
The UCSC Kestrel Parallel Processor
Andrea Di Blas, Member, IEEE, David M. Dahle, Mark Diekhans, Leslie Grate, Jeffrey Hirschberg,

Kevin Karplus, Senior Member, IEEE, Hansjörg Keller, Mark Kendrick, Francisco J. Mesa-Martinez,

David Pease, Eric Rice, Angela Schultz, Member, IEEE, Don Speck, and

Richard Hughey, Senior Member, IEEE

Abstract—The architectural landscape of high-performance computing stretches from superscalar uniprocessor to explicitly parallel
systems to dedicated hardware implementations of algorithms. Single-purpose hardware can achieve the highest performance and
uniprocessors can be the most programmable. Between these extremes, programmable and reconfigurable architectures provide a
wide range of choice in flexibility, programmability, computational density, and performance. The UCSC Kestrel parallel processor
strives to attain single-purpose performance while maintaining user programmability. Kestrel is a single-instruction stream, multiple-
data stream (SIMD) parallel processor with a 512-element linear array of 8-bit processing elements. The system design focuses on
efficient high-throughput DNA and protein sequence analysis, but its programmability enables high performance on computational
chemistry, image processing, machine learning, and other applications. The Kestrel system has had unexpected longevity in its utility
due to a careful design and analysis process. Experience with the system leads to the conclusion that programmable SIMD
architectures can excel in both programmability and performance. This paper presents the architecture, implementation, applications,
and observations of the Kestrel project at the University of California at Santa Cruz.

Index Terms—Parallel processing, SIMD, systolic array, biological sequence analysis, DNA, computational chemistry, image

processing, VLSI system design, computer architecture, high performance computing.

�

1 INTRODUCTION

THE UCSC Kestrel parallel processor is a single-board
coprocessor with a 512-element linear array of 8-bit,

single-instruction stream, multiple-data stream (SIMD)
processing elements. The system was designed and built
at the University of California at Santa Cruz, where work on
the Human Genome Project and other bioinformatics
applications motivated development of a sequence analysis
engine that could efficiently analyze databases containing
billions of characters from DNA, RNA, or proteins.

The Kestrel project had three original goals [1]. The first

goal was to develop a platform for efficient biological

sequence analysis, in particular, the Oðn2Þ Smith-Waterman

(SW) and hidden Markov model (HMM) algorithms. These

algorithms are particularly sensitive, but because computa-

tion time is proportional to the product of the sequence

lengths, they cannot be used on single workstations for
large-scale discovery.

The second goal was to create a programmable archi-
tecture that would support a variety of sequence analysis
strategies and other more general fine-grained applications.
Some of these target applications for our architecture
include image processing, computational chemistry, and
neural networks. In order to ensure generality on a wide
range of applications, Kestrel includes features such as a
multiplier and a conditional processing unit.

The third goal was to build a balanced system by
matching computation with data input and output speeds.
For the target sequence analysis applications, this meant a
balance between sustained disk transfer rates and the ability
for the array to process individual characters in that
database. While sequence analysis has moderate I/O
requirements, for which Kestrel is balanced, the system is
unbalanced for image processing and some other I/O
intensive applications.

An additional consideration was to make a system that
would be inexpensive to manufacture and require only a
single board. A high production 512 or 1,024-element
Kestrel system (without the overhead of a prototype chip
run) would have a low fabrication cost per system,
effectively leveraging the high design cost of full-custom
VLSI.

For any class of applications, there is a wide range of
choices for accelerating the problem that depends on the
structure of the problem and the need for high performance.
Fundamental characteristics of such choices include flex-
ibility, programmability, and computational density. Flex-
ibility is an attribute of the hardware: Is it possible for the
specific hardware to be used for different applications?
Programmability is a system-level attribute that transcends

80 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

. A. Di Blas, L. Grate, K. Karplus, M. Kendrick, F.J. Mesa-Martinez, E. Rice,
A. Schultz, and R. Hughey are with the Department of Computer
Engineering, University of California at Santa Cruz, 1156 High Street,
Santa Cruz, CA 95064.
E-mail: {andrea, karplus, tanru, javi, elrice, ang, rph}@soe.ucsc.edu,
lesliegrate@attbi.com.

. D. Dahle is with Intel Corporation. E-mail: ddahle@fc.hp.com.

. M. Diekhans is with the Center for Biomolecular Science and Engineering,
Baskin Engineering, University of California at Santa Cruz, 1156 High
Street, Santa Cruz, CA 95064. E-mail: markd@cbse.ucsc.edu.

. J. Hirschberg is with Intel Corporation, DP2-400, 2800 Center Drive,
DuPont, WA 98327-5050. E-mail: jeffrey.d.hirschberg@intel.com.

. H.J. Keller is with the Berne University of Applied Sciences. Switzerland.
E-mail: keller@hta-bi.bfh.ch.

. D. Pease is with the IBM Almaden Research Center, 650 Harry, Road, San
Jose, CA 95044. E-mail: pease@almaden.ibm.com.

. D. Speck is with Synaptics, 2381 Bering Drive, San Jose, CA 95131.
E-mail: don@synaptics.com.

Manuscript received 26 Apr. 2002; revised 8 June 2003; accepted 9 June 2004;
published online 23 Nov. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 116424.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

the specific hardware: Is it simple or difficult to create new,
high-performance applications? Computational density is a
hardware and software attribute, referring to the amount of
computation per area, volume, or power, and can corre-
spond inversely to the price per performance. These
attributes define a continuum across five overlapping
categories.

Category 1 systems are the least flexible, and include
single-purpose, nonprogrammable systems, such as ASICs
designed only for sequence analysis (surveyed previously
[2]) or specific image processing routines. These systems
can have the highest performance per area or power and,
thus, can maintain their computational advantage over
uniprocessors for extended periods of time. Unfortunately,
such systems may not be able to maintain their advantage
as algorithms and methods improve. For example, a chip
designed specifically for SW looses its usefulness as HMMs
are found to be a far better algorithm [3]. Similarly, a single-
purpose chip designed for a specific type of neural network
calculation will not be useful for other methods or
activation functions. As flexibility increases, this first
category merges with the next.

Category 2 includes flexible systems that are not generally
user-programmable. Many Field Programmable Gate Array
(FPGA) based systems for specific applications fall into this
category [4], [5], as well as some bit-serial machines
depending on ease of programming. These machines can
have performance gains near that of Category 1, and alsomay
be able to easily leverage off of new generations of FPGAs or
semiconductor processes. Since they are programmable,
though usually only by experts, it is possible to adapt these
systems to new algorithms andmethods. For example, FPGA
and specialized FPGAsystems thatwere originally dedicated
to SW can now perform some HMM variations and other
algorithms, as the product of painstaking FPGA designwork
[4]. There have been several projects to extend the program-
mability of Category 2 machines from the expert designer to
the expert user, though all require detailed hardware under-
standing [6], [7], [8], [9].

