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Abstract-A flexible motif search technique is presented which has two major components: (1) a 
generalized profile syntax serving as a motif definition language; and (2) a motif search method specifically 
adapted to the problem of finding multiple instances of a motif in the same sequence. The new profile 
structure, which is the core of the generalized profile syntax, combines the functions of a variety of motif 
descriptors implemented in other methods, including regular expression-like patterns, weight matrices, 
previously used profiles, and certain types of hidden Markov models (HMMs). The relationship between 
generalized profiles and other biomolecular motif descriptors is analyzed in detail, with special attention 
to HMMs. Generalized profiles are shown to be equivalent to a particular class of HMMs, and conversion 
procedures in both directions are given. The conversion procedures provide an interpretation for local 
alignment in the framework of stochastic models, allowing for clear, simple significance tests. A 
mathematical statement of the motif search problem defines the new method exactly without linking it 
to a specific algorithmic solution. Part of the definition includes a new definition of disjointness of 
alignments. 

1. INTRODUCTION 

The ultimate goal of the various genome sequencing 
projects is to understand the information contained 
in a genetic program. Elucidation of the complete 
base sequence of an organism’s genome, or of the 
complete amino acid sequence of its protein inven- 
tory, constitutes only the first step towards this goal. 
The real challenge lies in the interpretation of these 
data by automatic procedures. Understanding genetic 
information in the scientific sense means the ability to 
predict the biological function of a base sequence 
through application of explicit rules. 

The degeneracy of genetic coding mechanisms 
constitutes the major difficulty in this endeavor. This 
problem arises both at the level of gene and at 
the level of protein sequence. For instance, gene 
expression signals having the same function can 
exhibit a remarkable degree of sequence variation. 
Likewise, protein domains having similar 3D struc- 
tures may vary greatly in amino acid sequence. 
Despite this surprising diversity, groups of biologi- 
cally related sequences usually do share some 
common properties. The totality of these common 
properties is called a sequence motif. 

The role of a motif search technique in gene and 
protein function prediction is to decompose a large 
sequence into smaller subsequences constituting 

* Author for correspondence. 

elementary structural modules or control units of 
elementary physiological processes. In a typical 
application, a new sequence of unknown function is 
compared against a database of many known motifs. 
A technique suitable for this purpose has two clearly 
distinguishable but operationally interdependent 
components. The first one is a motif descriptor or 
motif definition language, used to describe the motif; 
the second is a search method used to locate instances 
of the already defined motif in a particular sequence. 

The motif search technique described here is the 
result of an attempt to conceptually unify and to 
combine the functions of many seemingly different 
approaches into a single method. Although it has 
been developed to support a recent format extension 
of the PROSITE data bank (Bairoch, 1993), it is 
designed as a general tool applicable in many other 
contexts. 

The central component of the new motif definition 
language for PROSITE is a motif descriptor called a 
generalized profile. Accessory syntactic features con- 
trol search options and other operations pertinent to 
motif-based sequence interpretation to make up a 
motif definition language called generalized profile 
syntax. A more detailed description of the generalized 
profile syntax together with biological examples can 
be found in Bucher & Bairoch (1994). 

One objective of this paper is to define the search 
method for generalized profiles by an exact formu- 
lation of the mathematical problem, leaving no 
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ambiguities to its implementation by a specific algor- different classes of motif descriptors. The former is 
ithm. (Efficient algorithms to solve the problem will a qualitative descriptor which identifies members of 
be presented elsewhere.) A second goal of the paper a sequence set. The latter is a quantitative descriptor 
is to clarify the relationships between various which assigns a distance measure (the number of 
biomolecular motif descriptors, in particular between mismatches relative to the consensus) to each 
generalized profiles and the recently introduced sequence of the corresponding length class. Only in 
hidden Markov models (HMMs), hoping that conjunction with a cut-off value does such a consen- 
a better understanding of these relationships will sus sequence define a subset of the sequence space. 
facilitate communication between research communi- However, a cut-off value is typically considered a 
ties and interoperability of research methodologies in parameter of a search method rather than a 
the field. parameter intrinsic to the motif definition. 

The rest of this paper is divided into five major 
sections: Section 2 surveys the different motif descrip- 
tors that have been used, Section 3 describes the 
structure of the generalized profiles now used in 
PROSITE, Section 4 shows the equivalence between 
generalized profile alignments and Viterbi paths in a 
class of hidden Markov models (HMMs), Section 5 
gives a description of the motif search problem, and 
Section 6 gives comparisons using HMMs and gener- 
alized profiles to classify Swiss-Prot into globins and 
non-globins. 

An appendix is provided to present in detail the 
algorithm used to compute optimal alignment scores 
for general profiles. Since this algorithm is almost 
identical with the dynamic programming algorithms 
used for sequence, profile, and HMM alignment, it 
can be skipped by most readers. 

A weight matrix is a more flexible type of quantitat- 
ive motif descriptor containing weights or scores for 
each residue at each position. The total score assigned 
to a sequence of the same length is the sum of 
corresponding residue scores over all positions. A 
weight matrix score usually reflects similarity rather 
than distance. Weight matrices have been applied 
with great success to a variety of gene control signals 
mediated by sequence-specific DNA binding proteins 
[for example, see Staden (1984), and for reviews see 
Storm0 (1988) and Claverie (1994)]. The power of 
weight matrices results from their capacity to dis- 
tinguish between mismatches of varying degrees of 
severity. 

2. SURVEY OF BIOMOLECULAR MOTIF 
DESCRIPTORS 

A motifdescriptor is a data structure used to define 
a sequence motif. Frequently used biomolecular 
motif descriptors include consensus sequences, weight 
matrices, and profiles. A motif definition based on 
such a descriptor may serve various functions in a 
motif search operation. A common capacity of all 
motif definitions is that they define a subset of 
potentially interesting sequences, either in an exact 
or probabilistic way. In addition, they may assign 
a score to a potential motif match or define a specific 
alignment between a sequence and an intrinsic 
model. 

An exact word by itself does not qualify as a motif, 
but provides a didactically useful starting point to 
develop the hierarchical classification system of motif 
descriptors shown in Fig. 1. One way of introducing 
sequence variation into an exact word is by allowing 
a set of alternative residues to occur at certain 
positions. The resulting motif descriptor is referred to 
as consensus sequence with degenerate positions. 
Another way of introducing sequence variation is by 
allowing a small number of mismatches to occur, 
irrespective of position. This leads to a so-called 
consensus sequence with mismatches. The two strat- 
egies can be combined into a more general type of 
consensus sequence. 

The regular -expression used in the PROSITE data 
bank (Bairoch, 1993) can be viewed as an extension 
of a consensus sequence with degenerate positions. 
Each position of such a pattern can be occupied by 
any residue from a specified set of acceptable 
residues, and in addition can be repeated a variable 
number of times within a specified range. Moreover, 
the pattern syntax provides features to anchor a 
pattern at the beginning or at the end of a sequence. 
PROSITE patterns are qualitative motif descriptors, 
like consensus sequences with degenerate positions, 
but differ from the former in an important way. They 
are variable-length motif descriptors assigning 
membership to a sequence class through the inter- 
mediate of an alignment between the sequence and 
the motif. Because different alignments are possible, 
a single sequence can match a pattern in different 
ways, as illustrated by the example in Fig. 2. This 
raises the question whether the notion of a motif 
instance should be applied to a sequence matching 
the motif in one or several ways, or to a specific 
alignment between a sequence segment and the motif. 
The latter solution seems more appropriate because 
individual positions of PROSITE patterns are often 
associated with specific biological functions mapped 
to the sequence via the alignment. In such cases, 
two alternative alignments represent two biological 
hypotheses which can be tested by experiment. 

