�2=3)��2 :

� � is easily fit by matching the variance:

� � �

vuuutN=(3
N�1X
i=0

c2i ) :
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Two-parameter family

� We made two dangerous assumptions: extreme-value and independence.

� To give ourselves some room to compensate for deviations from these assumptions, we can add

another parameter to the family.

� We can replace��T with any strictly decreasing odd function ofT with range[�1;+1], and

still get a probability distribution.

� Somewhat arbitrarily, we chose

� sign(T )j�T j�

so that we could match a “stretched exponential” tail.
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Fitting a two-parameter family

� For our two-parameter symmetric distribution, we can fit using 2nd and 4th moments:

E(c2) = ��2=�K2=�

E(c4) = ��4=�K4=�

whereKx is a constant:

Kx =
Z
1

�1

yx(1 + ey)�1(1 + e�y)�1dy

= ��(x + 1)
1X
k=1

(�1)k=kx :

� The ratioE(c4)=(E(c2))2 is independent of� and monotonic in� , so we can fit� by binary

search.

� Once� is chosen we can fit� usingE(c2).

20



Student’s t-distribution

� On the advice of statistician David Draper, we tried maximum-likelihood fits of Student’s

t-distribution to our heavy-tailed symmetric data.

� We couldn’t do moment matching, because the degrees of freedom parameter for the best fits

turned out to be less than 4, where the 4th moment of Student’s t is infinite.

� The maximum-likelihood fit of Student’s t seemed to produce too heavy a tail for our data.

� We plan to investigate other heavy-tailed distributions.
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Example for single-track HMM

0.1

1

10

100

1000

10000

1 10 100 1000 10000

R
an

k 
of

 o
bs

er
va

tio
n

Computed E-value

Calibration for 3chy.t2k-w0.5 HMM

desired fit
tau=1, lambda=1

tau=1, lambda=1.7628
tau=0.6757, lambda=3.0065

22



What is single-track HMM looking for?
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Example for two-track HMM
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What is second track of HMM looking for?
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Fold recognition results
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Wave hands and say “but we can fix that”

� Why did calibrated fold recognition fail for 2-track HMMs?

� “Random” secondary structure sequences (i.i.d. model) arenot representative of real sequences.

Almost any real protein (which has runs of helix or strand), will score much better than an i.i.d.

random sequence.

� Fixes:

– Better secondary structure decoy generator.

– Use real database, but avoid problems with contamination by true positives by taking only

costs> 0 to get estimate ofE(cost2) andE(cost4).

27



Database fit: one-track
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Database fit: two-track
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Fold recognition results with database fit
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Web sites

UCSC bioinformatics info: http://www.cse.ucsc.edu/research/compbio/

SAM tool suite info: http://www.cse.ucsc.edu/research/compbio/sam.html

HMM servers: http://www.cse.ucsc.edu/research/compbio/hmm-apps/

SAM-T99 prediction server: http://www.cse.ucsc.edu/research/compbio/

hmm-apps/T99-query.html

These slides:http://www.cse.ucsc.edu/˜karplus/papers/mm2001.pdf
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