Category 3 systems are flexible and user-programmable,
though with extensive training. Programming these systems
requires varying levels of knowledge of the underlying
processor architecture and interconnection network, and
how that might affect efficiency, but does not require
detailed hardware knowledge about, for example, FPGAs
or bit-serial programming. This category includes machines
that can have computation densities within a factor of 10 of
the first two categories, as in SIMD arrays such as Kestrel,
MPP, CM-2, MasPar, Fuzion 150, or other SIMD machines
[10], [11], [12], [5]. Algorithms with fine-grain parallel
mappings to these systems can have excellent performance,
and the machine performance may be able to scale with the
underlying technology.

Category 4 systems are flexible and user-programmable,
but with less extensive training. These machines, tightly
coupled MIMD multiprocessors and large clusters, can
maintain the high performance of Categories 1-3, but have a
computation density on an individual application thou-
sands or millions of times lower than the single-purpose
machines [13], [14]. These are the most programmable of the
high-performance group, and can often be used effectively
with minimal knowledge of the underlying technologies. A
sequence analysis program in comparative genomics can be

easily subdivided into millions of individual tasks, which
can then be distributed to multiple processors with only a
little programming difficulty and minimal knowledge of the
architecture. Similarly, in image processing, individual
frames or parts of frames, or multiple video streams can
be partitioned among a group of processors.

Category 5 consists of flexible high-performance uni-
processors that require no specialized knowledge for
programming. Currently, this group includes super-scalar
and multithreaded architectures that maintain a serial
programming interface [15]. The computational efficiency
of Categories 1, 2, and 3 are lost, but the easy program-
mability makes these ideal for application and algorithm
development. Such applications can often be quickly
migrated to Category 4 machines, and with more difficulty
Category 3, and are occasionally important enough to
implement in the hardware of Categories 1 and 2.

The Kestrel goal of high performance and high flexibility
expands the boundaries of Category 3 in both directions.
The highly tuned VLSI architecture enables Category 1 or 2
performance on sequence analysis and other applications,
and the attention to programmability has enabled a wide
range of application developments. Additional software
development, such as compilers and comprehensive soft-
ware libraries beyond the scope of our university project,
could even place the system among the most programmable
of Category 3.

The architectural decisions surrounding Kestrel (primar-
ily made in 1993-1995) led to a particularly high density of
computation that enables the single-board system with
9 million transistors of custom VLSI, an FPGA, and various
memory chips, to outperform a current workstation 10 years
later. This possibility of careful design enabling longevity in a
given technology is an important feature of Categories 1-3
that tends to vanish with Categories 4 and 5 with their much
lower density of computation. Algorithmic development and
advances are best handled by Categories 5 (most easily), 4,
and 3 (with some difficulty), and can only be handled in
Category 2with great difficulty, the remapping or redesign of
the firmware, and cannot be handled by single-purpose
Category 1 machines. Thus, in this landscape of flexibility,
programmability, and density of computation, Category 3 is
one of themost attractive points for appropriately specialized
computation.

2 SYSTEM ARCHITECTURE

Kestrel is a single-board coprocessor designed for Linux
and Windows NT PCs (Fig. 1). The host runs a network
server and a board driver. The server provides a program
and data interface with clients for remote connection, while
the driver manages all the details of program execution.

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 81

Fig. 1. Client/server model for the Kestrel system.

When the program completes, the server returns an output
file and status information to the client.

2.1 Kestrel Board

The Kestrel board includes a 512-PE array on eight 64-PE
full-custom chips, a controller, an instruction memory,
input and output queues, and a PCI interface chip. The
FPGA-based on-board controller provides an interface
between the host machine and the PE array, performing
instruction issue, program control, and I/O control (Figs. 2
and 3).

Kestrel’s processing elements are organized in a linear
array, with inter-PE communication between nearest
neighbors. This topology is the minimal requirement for
sequence comparison algorithms and is easily scalable at
the chip and at the system level.

The data flow originates from an input file sent from the
client to the server. A system driver sends the data to the
board through the PCI bus. A PCI interface chip fills a 4 KB
input queue FIFO that is read by the controller. The
controller sends data to the PEs either through one of the
bidirectional, 8-bit data buses at the ends of the array or to
all PEs via an 8-bit immediate bus. Data is output from the
end PEs to the controller to a 4 KB output queue. The queue
is read by the PCI interface chip and sent, upon driver’s
request, to the host and then back to the client.

The control flow originates from a program sent from the
client to the server. The Kestrel driver loads the program

through the PCI bus into the board’s instruction memory.
The driver then instructs the controller to begin execution.
The controller fetches one instruction per clock cycle and
broadcasts the instruction to the entire array. Instructions
are 96 bits wide, 44 of which are used by the controller, 44
are used by the array, and 8 are used by the immediate bus.
The tight integration of controller and array instruction is a
key feature of this architecture.

In addition to managing all I/O operations, the controller
acts as instruction sequencer and includes three control
mechanisms: unconditional jumps, conditional jumps based
on the wired-or, and loops based on the value of a 16-bit
counter (the controller has a counter stack that allows up to
15 nested loop counts). The controller also generates
interrupts when an I/O queue needs servicing, when the
program terminates, or for single-stepping.

2.2 Processing Elements

The heart of the Kestrel system is the processing element
and the Systolic Shared Registers (SSRs) (Fig. 4). Each PE
contains an integrated ALU/comparator, a multiplier, a bit
shifter, flag logic, a shared 32-byte register file, and 256 bytes
of static random access memory. To maximize the perfor-
mance and provide flexibility, these components operate
independently when possible. Horizontally microcoded
instructions specify an arithmetic/logic instruction, up to
three source operands, one destination operand, local
memory access, flag selection or latching, and PE mask-
ing/conditional instructions. This encoding enables paral-
lelism at the instruction level, which significantly improves
performance in most applications. The PE is a single-cycle
machine, with all operations—including multiply-accumu-
late-accumulate—completing in one clock cycle.

The data path is 8 bits wide. This size was originally
chosen as an appropriate balance between PE size, espe-
cially the multiplier, and cycle time, with special emphasis
on the sequence analysis applications. The data path
supports both signed and unsigned operations, with full
support for multiprecision across multiple clock cycles.

2.2.1 Systolic Shared Registers

The SSRs are located between adjacent PEs and provide
storage and communication [16]. Each SSR contains 32 8-bit
registers with two read ports and one write port. Source
and destination registers are specified in any combination

82 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

Fig. 2. The Kestrel prototype board showing the physical location of all
major components.

Fig. 3. Block diagram of the Kestrel board.

from a PE’s right and left SSRs, allowing no-overhead
communication when partial results need to be shifted
through the PE array. Because instructions are broadcast,
there is no chance for conflict in SSR use between PEs.

To speedregister readsat chipboundaries, each64-PEchip
has 65 SSRs. In multichip systems, coherency is maintained
between the adjacent SSRs. For example, when awrite occurs
to the left, a value is written to the leftmost SSR of a chip and
sent off-chip to the rightmost SSR of the adjacent chip.
Register reads are always made from on-chip SSRs.