Consensus sequences with degenerate positions 
and consensus sequences with mismatches represent 

The flexible patterns described by Barton & 
Sternberg (1990) combine elements of weight 
matrices and PROSITE patterns. This type of pattern 
consists of an alternating series of residue positions 
and gaps. Each residue position contains a set of 
weights for each residue of the sequence alphabet. 
The gaps define length ranges for spacer segments 
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consisting of any sequence. Flexible patterns have 
been presented as a method to detect weak structural 
similarities of protein domains. The sequence targets 
used in Mulligan et al. (1984) to characterize and 
locate E. coli promoters are very similar to flexible 
patterns. The only extension is a scoring scheme for 
variable-length spacer segments. 

Flexible patterns and sequence targets are the 
simplest examples of a quantitative variable-length 

motif descriptor. They clearly represent generaliz- 
ations of a weight matrix just as a PROSITE pattern 
represents a generalization of a consensus sequence 
with degenerate positions. The relationship between 
PROSITE patterns and flexible patterns is less obvi- 
ous. The former contains some syntactic features that 
cannot be translated into the latter, for instance those 
allowing fixing a motif at the beginning or at the 
end of a sequence. Also, PROSITE patterns permit 

Exact word 

Consensus sequence 
with degenerate positions 

Consensus sequence 
with mismatches 

5 
PROSITE pattern 

(Bairoch 1993) 

Consensus sequence with 
degenerate positions and mismatches 

Weight matrix 
(e.g. Staden 1984, Storm0 1988) 

Flexible pattern 
(Barton & Sternberg 1990) 

Sequence target 
(Mulligan et al. 1984) 

Linear hidden Markov model Profile 

I \ Generalized profile 
(Bucher & Bairoch 1994) 

Stochastic context-free grammar 
(Sakakibara, et al. 1994) General hidden Markov model 

Fig. 1. Relationships between various motif descriptors. Motif descriptors are arranged by increasing 
complexity along the vertical axis. An arrow indicates that the upper descriptor can be understood as a 
special case of the lower descriptor. Broken lines mean that the mapping is only approximate, or that there 

are exceptions that cannot be mapped to the more general descriptor (see text). 
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C-x(4,6)-tFYH]-x(5,10)- C-x(0,2)-C-x(2,3)-C -x(7,11)-C-x(4,6)-[DNEQSP]-x(2)- c 

I I I I I I I I 
c-_-Q____ Y-RBYWSENLFQC---PN---C---SL---C-LNGTVIILS-C --Q~~~---~-~~~~~~‘ly~~~ 

c-x(4,6)-[FYH]-x(5,10)- C-x(0,2)-C-x(2,3)-C -x(7,11)- C-x(4,6)-[DNRQSPI-x(2)- C 

I I I I I I I I 
C--5XNQYR ---H-YWSENLFQ-C---FN---C---SL---C-LNGTVBLS-C --QEKQ---N-------TV--C 

Fig. 2. Two alternative alignments between a PROSITE pattern and a sequence. The PROSITE pattern 
(Act. PSO0652) describes a cysteine-rich motif of the TNFR/NGFR family. The sequence corresponds to 
positions 127-166 of the TNF receptor 1 precursor (Swiss-Prot Act. P19438). The figure illustrates the 
fact that the same sequence segment can match a variable-length motif in various ways, representing 

alternative biological hypotheses. 

variable number repetitions of any kind of positions 
whereas flexible patterns and sequence targets restrict 
this possibility to spacer positions. In practice, most 
PROSITE patterns are convertible into flexible 
patterns, because the incompatible features are rarely 
used. 

The projles introduced by Gribskov et al. (1987, 
1990) implement the idea of aligning a fixed-length 
weight matrix to variable-length sequences allowing 
for gaps in either component. The structure of a 
profile is very similar to that of a weight matrix. Each 
position contains, in addition to a complete set of 
residue weights, two numbers defining a linear gap 
penalty function for insertions and deletions starting 
at this position. Profiles are typically searched for 
with a local alignment algorithm similar to the one 
introduced by Smith & Waterman (1981). The par- 
ameters of a profile are usually derived from a 
multiple sequence alignment (Gribskov et al., 1990), 
with or without inclusion of secondary structure 
information (Liithy et al., 1991), but can also be 
derived from a 3D structure model (Bowie et al., 
1991). Although simpler in structure, profiles consti- 
tute a higher level of generality than flexible patterns 
or sequence targets. 

Recently, hidden Markov models (HMMs) of 
a specific architecture (here called linear hidden 
Markov models) were introduced to molecular 
biology (Haussler et al., 1993; Baldi et al., 1994). 
These models resemble previously described motif 
descriptors in that they also assign a number, in this 
case a probability, to a specific alignment of a 
sequence to the model. The architectures proposed 
contain a higher number of parameters per length 
than profiles, allowing for a more flexible treatment 
of deletions and insertions. In this respect, they are 
more general than profiles. From another perspec- 
tive, these architectures are more restrictive because 
they do not implement local alignment scoring 
modes. There are, however, simple modifications 
to hidden Markov models that allow a very close 

* The detailed techniques for converting the restrictive 
descriptors to generalized profiles are available from Philipp 
Bucher. 

equivalence with generalized profiles, as will be 
shown in Section 4. 

In fact, a motif description based on any of the 
more restrictive descriptors can be represented by a 
generalized profile, but the conversion procedure is 
not always as simple as the conversion from HMMs ’ 
presented here.* 

The generalization of the linear hidden Markov 
models to generalized profiles does not exhaust the 
possibilities of HMMs, as general (non-linear) 
HMMs are also useful motif descriptors (Fujiwara 
et af., 1994; Karplus, 1994). Furthermore, stochastic 
context-free grammars (SCFGs) generalize linear 
HMMs in a different way, and have been found 
useful for characterizing RNA motifs (Sakakibara 
et al., 1994). This paper will concentrate on general- 
ized profiles and the equivalent HMMs, not exploring 
more general HMMs and SCFGs. 

In summary, biomolecular motif descriptors fall 
into four subclasses: qualitative,fixed-length; quanti- 
tative, fired-length; qualitative, variable-length; and 
quantitative, variable-length. The most general case 
is a quantitative, variable-length motif descriptor 
assigning a similarity score to all possible alignments 
of all sequences to the motif. Qualitative motif 
descriptors fit into this concept by assuming that they 
assign the same maximal value to all motif instances. 
Fixed-length motifs can be integrated by pretending 
that they assign very low scores (written as -co) to 
alignments of sequences not belonging to the corre- 
sponding length class. 

3. THE STRUCTURE OF A GENERALIZED 
PROFILE 

The goal of generalized profiles is to combine the 
functions of all simpler motif descriptors surveyed in 
Section 2. It follows from this objective, and from the 
specific concept of a motif instance introduced before, 
that the function of a generalized profile will be that 
of an alignment scoring device. The notion of a 
profile-sequence alignment is thus central to its design 
and the properties of such an alignment largely 
determine its structure. 
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Gap representation: 

Path matrix: 

Coordinate sequence: 
Fig. 3. Three representations of a 
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(1,0),(2,1),(2,2),(2,3),(3,3),(4,3).(5,4),(5,5),(6,6) 
profile-sequence alignment. Note that each column in the gap 

representatton corresponds to an elementary segment of the alignment path shown in the middle. The 
coordinate sequence at the bottom is a numeric representation of the alignment. 

3.1. Projle -sequence alignments 

The definition of a profile-sequence alignment is 
not as obvious as it might appear. Different align- 
ment concepts have been introduced to molecular 
sequence analysis and still coexist in this field. The 
specific alignment type upon which generalized profi- 
les are based must therefore be specified. Its charac- 
teristic features are highlighted in Fig. 3 by means of 
three alternative representations of an alignment 
example. The gap representation shows the alignment 
as it would appear in a computer program output or 
in a scientific publication. The path matrix diagram 
represents the alignment as a path through a 2D 

coordinate system. The coordinate sequence is a 
numeric representation of this path. This represen- 
tation is the basis of the alignment definition given in 
Section 3.3. 

The most obvious disparity between different align- 
ment types is that between local alignment and global 
alignment. A local alignment can begin and end 
anywhere in the profile and anywhere in the sequence, 
while a global alignment must begin and end at the 
edges of the sequence and the profile. The alignment 
shown in Fig. 4 is local, since it does not use all of 
the profile. It is natural that generalized profiles are 
based on local alignments since local alignments are 
more general, including global alignment as a special 

Fig. 4. Structure of a generalized profile. The schematic representation defines the numbering conventions 
applying to profile components. The match and insert positions, represented by circles and ellipses, can 

be thought of as boxes containing position-specific parameters for alignment scoring. 
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case. Various restrictions on the parameters of a 
generalized profile can be placed to get global align- 
ment or any of several other intermediate alignment 
styles between local and global, as described in 
Table 1. 

Another ambiguity in the sequence alignment con- 
cept concerns the succession of different alignment 
components: matches, deletions, and insertions. The 
classical method of Needleman & Wunsch (1970) 
prohibits direct transitions between insertions and 
deletions. This restriction is also built into the profile 
alignment algorithm described by Gribskov et al. 
(1990). Most other methods, however, do allow such 
configurations [for example, Sankoff (1972), Sellers 
(1974), Smith & Waterman (1981)]. The alignment 
example in Fig. 3 makes clear that generalized profiles 
also allow such configurations. 

Finally, there is an ambiguity concerning the rep- 
resentation of an alignment by a coordinate sequence. 
The approach chosen by us is to list every coordinate 
of an alignment path. A more commonly used, but 
less precise representation lists only the coordinates 
pertaining to match steps (diagonal segments of 
the alignment path). Using the match-only approach, 
the alignment shown in Fig. 3 could be defined by 
only three coordinate pairs. The effects of the two 
alternative representations on the combinatorial 
complexity of the alignment space have been ana- 
lyzed by Waterman (1989). The assumption under- 
lying the less precise approach is that the order of 
adjacent gaps representing pairs of unmatched 
sequence segments is not important. This is justified 
in a pairwise sequence alignment where insertions and 
deletions are weighted symmetrically by an external 
scoring system. However, in the case of a profile- 
sequence alignment where all weights are provided by 
the profile in a position-specific way, the location of 
insertions could affect the alignment score. Thus, the 
use of the more precise representation is indicated. 

3.2. Parameters of a generalized profile 

The structure of a generalized profile is schema- 
tized in Fig. 4. It consists of an alternating sequence 
of match and insert positions, starting and ending 

with an insert position. The match positions are 
analogous to the letters of a sequence. The insert 
positions have no obvious counterpart in the se- 
quence. The path matrix diagram in Fig. 3 makes 
clear why two types of positions are needed. The 
horizontal segments of the alignment path, represent- 
ing insertions relative to the profile, fall between 
consecutive match positions and thus must be scored 
by numbers accommodated between match positions. 

The most basic parameters of a profile are the 
length and the sequence alphabet. The alphabet 
determines the exact number of parameters per insert 
and match position. Together with the length, it also 
determines the alignment space for which a similarity 
score is defined. 

Let us define an alignment formally using the 
coordinate-pair notation. 

Definition 1. An alignment between a proJle of length 
m and a sequence of n letters a,, . . . , a, is given by an 
ordered set of coordinate pairs: 

Each x coordinate represents an insert position in the 
profile (0 < xk < m) and each y coordinate represents 
a position between consecutive residues in the sequence 
(0 <y, < n). Furthermore, adjacent coordinate pairs 
must have one of the following relationships: 

match xk+, =x,+ 1 andy,,, =y,+ 1 
insertx,+,=x,andy,+,=y,+l 
deletex,+,=x,+l andy,+,=y,. 

An extension step corresponds to an alignment 
path segment joining two consecutive coordinates. 
Three types of extension steps are distinguished: 
match steps associate one profile match position with 
one residue of the sequence and correspond to 
diagonal segments of the path; insert steps associate 
one profile insert position with one residue of the 
sequence and correspond to horizontal segments of 
the alignment path; deletion steps represent profile 
match positions not associated with a sequence 
residue and correspond to vertical segments of the 
alignment path. There is one insert extension score 

Table 1. Constraints on initiation and termination score settings to get various alignment modes. Local mode is the native mode for 
generalized profiles, with no parameters forced to -0~. By setting certain initiation or termination scores to - 00, various types of alignments 
can be prohibited. Columns 1-4 give the legal starting and ending positions for an alignment (starting either at the left end or anywhere 
in the profile or sequence and ending either at the right end or anywhere in the profile or sequence). Note that & and &,, are not constrained 
in any of the alignment modes. This table summarizes and names some of the more useful settings. A particularly useful setting is the 
semi-global alignment, which allows the alignment to start either at the left end of the sequence or the left end of the profile, and stop either 
at the right end of the protile or the right end of the sequence. This allows finding complete motifs within longer sequences and fragmentary 
motifs that are cut off at the beginning or end of a sequence, without getting a lot of less interesting partial matches buried in the middle 

of seauences 

Constrained scores 
Alignment starts Alignment ends k=O l<kQm-I k=m 

Profile Sequence Profile Sequence Mode name 60 60 fi, 6, B Q c 4s 

any any any any local 
left left a”Y any left-anchored local -‘x -cc -cc 

see caption semiglobal --m --Q) 
left any right any domain-global -al --co -CO --co 
left any right right right-anchored global -co -co -CO -m -aI 
left left right right global -02 --co --co -0J --co -a, 
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and one match extension score per residue at each 
insert and match position, respectively. In addition, 
there is a residue-independent deletion extension 
score at each match position. 

A state transition occurs between any two consecu- 
tive extension steps, as well as at the beginning and 
at the end of the alignment. The possible states of 
an alignment are begin, match, insert, deletion, 
and end, symbolized by letters b, m, i, d, and e, 
respectively. 

There are 16 different types of state transition 
scores for all combinations of {b, m, i, d) x 
{m, i, d, e}. For reasons of completeness, we included 
a b + e transition score defining a position-specific 
score for empty alignments. The b -d, and d + e 
scores are only useful in conjunction with a global 
alignment mode as defined in Table 1. 

The scores applying to the beginning and to the 
end of the alignment are called initiation and termin - 
ation scores. Each insert position contains two types 
of initiation scores, an internal and an external one. 
The first one applies to alignments starting at the 
beginning of the sequence, the second to alignments 
starting at a sequence internal position. The site- 
specificity of the external and internal termination 
score is analogous. The primary function of the 
initiation and termination scores is to encode differ- 
ent alignment modes (see Table 1). 

The complete list of parameters contained in a 
generalized profile is given in Table 2. The exact 
function of each parameter is defined by the math- 
ematical definition of the alignment score given in 
Section 3.3. 

There is some redundancy in the parameters allow- 
ing for alternative representations of mathematically 
equivalent profiles. For example, the initiation scores 
and the state transition from b are distinct, but any 
change made to one of the scores 6,, 6,, tb_d.xr 
tb+m,x, t b_ i,xr or tb_e,x can be compensated by 
changes in the other scores to get exactly the same 
total score for every alignment. This redundancy will 
be exploited in Section 4.4 to convert generalized 
profiles to equivalent ones that are more easily 
converted to hidden Markov models. 

3.3. Definition of scores for generalized projile- 
sequence alignments 

We can compute the score for an alignment 
between a generalized profile and a sequence by 
adding up several parts: an initiation score, an exten- 
sion score for each adjacent pair of coordinates, a 
state-transition score for each coordinate pair, and a 
termination score. 

The initiation score is either the external or the 
internal initiation score (depending on whether or not 
we start at the beginning of the sequence) for the first 
position in the profile that is actually used: 

begin = 
S,, if y, = 0, 
6, otherwise. 

The extension score depends on the type of exten- 
sion (match, insert, or delete), and the amino acid 
involved in matches or insertion: 

ext(k) = 

mXk(a,,) if xk-] =xk- 1 and yk_, =yk- 1, 

ix, (a,, ) ifxk_,=xkandyk_,=yk-_, 
d Q ifxk_,=xk-1 andy,_,=y,. 