2.2.2 ALU/Comparator

The ALU combines two 8-bit operands and a carry-in bit to
produce an 8-bit result and a carry-out bit that can be
latched for multiprecision operations. The ALU is capable
of all common logic functions as well as addition and
subtraction, and is tightly coupled with a comparator [17].
Many sequence-analysis algorithms repeatedly find the
minimum of a value and a sum, The ALU/comparator
accelerates this by allowing the comparison of an ALU
result with another operand and the selection of the
minimum or maximum value in one cycle. This operation
motivated Kestrel’s 3-operand instruction format, a feature
that is also exploited in the multiplier.

2.2.3 Multiplier

The multiplier takes two independently signed or unsigned
8-bit operands and conditionally adds one or two other 8-bit
operands to produce a 16-bit result. The high-byte of the
result is stored in a special register, and the low byte of the
result is stored as specified by the instruction. The multiply-
accumulate-accumulate operation [18] is enabled by Kes-
trel’s 3-operand instructions, which can specify the multi-
plier, multiplicand and one of the addends. The other
optional addend is the high byte of the result of the
previous multiplication. This arrangement accelerates mul-
tiprecision multiplication, allowing a partial product to
accumulate both the high-order byte of the previous
multiplication (in a row of partial products) as well as the
corresponding byte from a previous row of partial
products. For example, multiplying two unsigned 4-byte
numbers requires 20 instructions instead of the 47 that
would be required without the double accumulation
feature. The multiplication and the two additions all
complete in one clock cycle.

2.2.4 Condition Stack

The condition stack is an 8-bit register that can shift left or
right by one bit position, providing a byte-wide stack for
efficiently maintaining nested conditionals. Because Kestrel
has broadcast instructions, PEs in which a condition is not
satisfied must be “turned off” while execution continues in
the remaining PEs. Each PE has a mask bit, the NOR of the
bits in its condition stack. When set, the PE is on, when it is
clear, the PE will not execute any instruction except for the
ones that manipulate the condition stack. All operations
involving the condition stack execute in parallel with the
ALU/comparator or multiplier, local SRAM access, and flag
setting/selection, effectively making conditional execution
a no-overhead operation. For conditionals nested more than
eight deep, the contents of the bit shifter can be stored in a
register and, at the same time, compressed into a single bit,
clearing the remaining bits of the bit shifter for further
conditions.

The condition stack can also be used as a simple bit
shifter and can provide input to the wired-or bus or to a bit-
serial log-reduction network used to speed the counting of
active PEs.

2.2.5 Local PE Memory

Each PE contains 256 bytes of 6-transistor static random
access memory (SRAM) and an address generator. Global
addressing uses the immediate field of the instruction, and
for local addressing, the immediate is added to a specified
register. Reads load the value into the memory data register
(MDR), which can then be used as an operand in
subsequent instructions. Using a special-purpose register
allows local memory reads to be performed during
unrelated arithmetic operations. This helps alleviate the
potential bottleneck of the single-port memory and follows
the philosophy of maximizing parallel operation of the PE
subunits.

2.2.6 Physical Design

Kestrel’s full-customCMOSchipswere fabricated in late 1997
and the complete system was running by late 1998 [1], [17].
Thanks to a careful design of the PE and to the simple
connection scheme of a linear array, 64 Kestrel processing
elements fit in a single chip (Fig. 5). The chip has 1.4 million

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 83

Fig. 4. A Kestrel processing element with systolic shared registers.

transistors on a 7.2 mm � 8.3 mm die in HP 0:5�m CMOS

technology. The PE’s floorplan is 8 percent systolic shared

registers, 4 percent ALU, 4 percent comparator, 18 percent

multiplier/accumulator, 6percent condition stack, 48percent

local SRAM, and 12 percent connections and additional

control. Thepowerdissipation iswithin the 1Wrange that can

be dissipated by the 84-pin ceramic PGA package without

heat sinks or fans. Although the chips have been tested to run

atup to 45MHz, theKestrel board runsat 20MHzbecauseof a

slow controller (single-cycle, nonpipelined) and signal

integrity problems on the board.

2.3 Kestrel Programs

Kestrel is programmed in macroassembly language. Each

instruction specifies one or more of the largely orthogonal

activities listed in Table 1. While most instructions simply

specify an ALU/comparator or multiplier operation and

their required operands, additional actions can be specified

by a series of fields separated by commas. For example,

add R1; L1; L2; read ð#20Þ

reads the contents of memory location 20, storing it in the
MDR, while at the same time adding the contents of left SSR
registers L1 and L2 and placing the result in right SSR
register R1. As a better example of the degree of parallelism
at PE subunit level, consider the code

BEGINLOOP 512

ENDLOOP multsab addmhi R10; L5; MDR; addmc R10; readð#35Þ; arrtoq; qtoarr

This code initializes the controller’s loop counter to 512, in
one clock cycle (BEGINLOOP 512). It then executes 512 times,
in 512 clock cycles total, a multiplication of two signed
operands (multsab, L5, and MDR), adding to the product
the multiplier’s high byte from the previous multiplication
(addmhi) and the current content of the destination register
R10 (addmc R10). Also, memory location 35 is read and
loaded into the MDR, one byte is read from the input queue
into register L10 of the PE at the “left” end of the array
(arrtoq), and one byte is sent to the output queue from
registerR10of thePEat the “right” endof the array (qtoarr).
In parallel, the controller decrements the loop counter and
performs a termination check and a jump (ENDLOOP). While
this example seemsextreme, similar situations are frequent in
actual Kestrel programs and are one reason for the high
performance of the machine.

3 APPLICATIONS

We have implemented a variety of applications on the
Kestrel board, ranging from the sequence analysis algo-
rithms for which Kestrel was designed to applications
requiring more creative problem mappings. Kestrel con-
tinues to perform well on many of these applications, even
when current technologies enable gigahertz clocks and
hundreds of millions of transistors on a chip. On others, our
experiences with the Kestrel hardware and software shows
room for improvement in PE and system design that would
enable Kestrel to similarly excel.

3.1 Biosequence Analysis

Computer aided sequence analysis is a critical part of
current biological research. A common task is to search a
database for a match or near-match with a query sequence.
The quality of this search is determined by the way in
which the similarity of two sequences is evaluated. The

84 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

Fig. 5. A photograph of the Kestrel 64-PE chip.

TABLE 1
Operations That Can Be Specified in a Kestrel Instruction

most familiar sequence analysis tool is BLAST [19], a serial-
machine sequence matching engine based on simple one-to-
one character matching. While BLAST is fast, its simple
algorithm leads to alignments and scores that are not as
good as they could be, sometimes missing related sequences
that can be found by more sensitive alignment algorithms
[20], [21].

Sequence alignment algorithms such as Smith-Waterman
[22] and hidden Markov models [23] add the possibility of
insertions and deletions in their comparisons, more closely
reflecting how biologists would like to make evaluations.
Unfortunately, these algorithms are computationally in-
tensive—Oðn2Þ instead of OðnÞ—thus, limiting their use. A
primary motivation for developing Kestrel was to produce
a platform that would efficiently implement this class of
more sensitive alignment algorithms [21], as well as others
that may be developed in the future.