The state-transition scores are determined by the 
type of extension on either side of the position: 

trans(k)=t,,_,+,,, forO<k<Z, 

where 

1 

b ifk=O, 
m ifx,_,=x,-1 andy,_,=y,-1, 

Vk = i ifx,_,=x,andy,_,=y,-1, 
d ifx,_,=xk-1 andyk_,=yk, 
e ifk=Z+l. 

Finally, we include either the external or the in- 
ternal termination score for the last position of the 
profile that is actually used: 

end = f&, if y, = n, 

KC, otherwise. 

Table 2. The generalized profile has many score parameters, summarized here. Match 
position x is between insert positions x - 1 and X, as shown in Fig. 4. Which transition 
cost is used in each insert position is determined by the alignment path, as explained in 
the text. If the position subscript x is omitted in specifying a parameter, then the 

parameter is assumed to be identical for all positions 

Scores for match position x 
m,&) 
d. 

Match score for amino acid a 
Delete extension score 

Scores for insert position x 
L(a) Insert score for amino acid CI 
6, External initiation score 
6, Internal initiation score 
e, External termination score 
e, Internal termination score 
‘kd.Y LX. L1.r L,,X 
Ld.r L0l.x L ,,x L, Transition scores 
t m-Lf.r cn-m.r Ll,X m-,.x I 
‘l4.X Ln.x 44.r L, 
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The alignment score itself is defined as the sum of 
the above-defined components: 

S(A) = begin + f: ext(k) + f: trans(k) + end. 
k=l k=O 

With this definition of the alignment score, calcu- 
lation of the optimal alignment score is a straight- 
forward dynamic programming algorithm, almost 
identical to the algorithms used for sequence align- 
ment or HMM alignment. Refer to the Appendix 
for a more detailed presentation of this dynamic 
programming. 

4. GENERALIZED PROFILES ARE EQUIVALENT 
TO A CLASS OF HIDDEN MARKOV MODELS 

This section shows the equivalence between gener- 
alized profiles and a class of hidden Markov models. 
Section 4.1 explains what a hidden Markov model is, 
and which subset of them we are interested in, Section 
4.2 looks at the relationship between probabilities of 
paths in a hidden Markov model and scores in a 
generalized profile, and Sections 4.3 and 4.4 establish 
the equivalence. 

With this definition of the probability of a sequence 
given an HMM, there is no hope for finding an 
equivalence with generalized profiles, since the profi- 
les pick only the highest scoring path, not all possible 
paths. However, if we redefine our model so that the 
“probability” of a sequence is the maximum over all 
paths of the right length from start to stop, rather 
than the sum over such paths: 

~inodedw) = ;E ~md,,(W,P), 

then we can find an equivalence. 
4.1. What is a hidden Markov model? 

Hidden Markov models (HMMs) are one way 
of encoding information about a set of finite-length 
sequences over some alphabet-in our case, se- 
quences of amino acids. They model the sequences as 
being generated by a stationary stochastic process- 
that is, they assign a probability to every possible 
sequence. For a good introduction to HMM tech- 
niques, see Rabiner (1989). 

The use of the maximum probability path (often 
called the Viterbipath) is quite common with HMMs, 
as it is cheaper to compute and provides alignment 
information that is not easily obtainable with the 
sum-of-probabilities definition. The probability 
assigned to a sequence by the Viterbi path in an 
HMM is a lower bound on the true probability (sum 
over all paths) assigned by the HMM. 

A hidden Markov model is a directed graph con- 
sisting of vertices (called states) and edges (sometimes 
called transitions, though we will use that term for a 
particular group of edges in an HMM). The HMMs 
we are interested in have two types of states: letter 
states, each of which has an associated probability 
distribution of letters from the same alphabet, and 
null states, which have no associated letters. In the 
diagrams for this paper, letter states are shown as 
square boxes and null states as circles. Also, each 
edge has an associated probability, with the probabil- 
ities of the edges out of any state summing to one. 

We are interested only in a small subclass of 
HMMs here-those that are equivalent to general- 
ized profiles. We will show this class of HMMs by 
diagram, but first let us introduce some notation to 
simplify the diagrams. First, a node is a pair of states: 
a letter state called the match state and a null 
state called the delete state. The node will be drawn 
as a vertical ellipse, as shown in Fig. 5. Second, a 
transition is a collection of three states (begin, insert, 
and end) and 16 edges connecting two nodes, as 
shown in Fig. 6. 

4.2. The null model 

An HMM has two distinguished states: the start Before we can construct the hidden Markov Model 
state and the stop state, both of which are null states. equivalent to a generalized profile, we need to exam- 
The start state has no in-edges and the stop state has ine a little more closely what the score from the 
no out-edges. profile means. 

We compute the probability of a sequence w by 
looking at all paths from the start state to the stop 
state and computing the probability of each path and 
the probability of the sequence given that path. The 
probability of a path in an HMM is just the product 
of the probabilities of the edges along the path. The 
probability of a sequence given a path is the product 
of the probabilities of the letters in the corresponding 
letter states (or zero, if the number of letter states 
on the path is not the same as the length of the 

0 

/: El u 
Fig. 5. A node contains one match state (M) and one delete 

state (D). 

sequence). If we call the ith letter of the sequence wi 
and the ith letter state on the path Ii, then 

and 

where the sum is to be interpreted as including only 
those paths from the start node to the stop node that 
have the right number of letter states. 
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I 
E 

6----+f 
Fig. 6. The top symbol (a heavy arrow connecting two nodes) stands for the transition shown below. Note 
that the insert state and the begin and end null states and the 16 edges that connect them to the adjacent 
nodes are all part of the transition. In the text, we will refer to a particular transition, such as this one 
from X to Y, with an arrow X--, Y, and the three states in the transition as B,,,, IX-r, and E,,,. 

As Altschul (1991) pointed out, any alignment 
score for a sequence w can be interpreted as making 
an assertion about the ratio of two probabilities. If we 
think of our sequences as being generated by some 
stochastic process or model m, the score s is the 
logarithm of the ratio of the probability of the 
sequence being generated by the model P,,,(w) and 
the probability of the sequence being generated by a 
null model P#(w) (with some arbitrary logarithmic 
base z): 

Pm(w) 
score(w) = log; p,o . 

Note that high scores can result from sequences that 
are not modeled well by the null model, as well as 
from sequences that are well modeled by model m. 

There is a simple significance test that can be 
applied to hidden Markov models (or any other 
modeling scheme that assigns probabilities to all 
sequences). MilosavljeviC’s algorithmic significance 
test asserts that the probability of getting a score 
larger than T for sequences distributed according to 
the null model is less than z -‘(Milosavljevii: & Jurka, 
1993). Of course, this test relies on using a reasonable 
null model, which is not always available. 

Before we can construct an equivalent hidden 
Markov model for a generalized profile, we need to 
know what null model was used for the generalized 
profile. If the null model is provided with the profile, 
we can use it, otherwise we can choose a standard null 
model. The model in Fig. 7 is a reasonable null model 

for most profiles. The insert state N, can be set up to 
match the background distribution, and looping with 
probability p,, gives a geometric length distribution 
for the sequences. This null model (or a similar one) 
is implicit in many of the scoring systems used for 
alignment. 

We can construct an HMM equivalent to a gener- 
alized profile for almost any null model of the form 
proposed in Fig. 7, as long as N, does not assign a 
zero probability to any letter, and p0 is not too close 
to 1. The exact constraint on p. will be shown when 
we get to the constraining step in the construction. 

A future extension of the generalized profile syntax 
used in PROSITE will provide a way to specify null 
models and the logarithmic base to be used for 
converting probabilities to scores. 

1 PO 
\ f 

I I NI 

I 1 

Fig. 7. This is the implicit null model for a generalized 
profile. It generates sequences from a background distri- 
bution specified by the insert state N, with a geometric 

length distribution specified by the probability pO. 
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4.3. Converting an HMM to a generalized projile the score generated by the G is the log probability 

The HMMs we are interested in are those that ratio: 
have the structure shown in Fig. 8. The structure PAW) 
of the HMMs corresponds in an obvious way to scorec (w) = log, - . 

that of a generalized profile-each node corresponds 
P,(w) 

to a match position of the generalized profile, each The parameters of the generalized profile are given in 

transition to an insert position, the edges from B 
Table 2-all we have to do is to show how to set these 

to the external initiation scores, the edges from B’ 
parameters. 

to the internal initiation scores, the edges to E to First, we set the match extension scores for pos- 

the external termination scores, and the edges to ition x to the probabilities given by the match state 

E’ to the internal termination scores. The HMM is in node x: 

a linear HMM, except for the copies of the P(a IM,) 
null models added at the beginning and end to 

Ua)=logi-, 
PN, (a )pO 

handle the internal initiation and termination where PN, (a) is the background distribution given by 
scores. 

In one direction, the equivalence between HMMs 
the null insert state N,. We set the insert scores 

and generalized profiles is easy-we can take a linear 
similarly from the insert states: 

HMM m of the appropriate form and convert it to a ix (a) = log, 
PtaIL+i) 

generalized profile G, such that for any sequence w PN, (alp0 ’ 

Fig. 8. A linear HMM that is equivalent to a generalii profile. The nodes on the left and right ends 
are dummies (the states in them are never part of a path from the start state B to the stop state E). 
They are present only to create the adjacent transitions (especially the insert states). Note the copies of 
the null model to join the true start state B to the internal start B’ and the internal stop E’ to the true 

stop state E. 
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and we set all delete-extension scores to zero. 
(Remember that the notation IX_, + , means the insert 
state in the transition from node x to node x + 1 of 
the HMM.) Note that we have incorporated p0 into 
the match and insert scores, rather than into some 
transition score. We do this for convenience in keep- 
ing track of the number of times p0 gets included, 
since the edge in the null model is traversed once for 
each letter in the sequence. 

The transition scores are set to the log of the 
probability of the corresponding edges in the HMM. 

The external initiation scores are set to the log of 
the probabilities of the edges from B: 

6, = 10% P(B - B,,, + , ), 

and the external termination scores are set similarly 

c, = log, %%.X, I + J3 
I-P, . 

The extra 1 -pO term in the external termination 
score is to correct for the final edge of the null model 
from ND to NE. 

The only slightly tricky part is handling the internal 
initiation and termination scores. Since the general- 
ized profile does not have any structure correspond- 
ing to the part of the HMM between B and B ‘, we 
have to make sure that all sequences generated by 
paths from B to B ’ would have the same score (log 
probability ratio in the HMM and the null model), 
and add that score to the log probability of the edge 
from B’ to get the profile score. 

If we set the internal initiation scores to 

s, = log,(P(B’- Lx+ ,)q(l -PO)), 

and the internal termination scores to 

then the scores for all paths will have the proper 
correspondence to the probabilities in the HMM. 

There is one minor difference between the general- 
ized profiles and the HMMs: generalized profiles do 
not allow the internal initiation scores to be used 
at the beginning of the sequence, nor the internal 
termination scores to be used at the end of the 
sequence, but the HMMs do have paths from B 
through B ’ (and through E’ to E) that match 
zero-length strings, allowing the use of internal 
initiation (and termination) scores at the ends of the 
sequence. 

The HMM-to-generalized-profile conversion works 
as long as 

P(B’+ Lx+, )q(l -PO) < Z’(B -) L,,,) 

and 

P(L,+ I --rE’N -Po)<~(L,+,-+~h 

since then the paths B -+ Ds+ B ’ - x and 
x - E ‘ + D, + E will always have lower probability 
than the direct paths B + x and x -B E and so never 
appear on the Viterbi path. These constraints on 

the probabilities are equivalent to the following 
constraints on the scores in generalized profiles: 
6,<6, and &CC?,. 

Those constraints, which are met by all existing 
generalized profiles, insure that the internal scores 
would never be used at the ends of the sequences even 
without the prohibition in the definition, and so the 
prohibition can be removed from the definition with- 
out changing the meaning of the existing profiles. If 
the constraints are not met, the generalized profile 
can have some rather non-intuitive behavior, prefer- 
ring incomplete matches to complete ones, to avoid 
the low external scores. 

Note that profiles constructed from linear HMMs, 
such as those constructed by SAM (Hughey & 
Krogh, 1995), will have - co for all initiation scores 
except in position 0 and for all termination scores 
except in position m, because the corresponding edges 
do not exist (equivalently, have probability zero) in 
SAM’s HMMs. The free-insertion modules of SAM 
correspond roughly to the beginning and ending null 
models of our HMMs, and so all four of the par- 
ameters &, ,6,,, Z,,, , and 2, can be used. From Table 1, 
we can see that the profiles constructed from SAM 
HMMs use domain-global alignment mode (or global 
mode, if free-insertion modules are not used). 

4.4. Generalized projile to HMh4 

If a generalized profile has been created by conver- 
sion from an HMM, we can easily reverse the con- 
struction to re-create the HMM. We first look up or 
select a null model, then construct the graph for 
the HMM as in Fig. 8, and finally assign probabilities 
in the obvious way, reversing the equations of 
Section 4.3. 

We can do the conversion no matter what non-zero 
background probabilities we assume for the null 
model, but there are some constraints on the loop 
probability p,,, imposed by the insert scores in the 
generalized profile. 

We would like to do this construction of an HMM 
for any generalized profile, but if we just apply the 
formulas blindly we can end up with “probabilities” 
on the edges of the HMM that do not add up to one 
at some states. If all the sets of “probabilities” 
computed by reversing the formulas of Section 4.3 
add up properly to one, then we say that the general- 
ized profile is in normal form. 

We can also end up with probabilities of zero for 
various edges or for character probabilities in match 
or insert states, where the profile has scores of - co. 
In order to ensure that all parts of the Markov model 
are reachable, one generally requires non-zero proba- 
bilities on all edges. The simplest solution is to replace 
the -cc scores with a large negative number, so that 
no probability is zero, but the prohibited edges or 
matches have such a low probability that they will 
never appear on any Viterbi path. 

Since. the insert and delete costs in profiles are often 
rather arbitrarily scaled, we may want to choose 
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different bases for the logarithms in the transition 
scores than for the logarithms in the match and 
insert scores. Such a translation would not preserve 
the scores of paths, but might be useful for translating 
profiles whose gap costs have not been properly 
chosen. 

If the generalized profile G is not in normal form, 
we have to find an equivalent generalized profile G ‘ 
that is. The equivalence cannot preserve scores ex- 
actly-the best we can do is to guarantee that there 
is some constant c such that 

score,(w) = c + score,,(w). 

The important observation to make is that the 
scores we are interested in are scores of paths through 
the generalized profiles-we can change the par- 
ameters of the profile arbitrarily, as long as the scores 
of all paths remain the same. 

There are some obvious ways that we can modify 
scores-for example, we can subtract a constant from 
all match scores in position x and add that constant 
to all the transition scores f._,,,_, or to all the 
transition scores r,_ ,r. t Since every alignment that 
does a match at position x must pass through a 
transition into A4 at x and a transition out of M at 
x, these changes in the parameters make no difference 
to any path score. The same operation can be done 
for insert scores and delete extension scores. 

We can also apply this operation twice to transfer 
a constant from all transitions r,,,_+.+ to t.,,,_ , . For 
insertions the transition score ti_i,x is unchanged by 
the corresponding transfer, since the score is associ- 
ated with both an in-edge and an out-edge of the 
insert state. 

We can use this operation of pushing constants 
backwards through the profile to convert the general- 
ized profile into normal form. 