Sequence alignment algorithms are generally solved
using a dynamic programming approach. A two-dimen-
sional score matrix is formed in which each cell contains the
best-alignment score for specific prefixes of the two strings
being aligned (Fig. 6). The final alignment score is contained
in the cell representing the complete strings (the lower right
cell in the figure). The value ci;j for each cell is calculated
from three adjacent cells,

ci;j ¼ min
ci�1; j�1 þ costðmatch=mutateÞ
ci�1; j þ costðinsertÞ
ci; j�1 þ costðdeleteÞ;

8<
:

where the costðÞ functions are specified by the particular
algorithm. Hidden Markov models (HMM), which compare

strings to probabilistic models, use more complicated but
related recurrence equations.

Sequence analysis is easily parallelized with pipelining
or by distributing pair-wise comparisons among a set of
independent processors [2], [24], [4], [25]. On a linear
processor array, the query string or model can be loaded
into the PE array, and the second string (the database) can
be shifted through the array. Each PE calculates one column
of the score matrix (Fig. 6c), completing a diagonal iþ j ¼ t
in parallel during each time step t. To score a sequence, each
PE needs to store just two previous cell values at any given
time and the only significant memory requirements are
possible lookup tables for costðÞ functions or HMM
probabilities. When an alignment is required, the corre-
spondences are found by backtracking through the matrix,
requiring additional stored information, either by redoing
the calculation on a serial machine or using one of several
low-memory strategies on a parallel processor [26], [27].

We have implemented SW and HMM algorithms on
Kestrel [28]. For the HMM algorithms, we have implemen-
ted both global and local versions. Global algorithms, such
as the simple recurrence above, consider the problem of
matching two complete sequences. Local algorithms, such
as SW, find the score of the best matching subsequences of
the two sequences, and have slightly more complicated
recurrence equations. The slower local algorithms are
almost always preferred for biological sequence analysis;
a more detailed discussion of these algorithms is presented
elsewhere [28].

To perform a database search with an HMM, the two
most common algorithms are the local versions of the

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 85

Fig. 6. Dynamic programming matrix for calculating the best alignment between two strings. In (a), each cell contains the score for the best alignment
between prefixes of the strings, and can be calculated from results in three neighboring cells. The path between the top left and the bottom right
indicates the best alignment (b), which is determined by backtracking after the matrix is completed. To map to a linear parallel processor (c), the
query sequence (ABCDE) is loaded into the PE array and the second sequence (AXDYE) is shifted through the array in reverse order. Each cell’s
value is calculated from results stored in either the same PE or its neighbor to the left. This calculates the original matrix diagonal by diagonal, from
the upper left to the bottom right.

Viterbi and the forward algorithms. The Viterbi algorithm
finds the score of the single most likely path through the
HMM [29]. The calculation is done on log-probabilities, and
involves summations and maximizations as with both SW
and the simplified recurrence above. The forward algorithm
calculates the probability that the sequence could be
generated by the model over any possible path. This
involves multiplying and adding probabilities represented
as log probabilities to avoid underflow. Our serial code [30]
uses table lookup in a 7,600-element table to sum
probabilities represented as log-probabilities. This is not
practical with just 256 bytes of memory, so we experi-
mented with two solutions: a custom floating-point format
with 24-bit exponents and 8-bit mantissas, and piecewise-
linear approximation on 32-bit log probabilities, both of
which are enabled by the Kestrel PE’s multiplier. The
second solution turned out to be more efficient.

Speedups over a serial machine are shown in Table 2; the
forward algorithm has poor relative performance because of
the large number of temporary values that must be
maintained during execution of this algorithm, requiring
significant data movement between memory and registers.

On this problem, Kestrel is slightly slower than the
Category 3 MasPar (which has 32 times as many PEs each
with a 32-bit ALU) [2], faster than the similarly sized
SAMBA system, a dedicated (Category 1) SW engine [31],
about six times faster than a 1,024-PE 1:0�m bit-serial
(Category 3) Systola system and about six times slower than
the 0:25�m, 76-million-transistor Fuzion 150 single-chip
SIMD array [5]. There are several commercial sequence
analysis systems. Paracel’s GeneMatcher2 is a VLSI-based
Category 2 system with 3,072 PEs in 16 chips, and appears
to be three times faster than Kestrel [24]. The DeCypher
Series G, based on four Altera FPGAs, appears to be nine
times faster than Kestrel [4]. The entry-level systems for
each of these products are costly ($75,000-$100,000) com-
pared to a Kestrel board that could be manufactured for
about $1,000 (0.5 percent of development cost) in medium-
volume production.

3.2 Computational Chemistry

One of the first Kestrel applications outside of its targeted
domain was a problem from computational drug design.
One step of this process is to search immense synthetic
combinatorial libraries for candidate molecules exhibiting
certain geometrical attributes. The process is made tractable
by generating bit-vectors or “fingerprints” for each mole-
cule which (once generated) can be quickly examined for
targeted features.

Calculating the fingerprints is the computational bottle-

neck. The fingerprints are generated by classifying atoms

according to their electro-chemical properties and then

creating a 14kbit bit-vector based on whether specific

configurations of three labeled atoms can occur in the

conformational space of the molecule. Because most

molecules contain several rotatable bonds, this can lead to

significant calculation—for libraries containing hundreds of

thousands of molecules with thousands of conformations

each, trillions of atom triplet calculations can be required.

While performing identical calculations on a large data set

is a classic SIMD problem, fingerprint generation was a

major departure from the sort of data flow anticipated

during Kestrel’s design. On a problem with 80 million

conformations, Kestrel sped the problem by a factor of 35 in

comparison to 25 hours on one processor of an SGI Origin

2000 [32].
This application illustrated the limitations and the

flexibility of the Kestrel memory and I/O system. The

repetitive nature of the calculation meant that identical

pieces of data needed to be broadcast to the array many

times. The Kestrel prototype has no onboard data memory,

so the first implementation downloaded the information to

the board multiple times. It turned out to be much faster to

reserve 40 percent of the array simply to store this data

(rather than actively compute) because of the rapid reuse.

The board architecture clearly should have included local

data memory.
We divided the remaining PEs into super blocks of 32,

and within each group of 32, eight PEs were used to store
temporary results. Because Kestrel is a linear array with a
bandwidth of only 1 byte per clock, it was faster to save
results locally and shift them out of the array once the entire
fingerprint calculation was complete. This bottleneck could
be reduced with a higher-bandwidth path for shifting data
in and out of the array. For nonsystolic algorithms, these
shifts cannot be done in parallel with computation.

The remaining PEs in each group were clustered into
blocks of three to store individual atom coordinates (in
Angstroms) and all the pairwise distances (binned into six
distance ranges). With more local memory, for example
1,024 bytes, two out of each group of three PEs would not be
idle. However, since the 256-byte local memory is roughly
half of the PE area, the mapping is effectively using 2/3 of
the total area allocated to each group. Increasing the PE
memory would reduce the number of PEs and, thus, reduce
performance on problems like SW that are not memory
bound, all other things being equal.