First, we want to normalize the match scores so 
that the corresponding letter states in the HMM will 
have probabilities that sum to one. Since 
PMX (a) = zmX@)PN, (a)~~, we can accomplish this by 
subtracting log&, & .C(‘)PN, (b)) from the match 
scores in position x, and adding it each of the 
transition scores f,,,,, _ , . The insert scores are simi- 
larly normalized, and the delete scores are eliminated 
by adding them to the t,_,, scores. 

Next, starting at the end of the model, we normal- 
ize all transition scores so that the probabilities of the 
out-edges of each state in the HMM sum to 1, moving 
the normalizing constant from the out-edges to the 
in-edges. 

There is only one tricky part to this normalization: 
handling the insert loops correctly. Since moving a 
constant through an insert loop does not change the 
score of the loop edge itself, we have the constraint 
that the transition score ri_i,X after the insert letter 
scores have been normalized must already be the log 

t The symbol * is used to indicate any of the legal extension 
types. 

of some probability p. We normalize the remaining 
transition scores ti_+ ti_dJr and r,,cs so that the 
corresponding probabilities sum to 1 -p. 

In order for the loop edge to have an acceptable 
probability after normalizing the letter scores, we 
have the constraint (in the scores of the original 
profile) 

ri+, + log, 
( 

po c ZiX(b)PN, (6) < 0. 
b > 

Since the null model is not provided in the generalized 
profile, and we are forced to guess one, these con- 
straints on the insert loops can be viewed as upper 
bounds on our guess for po: 

Z”(b) PN, (b) 

P2 
b 

z G -ix 

Note. The constant q in the HMM for the prob- 
ability of doing any internal initiation is set automati- 
cally by sweeping the constants back and normalizing 
the probabilities of the edges out of B. The cycles 
for the copies of the null model (ZB, D, and Z,, DE) 
are unchanged by pushing constants back through 
them, just as the self-loops on the insert states were 
unchanged. 

We are left at the end of the normalizing process 
with unnormalized transition probabilities out of B, 
and no place to push the normalizing constant back 
to. This is the constant c mentioned as being unavoid- 
able in the conversion process. 

The conversion process just described relies heavily 
on the HMM being a left-right HMM, with no cycles 
in the graph except the loops on the insert states and 
the DB and D, cycles. If we allow circular profiles 
(merging nodes 0 and m + 1 of Fig. 8) then we have 
to impose other constraints on the scores to ensure 
that an alignment path even exists. I 

5. THE MOTIF SEARCH PROBLEM 

So far we have spoken only about alignments and 
scores, and have not talked about the real problem we 
are trying to solve: finding biologically meaningful 
instances of motifs. In a typical application, one is 
interested in the following questions. 

(1) What sequences contain the motif? 
(2) How many times does the motif occur in 

the sequence? 
(3) Where are the motif instances located? 
(4) How similar are these motif instances to the 

motif! 
(5) How can the motif instances be aligned to the 

motif? 

It is important to recognize that these questions 
cannot be fully answered by formulating the motif 
search problem as a classification problem, which 
answers only the first question. In fact, a major 
shortcoming of published database search algorithms 
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using profiles or hidden Markov models is that they 
are designed to find only the single best alignment 
between the model and a sequence, or to compute 
only a single value to assess membership of a se- 
quence family. The advantage of the motif search 
method defined here is that it provides a complete 
answer to the above questions. 

There are two reasons why the search for a 
biomolecular sequence motif is not a trivia1 task, even 
if the motif is accurately defined by an appropriate 
descriptor. The first one is that genetic texts, in the 
form of nucleotide sequences or translated into 
protein, do not contain any obvious punctuation 
signals. As a consequence, delineation of functional 
subsequences and classification of these subse- 
quences must proceed simultaneously. The second 
reason is that biological sequence motifs, of the 
same or of different types, may occur in partially 
overlapping fashion. The high degeneracy of 
many motifs favors such an arrangement. However, 
the physical overlap constraints vary greatly between 
different motifs. For instance, the same protein 
sequence cannot simultaneously participate in 
the formation of two autonomous structural do- 
mains. By contrast, a short DNA sequence can 
simultaneously be part of two protein recognition 
sites, located on opposite sides of the double helix. 
Therefore, a generally applicable motif search tech- 
nique must deal with the overlap problem in a flexible 
way. 

5.1. Motif search problem for generalized projiles 

Given the function of generalized profiles, namely 
to assign a score to an alignment, it follows that the 
result of an elementary motif search operation involv- 
ing one profile and one sequence must have the form 
of a set of alignments with corresponding similarity 
scores. As a first approximation, the goal can be 
described as finding all alignments with scores higher 
than a prescribed cut-off value. However, in the literal 
sense, this is not the desired result because each 
alignment exceeding the cut-off value is usually sur- 
rounded by a large number of similar alignments also 
exceeding the cut-off value. Usually one wants such 
a group of alignments to be represented by a single, 
locally optimal alignment. This can be achieved by 
requiring that two alignments contained in the result 
of a motif search operation meet a specific disjoint- 
ness criterion. 

The motif search problem can be more precisely 
stated with the following definition. 

Definition 2. The motif search problem is to find a set 
EA of p alignments A,, . . . , AP given a sequence, a 
profile, a symmetric disjointness relationship 0 
between two alignments, and a cut-off value c, respect- 
ing the following conditions: 

(1) The score of each alignment of the set is greater or 
equal to the cut-off value: Vi with I & i < p, 
S(A,) 2 c. 

(2) 

(3) 

(4) 

(5) 

The alignment A, is a maximally scoring align- 
ment, that is, Q alignments B, S(A,) 2 S(B). 
Any two alignments in the set are disjoint: Vi, j with 
1 <i<j<p,AiOAj. 
No alignment of the set can be replaced by a better 
one without violating the disjointness condition: Vi 
with l<i<p,QB (if Qj’jziBoA,, then 
S(B) < S(Ai)). 
No alignment whose score is greater or equal to the 
cut-off value can be added to the set without 
violating the disjointness condition: EA is maximal 
in the sense of inclusion. 

In the generalized profile syntax, the cut-off value 
and disjointness definition are implemented as exter- 
nal accessories. This is because these parameters are 
only loosely associated with the motif defined by the 
profile. In a real application, the choice of these 
parameters often depends on the specific purpose of 
a motif search application, rather than on biological 
properties of the motif. For instance, with a profile 
that does not absolutely reliably identify a motif, one 
may want to maximize either sensitivity or selectivity 
depending on the goal of the analysis. The intended 
effect can be achieved by an appropriate choice of 
the cut-off value. In certain situations, it may 
be desirable to see multiple suboptimal alignments 
of the same sequence region with the motif, even 
if these alignments are mutually exclusive. The 
number of such alignments appearing in the 
result can be controlled by varying the disjointness 
definition. 

5.2. Disjointness definition used in PROSITE 

The definition of the motif search problem relies on 
an unspecified disjointness relationship between 
alignments. The standard disjointness test used 
in PROSITE represents an adaptation of the prob- 
lem of finding multiple non-intersecting best local 
alignments between two sequences formulated by 
Waterman & Eggert (1987). 

The basic idea of disjointness is that the profile 
matches two separate parts of the sequence indepen- 
dently. The particular disjointness definition used 
in PROSITE declares a range of match positions, 
including intervening insert positions, as a protected 
region of the profile. For two alignments to be 
disjoint, the parts of the sequence that are aligned to 
positions in the protected region must not overlap. 
The geometric meaning of this condition is illustrated 
by the path matrix shown in Fig. 9. Unlike the 
disjointness definition applied by the method for 
finding multiple best alignments between sequence 
pairs, this definition includes two adjustable par- 
ameters (the ends of the protected region) conferring 
remarkable flexibility to the motif search method [for 
a discussion of biological examples, see Bucher & 
Bairoch (1994)]. 