86 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

TABLE 2
SW and Local HMM Search Times in Seconds for a 10-Million-Character,

Randomly Selected Subset of a Standard Protein Database on Kestrel and a 500 MHz UltraSPARC-II

3.3 Image Processing

We also implemented a number of image processing
applications onKestrel (Table 3).Category3SIMDcomputers
are known to perform well on these highly-parallel, compu-
tationally-intensive problems with little or no data depen-
dencies, especially on linear arrays [33], [34].

A bidimensional convolution with a Gaussian kernel is
commonly used to filter image noise. Even though typical
image processing applications do not use kernel sizes larger
than 7� 7, we report results for higher sizes to confirm that
parallelism and speedup increase with kernel size. A
bidimensional Gaussian convolution is separable because it
can be decomposed into two linear convolutions, which
significantly reduces the computational load. A nonseparable
convolution requires computing the full bidimensional dot
product for every pixel—the larger kernel size and the high
degree of parallelism led to considerable speedup.

An edge detector performs a discrete derivative along
the x and y direction and returns the magnitude of the
resulting vector. This application requires the extraction of a
square root for which we used a third-order Chebyshev
polynomial approximation since Kestrel does not have a
floating-point unit. It is interesting to analyze this function
to gain a quantitative idea of how some of Kestrel’s
architectural features impact performance. The routine
requires 109 machine instructions (109 clock cycles). Of
these, 17 execute conditional branching and ALU operation
at the same time, nine execute local memory access and
ALU operations at the same time, 29 execute a multi-
plication and an addition in the same clock cycle, and nine
execute one multiplication and two additions in the same
clock cycle. These features, in this example, improve the
performance by almost 40 percent with respect to a function
that would have otherwise required 176 instructions.

The last two applications are the discrete wavelet
transforms used in JPEG2000 [35]. The algorithm is basically
a separable convolution, with the difference that even and
odd pixels are convolved using different kernels that are
also different in size. This makes the algorithm slightly
more complex, but with a performance similar to that of a
standard separable convolution.

For all applications, we report two sets of performance
numbers. In the column labeled “Kestrel,” we report the
actual computation times that include the I/O communica-
tion time across the PCI bus. In the column labeled “Kestrel
Fast I/O,” we report the computation times that we
measure on the same applications assuming a much faster
transfer rate over the PCI bus. Kestrel’s I/O subsystem,
designed for sequence analysis applications, can sustain
2.5 MB/s. While this is more than sufficient for sequence
analysis, it limits image processing applications, which
ideally would see 25 MB/s, difficult to achieve on the 32-bit,
33 MHz PCI bus.

3.4 Floating-Point Library

Kestrel does not have hardware support for floating-point
arithmetic, as such would have required significant increase
in PE size. For cases where floating-point arithmetic is
required (it is best to use fixed-point arithmetic whenever
possible), we created floating-point libraries for five formats.
These formats have exponents ranging from 8 to 16 bits and
mantissas from 7 to 23 bits and have been optimized for
Kestrel (for example, with the sign bit being placed after the
exponent to reduce packing and unpacking overhead). The
only rounding method implemented so far is truncation. We
have implemented these formats both with and without
special representations of zero, infinity, and NaN. In the first
case, Kestrel performs addition at 86 MLOPS, multiplication
at 162 MFLOPS, and division at 93 MFLOPS. The second
option is offered because of the high overhead required for
dealingwith these special cases, making the user responsible
for such cases as needed. This improves performance to
96MFLOPS for addition, 330MFLOPS formultiplication, and
132 MFLOPS for division.

Add/subtract is the most expensive because of the cost of
aligning operands before the operation and normalizing the
result afterward. The cost of normalizing a subtraction result
can be high because subtraction can zero any number of bits.
When both operands are known to be of the same sign in all
PEs, the cost of addition can be reduced by 25-30 percent. The
cost of add/subtract can be reduced bymore than 15 percent
by using a floating-point format based on base 256—where
the leading word of the mantissa is maintained as an integer

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 87

TABLE 3
Performance of Some Image Filters on Kestrel

between 1 and 255. (A similar strategy based on base 16 was
used in the IBMS/360 processor [36].) OnKestrel, this would
remove the need for bit-wise normalization. On the other
hand, the cost of multiplication and division would increase,
and each floating-point value would require an extra word
for the same precision. Division is implemented using a
modified Newton-Raphson algorithm, which uses multi-
plication to produce quadratically converging estimates of a
reciprocal [37].

3.5 Neural Networks

Neural networks are a tool for pattern recognition,
classification, function approximation, and combinatorial
optimization. Hopfield networks are one form of neural
network that we implemented on Kestrel.

Hopfield networks are fully connected networks useful
for combinatorial optimization problems. On Kestrel, we
used Hopfield nets to solve the Maximum Clique problem,
an NP-hard graph problem [38]. For each graph, each vertex
is mapped to a PE which stores edge information to the
other vertices. Each node also contains a Boolean variable
indicating its inclusion in a developing clique. After
initializing this variable, the program randomly selects a
PE for which a change in the variable’s value would
decrease an energy function. The energy function is chosen
so that when the process is repeated until a stable state
occurs (i.e., where the energy cannot be reduced by
changing any single variable), a clique is found that is not
the subset of a larger clique—a “maximal” clique. Because
this maximal clique is not necessarily the overall maximum
clique, the process is repeated multiple times for each graph
with adaptive restarts in an effort to find as large a clique as
possible.

We tested this algorithm on several DIMACS benchmark
graphs [39] on two Category 3 machines, Kestrel and a
MasPar MP-2, as well as on a Category 5 serial machine, a
Sun workstation (Table 4) [40], [41]. The MasPar imple-
mentation used a slightly different mapping to try to
maximize PE utilization based on our “SIMD Phase
Programming Model” [42].

4 DISCUSSION

The UCSC Kestrel parallel processor was designed to
accelerate biosequence analysis, matching computation
and I/O, and at the same time to be as flexible as possible

and to have a measure of simplicity that could ensure its
low unit cost. Kestrel succeeded in these goals, and remains
useful a decade after its original design, a testament to
broadly applicable, user-programmable SIMD (Category 3)
computing. The design and implementation of Kestrel
continuously considered computational density, flexibility,
programmability, and performance. Its success is due to
many people and design choices and, in this section, we
attempt to isolate some of the important decisions.

Computational Density. The close coupling of architec-
tural design and VLSI design enabled creation of a dense
full-custom chip. This high computational density, even in
a technology that was somewhat out of date on fabrication,
meant that the 1.4 million transistor chip would still be
useful even as fabrication generations passed it by. In the
sequence comparison domain, computation density can be
represented in SW cells updates per second per transistor,
CUPS/T (Table 5). This measure is not fully independent of
technology scaling, as it does not take into account
increases in clock speed between fabrication generations.
A Kestrel system implemented in 0:25�m would be
expected to run, on a well-designed board, at 80 MHz
(twice as fast as the current maximum speed of the 0:5�m
chips), giving 140 MCUPS/T. The most interesting point
about this table is that Kestrel, and Fuzion in its more
advanced technology, have higher densities of computation
than machines designed solely for sequence analysis.

Flexibility. There are three primary approaches to
flexibility: hardware configuration, distributed software
control, and global software control.

Hardware configuration, as in FPGAs, can provide very
high performance on specific algorithms. The control bits
are located within the controlled units, so there is no time
required, after initial configuration, for control distribution.
FPGAs are thus excellent for single-purpose or few-purpose
machines, but restrict user programmability because they
require hardware design. Distributed software control, as in
MIMD machines, solves the programmability problem but
greatly reduces computational density by requiring sig-
nificant local control and memory. As designers continually
strive to maintain the uniprocessor model on super-scalar
machines, control becomes increasingly complex, making
such processors a poor basis for high-performance single-
chip multiprocessor chips.

Global software control, as on SIMD machines, enables
computational density higher than either FPGAs or MIMD

88 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

TABLE 4
Hopfield Neural Networks for MaxClique on Some DIMACS Benchmark Graphs

machines, but may reduce programmability in comparison
to MIMD machines and may reduce performance in
comparison to distributed hardware configuration. Instruc-
tion broadcast has two primary disadvantages: not all PEs
may need the broadcast instruction, and instruction broad-
cast can take time.

Kestrel addresses local control with its condition stack
and associated processing. This reduction in processing
time for conditionals minimizes the processing time wasted
for simply managing conditions (as is also similarly wasted
on serial machines), reducing the overhead to the bare
minimum: the set of data-stream operations that are
performed as part of the “if” and as part of the “else.”
Architecturally, the condition stack and its tight integration
with the processing elements is one of Kestrel’s most
important innovations. Kestrel’s global execution control
based on local conditions (wired-OR) and local indirect
addressing of PE memory add additional processor auton-
omy that is critical to many applications [43].

Programmability. The SIMD programming paradigm
requires more training than serial programming or MIMD
programming. However, the efficiency gains in computa-
tional density (and, hence, performance per price) of
Category 3 SIMD machines can outweigh the specialized
understanding required for these machines.

The simplicity of the architecture, especially the integra-
tion of computation and communication with the Systolic
Shared Registers, provides a certain level of intuitiveness
and elegance to Kestrel programming. Many undergradu-
ate and graduate students have quickly learned kestrel
assembly language to complete class projects including
HMM, FFT, floating-point, neural networks, trigonometric
functions, discrete wavelet transforms, discrete cosine
transforms, and irregular applications.

As with many predecessor machines, we contemplated
the ideal programming system for Kestrel. Starting with
MasPar’s MPL language, we considered a variety of
additions to enable full exploitation of the Kestrel archi-
tecture and to simplify many of the higher-level tasks. We
did not complete the project, in part due to personnel
changes and in part due to the difficulty of optimizing code
for 32 registers and 256 bytes of memory. As a university
project, our time was better spent creating new applications,
accelerating the inner cores by hand to explore the frontiers
of specialized SIMD computation.

As the category of single-chip-SIMD machines expands,
as well as the code base, these machines may approach the
higher programmability of those in Category 4. Although

the underlying architecture constrains low-level program-
ming, it does not constrain the development of compre-
hensive libraries for various application domains, or the
development of programming paradigms to assist user
development of new library functions. This will fit well as
efforts in sequence analysis, image and graphics processing,
and machine learning become subroutines called as part of
a processing pipeline to, for example, predict the structure
of a protein, design a molecule, or understand a video
stream.

Performance. Kestrel performs exceptionally well a
decade after its original design. One design strategy that
proved particularly important was the balancing of com-
putation with broadcast time. Simply put, if it takes a
significant amount of time to broadcast an instruction, make
sure that the computational units determine clock speed.
Each single broadcast must do one or more useful
operations; an SIMD machine that requires separate broad-
casts for each bit, or microcodes each operation over several
cycles, will quickly collapse under its own weight.

Kestrel has a “somewhat long” instruction word. Each
instruction has complete information about operands from
SSRs and special registers, ALU and multiplier operations,
condition stack operations, local memory access, and result
storage. The instruction memory to PE instruction broadcast
is not a determining factor of Kestrel clock speed.

Instruction broadcast though our FPGA array control-
ler does currently limit Kestrel’s speed. The solution to
this problem, as to the problem of designing 1 GHz SIMD
arrays, is pipelining. Unlike serial code, the instruction
sequence for most SIMD applications has little depen-
dence on the data being processed. Serial machines skip
over conditional code that is not needed. With 512 (or
thousands or millions of) processing elements, all alter-
natives of a conditional section are broadcast. Thus, as
with vector processors, a high-performance SIMD ma-
chine with a 4-8 clock (or higher) pipelined instruction
broadcast will rarely see the 4-8 cycle stall.

Our experience with the system has led to several
thoughts on how to improve the design for better
performance:

. Onboard memory would significantly aid the com-
putational chemistry and other applications.

. Increasing PE memory, for example, with a small
4KB DRAM, could aid many applications, such as
object recognition and tracking.

. Adding a faster I/O bus throughout the array would
speed nonsystolic applications.

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 89

TABLE 5
Smith-Waterman Performance and Technology Efficiency for Different Architectures

. Increasing word size to 16-bits would improve
computational performance and computational den-
sity on most applications.

4.1 Conclusion

We envisioned Kestrel as a single-board parallel processor,
able to perform its target applications as fast as a single-
purpose accelerator, and also able to be intuitively
programmed. The design enabled exploration of the land-
scape between the flexible and easily programmable
systems of Category 4 and the flexible but hard-to-program
FPGA-based systems of Category 2. In the end, we found
Kestrel to be not so much a programmable sequence
analysis engine, but a small-scale massively parallel
processor.

A decade after the design of Kestrel, it is possible to place
a large SIMD array and controller, host processor, and
instruction and data memories on a single chip. Many of the
issues we have identified in the design and use of our
single-board Kestrel system would exist in the construction
of a single-chip Kestrel system. A careful design with
pipelined instruction distribution, higher-bandwidth data
connections and, above all, an emphasis on simplicity and
programmability, would provide extraordinary computa-
tional power within a single chip. We hope that our
experiences will inform designers to come about the
effective use of hardware and software resources.

ACKNOWLEDGMENTS

The authors thankKenKennedy for valuable discussions and
encouraging comments on several versions of this paper. This
work was supported in part by US National Science
Foundation (NSF) grants MIP-9423985 and EIA-9905322
and their REU supplements, NSF REU Site grant NSF EIA-
0244016, a grant from the Affymax Research Institute, and
seed funding from the University of California at Santa Cruz.
The authors are also particularly appreciative of the large
number of undergraduates who have worked with and
contributed to the Kestrel project, including: Pieris Berreitter,
Alexandra Carey, Kevin Delaney, Brian Feaster, David
Fulton, Jason Guilford, Jennifer Leech, Gabriel Littman,
Daniel Littrell, JustinMeyer,MichaelMorrison, EricPerlman,
Osama Salem, Aaron Tomb, and Ebin LeeWarner, as well as
to graduate students Manju Anand, Elizabeth Avila, Cyrus
Bazeghi, KaushikNarayanun, Goeff Ryder, GangWang, and
Doug Williams.