The following definitions make this concept more 
precise: 
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Fig. 9. Geometric meaning of the disjointness definition used in PROSITE. The shaded area of the profile 
corresponds to the protected region. The sequence ranges mapped by three different alignments to the 
protected region are indicated by ellipses below the sequence. Alignments A and B are disjoint because 
these ranges do not overlap. By the same argument, alignments B and C are not disjoint and thus cannot 

appear together in the result of a motif search. 

Definition 3. The protected region [m, :mz] of a profile 
consists of match positions m,, . . . , m2 and insert 
positions m, , . . . , m2 - 1. 

Definition 4. The sequence range [n, : n,], mapped by 
alignment A to the protected region of the profile 
[m, : m,] consists of all residues mapped by A to a match 
or insert position of the protected region of the profile. 

Definition 5. Two alternative alignments A and A’ 
between a sequence and a projile are disjoint if and only 
if the sequence ranges [n, : n2], [n; : n;], mapped by A, 
A’, respectively, to the protected region of the profile 
[m, :m,], do not have any residue in common. 

If no protected region is specified, it is assumed 
that the entire profile is protected, and alignments are 
disjoint if they have no characters of the sequence in 
common. If an alignment results in no characters of 
the sequence mapping to the protected region, then 
the alignment is disjoint from all other alignments. 
Such a situation usually indicates a poorly designed 
profile, and it is reasonable for a computer program 
to reject such alignments (with a warning, of course). 

5.3. Choosing sets of alignments 
The calculation of the optimal alignment is 

straightforward (see Appendix for details), but the 
algorithm for choosing sets of disjoint alignments to 
match Definition 2 is not obvious. This section 
outlines the algorithm used in PROSITE to generate 
reasonable sets. 

The methods for finding alignment sets for motif 
search are adapted from efficient algorithms for 
finding multiple best local alignments between two 
sequences [for a review, see Pearson & Miller (1992)]. 
The basic algorithm for finding multiple disjoint 
alignments is an iterative procedure that adds one 
alignment to the set on each iteration. The generic 
form of the algorithm is to, on each iteration, 

(1) add the best alignment in the path matrix to !he 
alignment set, and 

(2) remove from the path matrix all edges that are 
parts of non-disjoint alignments. (See Appendix 
for explanation of the path matrix and calcu- 
lation of optimal alignments.) 

This algorithm is applicable to a variety of disjoint- 
ness definitions including the standard definition used 
in PROSITE and the no-common-pair definition in- 
troduced in Waterman & Eggert (1987). 

Implementation of the basic methods is simple, 
requiring only two modifications to the algorithm 
used to compute the optimal alignment score. First, 
the recursive equations defining the score at each path 
matrix node have to account for the edges that have 
been removed from the path matrix. Second, some 
limited alignment information needs to be kept to 
make the necessary modifications after acceptance of 
an alignment. If the standard PROSITE disjointness 
definition is used, only the beginning and end points 
of the sequence region associated with the protected 
region need to be recorded. 



Flexible motif search technique based on generalized profiles 17 

The generic algorithm is relatively slow, requiring 
recomputation of the entire path matrix for each 
accepted alignment, but the sequence analysis litera- 
ture provides many hints on how to speed up this 
process. For example, for the no-common-pair dis- 
jointness definition, Huang & Miller (1991) contains 
an efficient algorithm not requiring storage of the 
entire path matrix. A similar time- and space-efficient 
solution for the PROSITE disjointness definition has 
been developed, and will be described in a subsequent 
paper. 

Even with the most efficient methods, keeping 
track of alignment information slows down the 
computation of the optimal alignment algorithm by 
at least a factor of two. Since most protein domains 
covered in PROSITE occur in few sequences, it is 
advantageous to scan a protein database by first 
computing the optimal alignment score in the most 
efficient way (possibly using a co-processor), then 
applying the multiple motif search algorithm only to 
those few sequences which exceed some cut-off value. 

There are two technical issues one has to be aware 
of when implementing this method. 

(1) 

(2) 

There can be multiple best alignments having 
the same score at any stage of the iterative 
process. Thus, the statement of the problem in 
Definition 2 does not define a unique solution. 
Algorithms for finding multiple alignments 
between sequences handle this problem by apply- 
ing tie-breaking rules that provide a ranking 
between equally scoring alignments. Any func- 
tion that assigns a unique value to every possible 
alignment path is adequate for this purpose. It 
must be realized, however, that application of 
different tie-breaking rules may affect the result 
of a motif search operation in unexpected ways. 
It may change not only the geometry of the 
alignments, but also the corresponding similarity 
scores, or even the total number of alignments 
included in the result. Detailed descriptions of 
motif-search algorithms should explicitly state 
the tie-breaking rules used-the paper that 
describes the efficient algorithm used for 
PROSITE will contain this information as well. 
An alignment may have no sequence characters 
associated with the protected region. With 
Definition 5, such an alignment is disjoint from 
any alignment, including itself, and so the algor- 
ithm will loop infinitely, since no edge can be 
removed from the path matrix. A reasonable way 
to deal with this exception is to restart the entire 
computation with a higher cut-off value that 
excludes the faulty alignment or with a larger 
protected region. 

6. USING GENERALIZED PROFILES AND HIDDEN 
MARKOV MODELS TO IDENTIFY GLOBINS 

In this section, we will show how the interconver- 
sion of generalized profiles and HMMs can lead to 

better results than using either method alone, and 
how the understanding of the equivalence can be used 
to improve existing search tools. To illustrate these 
points, we use generalized profiles and HMMs to 
separate globins from non-globins in the Swiss-Prot 
database. 

6.1. The globin -recognition problem 

The globin-recognition problem has often been 
used as an example to demonstrate the efficiency of 
methods to detect weak sequence similarities. Obvi- 
ous advantages of this system are the relative abun- 
dance of sequences (676 complete globin sequences in 
Swiss-Prot release 31) and the availability of several 
high resolution 3D structures representing diverse 
subfamilies. Moreover, the problem provides the 
necessary degree of difficulty as standard pairwise 
sequence comparison methods usually fail to detect 
significant similarities between distant members. 
Finally, the evaluation of different methods is greatly 
facilitated by the high degree of certainty in the 
classification of globins. 

The 676 sequences include a few unusual se- 
quences, and exclude a few sequences that others may 
consider globins. Table 3 lists the unusual sequences. 

In previous studies of this kind [for example, 
Gribskov et al. (1987) and Krogh et al. (1994)], the 
globin-recognition problem was treated as a sequence 
classification problem. However, such an approach 
simplifies the underlying biological problem since 
globin folding units, like most other protein struc- 
tural domains, occasionally occur as multiple copies 
in the same polypeptide chain. As the new search 
techniques described in Section 5 allow automatic 

Table 3. Special sequences in Swiss-Prot release 31 for the globin-rec- 
ognition problem. The flavohemoproteins are much longer than 
normal for globins, but contain a globin domain at one end. The nine 
annotated fragments vary considerably in length. There are only four 
proteins of debatable status, a globin-like protein from C. &guns 
and a group of three heme-binding proteins from protozoa and 
cyanobacteria. The former is classified as a true globin in this study, 
the latter three are rejected for the reasons given in Takagi (1993) 

Name Length Description 

GLB-ASCSU 
GLB-PSEDC 

FHP-CANNO 
FHP-YEAST 
HMPA-ALCEU 
HMPA-ECOLI 
HMPA-VIBPA 

338 two globin domains 
333 two globin domains 

387 flavohemoprotein 
399 flavohemoprotein 
403 Ravohemoprotein 
396 flavohemoprotein 
394 Ravohemoprotein 

HBBI-UROHA 
HBAZ-PLEWA 
HBAZ-MESAU 
HBAI-UROHA 
HBB-DASVI 
HBA2-UROHA 
GLBZ-GLYDI 
GLBl -LAMSP 
HBBZ-UROHA 
HBB-OVIMU 

146 fragment (contains 24 Xs) 
133 fragment 
102 fragment 
90 fragment (contains 4 Xs) 
a7 fragment 
40 fragment 
45 fragment (contains 2 Xs) 
41 fragment 
19 fragment 

145 (contains 12 Xs) 

GLBH-CAEEL 159 debatable elobin (included) 

GLB-TETPY 
GLBN-NOSCO 
GLB-PARCA 

121 debatable globin (rejected) 
118 debatable globin (rejected) 
116 debatable globin (rejected) 
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identification of multiple motif instances in the same 
sequence, the performance of the newly derived 
globin profiles will be evaluated by the number of 
correctly identified globin domains rather than globin 
sequences. 