REFERENCES

[1] J.D. Hirschberg, D. Dahle, K. Karplus, D. Speck, and R. Hughey,
“Kestrel: A Programmable Array for Sequence Analysis,” J. VLSI
Signal Processing, vol. 19, pp. 115-126, 1998.

[2] R. Hughey, “Parallel Sequence Comparison and Alignment,” Proc.
CABIOS Conf., vol. 12, no. 6, pp. 473-479, 1996.

[3] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T.
Hubbard, and C. Chothia, “Sequence Comparisons Using Multi-
ple Sequences Detect Three Times as Many Remote Homologues
as Pairwise Methods,” J. Molecular Biology, vol. 284, no. 4, pp. 1201-
1210, 1998.

[4] Time Logic Inc., Decypher II Product Literature, http://
www.timelogic.com, 2002.

[5] B. Schmidt, H. Schroder, and M. Schimmler, “Massively Parallel
Solutions for Molecular Sequence Analysis,” Proc. Int’l Parallel and
Distributed Processing Symp., pp. 186-192, Apr. 2002.

[6] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich, D.
Sweely, and D. Lopresti, “Building and Using a Highly Parallel
Programmable Logic Array,” Computer, vol. 24, pp. 81-89, Jan.
1991.

[7] M. Gokhale et al., “Processing in Memory: The Terasys Massively
Parallel PIM Array,” Computer, vol. 28, pp. 23-31, Apr. 1995.

[8] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the Streams-
C C-To-FPGA Compiler: An Applications Perspective,” Proc.
ACM/SIGDA Ninth Int’l Symp. Field Programmable Gate Arrays,
pp. 134-140, 2001.

[9] C. Ebeling, D.C. Conquist, and P. Franklin, “Rapid—Reconfigur-
able Pipelined Datapath,” Proc. Sixth Int’l Workshop Field-Program-
mable Logic and Applications, pp. 126-135, 1996.

[10] The Massively Parallel Processor, J.L. Potter, ed., Cambridge, Mass.:
MIT Press, 1985.

[11] L.W. Tucker and G.G. Robertson, “Architecture and Applications
of the Connection Machine,” Computer, vol. 21, pp. 26-38, Aug.
1988.

[12] J.R. Nickolls, “The Design of the Maspar MP-1: A Cost Effective
Massively Parallel Computer,” Proc. COMPCON Conf. Spring 1990,
pp. 25-28, Feb. 1990.

[13] K. Hwang and Z. Xu, Scalable Parallel Computing. New York:
McGraw-Hill Book Co., 1998.

[14] D.E. Culler and J.P. Singh, Parallel Computer Architecture. Los
Altos, Calif.: Morgan Kaufmann Publishers, 1999.

[15] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, third ed., Los Altos, Calif.: Morgan Kaufmann Publish-
ers, 2002.

[16] R. Hughey and D.P. Lopresti, “B-SYS: A 470-Processor Program-
mable Systolic Array,” Proc. Int’l Conf. Parallel Processing, C. Wu,
ed., vol. 1, pp. 580-583, Boca Raton, Fla.: CRC Press, Aug. 1991.

[17] D.M. Dahle, J.D. Hirschberg, K. Karplus, H. Keller, E. Rice, D.
Speck, D.H. Williams, and R. Hughey, “Kestrel: Design of an 8-Bit
SIMD Parallel Processor,” Proc. 17th Conf. Advanced Research in
VLSI, pp. 145-162, Sept. 1997.

[18] D.E. Knuth, The Art of Computer Programming, vol. 2, Reading,
Mass.: Addison-Wesley, second ed., 1981.

[19] S.F. Altshul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
pp. 403-410, 1990.

[20] W. Pearson, “Comparison of Methods for Searching Protein
Sequence Databases,” Protein Science, vol. 4, pp. 1145-1160, 1995.

[21] J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard,
and C. Chothia, “Sequence Comparisons Using Multiple Se-
quences Detect Three Times as Many Remote Homologues as
Pairwise Methods,” J. Molecular Biology, vol. 284, no. 4, pp. 1201-
1210, 1998. http://www.mrc-lmb.cam.ac.uk/genomes/jong/
assess_paper/assess_paperNov.html.

[22] T.F. Smith and M.S. Waterman, “Identification of Common
Molecular Subsequences,” J. Molecular Biology, vol. 147, pp. 195-
197, 1981.

[23] A. Krogh, M. Brown, I.S. Mian, K. Sjölander, and D. Haussler,
“Hidden Markov Models in Computational Biology: Applications
to Protein Modeling,” J. Molecualar Biology, vol. 235, pp. 1501-1531,
Feb. 1994.

[24] Paracel, Inc., Genematcher2 Product Literature, http://
www.paracel.com, 2001.

[25] Y. Yamaguchi and T. Maruyama, “High Speed Homology Search
with Fpgas,” Proc. Pacific Symp. Biocomputing 2002, pp. 271-282,
2002.

[26] D.S. Hirschberg, “A Linear Space Algorithm for Computing
Maximal Common Subsequences,” Comm. ACM, vol. 18, pp. 341-
343, June 1975.

[27] J.A. Grice, R. Hughey, and D. Speck, “Reduced Space Sequence
Alignment,” Proc. CABIOS Conf., vol. 13, pp. 45-53, Feb. 1997.

[28] L. Grate, M. Diekhans, D. Dahle, and R. Hughey, “Sequence
Analysis with the Kestrel SIMD Parallel Processor,” Proc. Pacific
Symp. Biocomputing 2001, pp. 263-274, 2000.

[29] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proc. IEEE, vol. 77, pp. 257-
286, Feb. 1989.

[30] R. Hughey and A. Krogh, “Hidden Markov Models for Sequence
Analysis: Extension and Analysis of the Basic Method,” Proc.
CABIOS Conf., vol. 12, no. 2, pp. 95-107, 1996, http://
www.cse.ucsc.edu/research/compbio/sam.html.

[31] D. Lavenier, “Speeding up Genome Computations with a Systolic
Accelerator,” SIAM News, vol. 31, no. 8, pp. 6-7, 1998.

90 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

[32] E. Rice and R. Hughey, “Molecular Fingerprinting on the SIMD
Parallel Processor Kestrel,” Proc. Pacific Symp. Biocomputing 2001,
pp. 323-334, 2000.

[33] P.P. Jonker, “Why Linear Processor Arrays are Better Image
Processors,” Proc. Int’l Conf. Pattern Recognition (ICPR), vol. 3,
pp. 334-338, 1994.

[34] S. Kyo, S. Okazaki, Y. Fujita, and N. Yamashita, “A Parallelizing
Method for Implementing Image Processing Tasks on SIMD
Linear Processor Arrays,” Computer Architectures for Machine
Perception, pp. 180-184, Oct. 1997.

[35] D. Taubman and M. Marcellin, JPEG2000—Image Compression
Fundamentals, Standards and Practice. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 1999.

[36] J.P. Hayes, Computer Architecture and Organization. New York:
McGraw-Hill Book Co., 1976.

[37] E. Rice and R. Hughey, “Multiprecision Division on an 8-Bit
Processor,” Proc. 13th IEEE Symp. Computer Arithmetic, pp. 74-81,
July 1997.

[38] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[39] Center for Discrete Mathematics and Theoretical Computer
Science, http://dimacs.rutgers.edu, 2004.

[40] A. Di Blas, A. Jagota, and R. Hughey, “Parallel Implementations of
Optimizing Neural Networks,” Proc. Artificial Neural Networks in
Eng. Conf. (ANNIE 2000), pp. 153-158, Nov. 2000.

[41] A. Di Blas, A. Jagota, and R. Hughey, “Optimizing Neural
Networks on SIMD Parallel Computers,” Parallel Computing,
pending publication.

[42] A. Di Blas and R. Hughey, “Explicit SIMD Programming for
Asynchronous Applications,” Proc. Int’l Conf. ASAP, pp. 258-267,
July 2000.

[43] D.M. Hawver and G.B. Adams III, “Processor Autonomy and Its
Effect on Parallel Program Execution,” Proc. Symp. Frontiers of
Massively Parallel Computing, pp. 144-153, Oct. 1996.

[44] Proc. Pacific Symp. Biocomputing 2001, London: World Scientific,
2001.

Andrea Di Blas received the MS and PhD
degrees in electrical engineering from Politecni-
co di Torino, Italy, in 1994 and 2000. He has
been a researcher at the University of California
at Santa Cruz since 1999, where he is also a
lecturer with the Department of Computer En-
gineering. His research interests include parallel
processing methodologies and applications,
computer architecture, reconfigurable comput-
ing, image processing, combinatorial optimiza-

tion, and neural networks. He is a member of the IEEE and the IEEE
Computer Society.

David M. Dahle received the BS degree in
computer engineering and physics, and the MS
degree in computer engineering from the Uni-
versity of California at Santa Cruz. He began
work on on the full-custom Kestrel chip design
as an undergraduate, and the system was the
focus of his Master’s thesis. He is presently
working on IA-64 processor design and verifica-
tion at Intel.

Mark Diekhans received the bachelors degree
in computer science and biology from Indiana
University 1985. He is currently a staff engineer
at the Center for Bimolecular Science and
Engineering at the University of California at
Santa Cruz, as well as a graduate student in
computational biology. His work currently in-
volves gene and cDNA clone validation and
computational gene finding. Previously, he was
a software engineer developing operating sys-

tem and server software.

Leslie Grate received the PhD degree in
computer engineering in 2000 from the Univer-
sity of California at Santa Cruz. He is presently a
comptuational biologist at Lawrence Berkeley
National Laboratory. His work on the Kestrel
project included the systems fully operational
and making the sequence analysis algorithms as
fast as possible.

Jeffrey Hirschberg received the BS degree in
computer engineering from the University of
Washington. He received the MS degree in
computer engineering from the University of
California at Santa Cruz. His graduate research
focused on the development of Kestrel, an SIMD
processor for DNA and protein analysis. He
currently works for Intel Corporation.

Kevin Karplus received the BS degree in
mathematics from Michigan State University,
and the MS degree in mathematics and PhD
degree in computer science from Stanford
University. He is now a professor in the
Biomolecular Engineering Department at the
University of California at Santa Cruz (recently
moved from the Computer Engineering Depart-
ment). He is undergraduate and graduate
director for bioinformatics at UCSC. His main

research interest is the prediction of protein structure from amino acid
sequences. He is a senior member of the IEEE and the IEEE Computer
Society, and a member of the International Society for Computational
Biology (ISCB).

Hansjörg Keller received the PhD degree in
applied physics from the University of Berne,
Switzerland. He joined the Kestrel group for a
year-long sabbatical from the faculty of the
Berne University of Applied Sciences, Switzer-
land. While at the University of California at
Santa Cruz, he developed the array controller
and several applications.

Mark Kendrick received the BS degree in
computer engineering and physics from the
University of California at Santa Cruz. He is
currently in a staff research position working on
the next generation Kestrel system, Kestrel2.
His work is mainly focused on the low-level
system design and printed circuit board design.
He will begin graduate studies in physics in Fall
2004.

DI BLAS ET AL.: THE UCSC KESTREL PARALLEL PROCESSOR 91

Francisco J. Mesa-Martinez is a PhD candi-
date in the Computer Engineering Department at
the University of California at Santa Cruz. His
research interests include multithreaded proces-
sor architectures, parallel processing, and re-
configurable computing. Additional research
involvement includes autonomous distributed
robotic systems.

David Pease is a lecturer and is studying for the
PhD degree in the Computer Engineering and
Computer Science Departments at the Univer-
sity of California at Santa Cruz. He is also a
senior technical staff member of computer
science at the IBM Almaden Research Center
in San Jose, California. Besides his work on
Kestrel, he has recently led IBM’s Storage Tank
distributed file system research project, and is
currently investigating autonomic management
of storage subsystems.

Eric Rice received the BS degree in computer engineering from the
University of California at Santa Cruz, where he is working on the PhD
degree. He joined the project as an undergraduate working on
algorithms for division in software on Kestrel. His graduate work
concerns hardware algorithms to accelerate division.

Angela Schultz is a graduate student in the
Department of Computer Engineering at the
University of California at Santa Cruz. Her
academic interests include reconfiguable com-
puting, parallel architectures, and applications of
FPGA-based systems. She is a member of the
IEEE, ACM, and SWE.

Don Speck received the BS degree in engineering and applied science
from the California Institute of Technology and the MS degree in
computer engineering at the University of California at Santa Cruz. Prior
to Kestrel, he spent six years at the California Institute of Technology
working on the Mosaic multicomputer project, for which he designed the
DRAM. He is presently an engineer with Synaptics in San Jose, CA,
where he designs mixed-signal VLSI chips for touchpads.

Richard Hughey is a professor and chair of the
Computer Engineering Department at the Uni-
versity of California at Santa Cruz (UCSC) and is
also affiliated with the Department of Biomole-
cular Engineering. He received the BS degree in
mathematics and the BA degree in engineering
from Swarthmore College, Pennsylvania, and
the ScM and PhD degrees in computer science
from Brown University. His research includes
bioinformatics and parallel processing and,

especially, the combination of the two as in the Kestrel project. His
additional interests include academic program planning and develop-
ment. He is a senior member of the IEEE and the IEEE Computer
Society, and a member of ASEE, ISCB, and the Society of Women
Engineers, in which he serves as faculty advisor to the UCSC student
chapter.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

92 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