The parallel tests performed with the HMM search 
algorithm have to classify sequences, since the SAM 
package (Hughey & Krogh, 1995) used does not have 
the ability to report multiple alignments. 

The results obtained with the two search tech- 
niques are nevertheless comparable because the pro- 
tein database searched contains only two sequences 
with multiple globin domains. 

6.2. Construction of HMMs and generalized-profiles 
In order to separate the evaluation of different 

model construction methods from the evaluation of 
different search techniques, we constructed some 
profiles with methods designed for profiles, and some 
HMMs with methods designed for HMMs, then used 
our conversion techniques to convert each to the 
other. We used both generalized-profile search 
methods and HMM search methods to evaluate each 
of the models. 

We constructed two profiles using existing profile- 
construction methods: Profile-3d and Profile-333. 
The same construction technique was used for 
both, but Profile-3d started from a structural align- 
ment of seven globins (Bashford et al., 1987), while 
Profile-333 started from a multiple alignment of 333 
randomly chosen globins that was produced auto- 
matically using ClustalW (Thompson et al., 1994a). 
The set of sequences included one of the two-domain 
globins (GLB-ASCSU), two of the flavohemo- 
proteins (FHP-YEAST and HMPA-VIBPA), and 
five fragments. 

The multiple alignments were directly converted to 
generalized profiles using the current method used for 
constructing PROSITE profiles. This method in- 
volves gap excision (Thompson et al., 1994b) and a 
symmetric gap weighting mode made possible by the 
new parameters of generalized profiles. The sequences 
in the alignments were weighted with the method of 
Sibbald & Argos (1990). The match tables were 
created with a 10 log,,-scaled BLOSUM-45 matrix 
(Henikoff & Henikoff, 1992), and position-specific 
gap weights were created using parameters re- 
commended in Ltithy et al. (1994). The initiation and 
termination scores were set to zero, except for the 

ones that need to be - co to get semiglobal alignment 
(see Table 1). The search for multiple domains set the 
protected region of the profile to all but the first and 
last five positions of the profile. 

The two profiles were converted to equivalent 
HMMs by the method of Section 4.4. The logarith- 
mic base z for the conversion was estimated by 
examining the average entropy of the match positions 
in a natively trained HMM (HMM-333) and setting 
z so that the average entropy of match positions in 
the converted HMM was the same as in the native 
one. 

We tried various ways of deriving z using just 
statistics about the profile scores, but were unable to 
come up with an appealing way to set z. For example, 
we tried scoring a large set of random sequences 
created by window-shuffling Swiss-Prot release 29 
with a window size of 20 (Pearson, 1990). The 
logarithmic base z was chosen so that the probability 
of a score larger than t was approximately z-’ for 
large values of t. This did not work particularly 
well-indeed the value of z obtained this way was a 
factor of 2 too small. 

If too large a value is chosen for z, the HMM 
search using all paths is essentially the same as one 
using Viterbi paths only, since the optimal alignment 
will have a much higher probability than slightly 
poorer ones. If too small a value is chosen for z, the 
HMM search will give much too high a probability 
to poor alignments, and not classify sequences well. 
The ranks of individual alignment paths are not 
changed by the choice of z (in particular, the Viterbi 
path remains the same), only the probabilities as- 
signed to the alignments are changed. 

The parameters for the null model assumed in the 
conversions are shown in Table 4. The probabilities 
of the letters correspond to their frequencies in 
Swiss-Prot release 3 1, and the self-loop probability to 
an expected sequence length of 333. 

Two HMMs were constructed using the SAM 
program buildmodel and a set of training sequences. 
For HMM-333, buildmodel was started with a ran- 
dom model that it constructed, while for HMM-prof- 
3d buildmodel was started with an HMM converted 
from Profile-3d. 

One error was made in building the models-the 
insert positions were given flat distributions (based on 
the models that SAM creates by default) rather than 
background probability distributions. This caused 
the HMMs to perform poorly, as compositionally 

Table 4. Parameters of the null model (see Fig. 7) used for conversion of profiles to HMMs and for 
normalizing scores of HMMs 

Parameter Probability Parameter Probability Parameter Probability 

P(A) 0.0760 P(C) 0.0176 P(D) 0.0529 
P(E) 0.0628 P(F) 0.0401 P(G) 0.0695 
P(H) 0.0224 P(I) 0.0561 P(K) 0.0584 
P(L) 0.0922 P(M) 0.0236 P(N) 0.0448 
P(P) 0.0500 P(Q) 0.0403 P(R) 0.0523 
P(S) 0.0715 P(T) 0.0581 P(V) 0.0652 
P(W) 0.0128 PfYI 0.0321 D” 0.9970 
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biased sequences could get much higher scores in the 
HMM than in the null model, even without good 
alignments. For example, if the null model that the 
HMM was compared with used the background 
frequencies, then the histidine-rich, non-globin 
HRPX_PLALO is much too highly scored, since 
histidine has a lower probability in the null model 
than the HMM. If the flat distribution is used as a 
null model, then the alanine-rich, non-globin TO- 
LA_ECOLI is scored too high, since the alanines 
score better in the match positions of the profile than 
in the null model, even in poor alignments. 

The training sequences were the 333 randomly 
chosen sequences used for creating Profile-333. Since 
SAM does not yet support sequence weighting, the 
training set was given a crude weighting by hand: 
those sequences in the training set that scored poorly 
with an early version of the model were duplicated, 
and those that scored extremely poorly were repli- 
cated four times. This training set was frozen early in 
the process of developing the models, and the repli- 
cated sequences may not in fact be the low-scoring 
ones in the final model. 

The models were trained using the free-insertion 
modules provided by SAM, but scoring using 
Krogh’s ad hoc length normalization scheme resulted 
in very poor performance for the HMMs. This 
surprised us, since the models worked well with 
profile search. 

We managed to get good performance on the 
HMMs by removing the free insertion modules and 
patching the models to use the natural scoring system: 

pnsw> score(w) = log, - . 
P,(w) 

This patch consisted of removing the free insertion 
modules, changing all insertion letter tables to the 
background frequencies (simultaneously putting the 
null model in the first and last insert position and 

fixing the incorrect probability distribution for the 
other insert states), and changing the self-loop prob- 
abilities of the first and last insert states to 0.997. 

Some special adjustment was made to initial and 
final transitions, to give the HMMs a fair chance of 
finding fragments. The transition from the start state 
to the first delete state was given a probability of 0.04, 
from the start state to the first insert 0.96 x 0.997 and 
from the start state to the first match state 
0.04 x 0.997. Transitions from the final match state 
to the end state were given probability 0.008 and from 
the final delete state to the end state 0.04. The 0.04 
probabilities for the transitions to and from delete 
were chosen to approximately match the frequency of 
fragments in the training set. Note that all this ad hoc 
patching could easily be incorporated into the stan- 
dard conversion method. 

The patch was applied to the HMMs converted 
from generalized profiles as well, and it is the patched 
HMMs whose performance is reported in Section 6.3. 

It would be useful if SAM supported training to 
maximize the score difference between the model and 
the null model, rather than maximizing the score in 
isolation. The concept of “free-insertion modules” 
could be replaced with “null-model insertion mod- 
ules”, so that these copies of the null models are kept 
identical to the null model throughout training. 

6.3. Evaluation of HMMs and generalized-profiles 

The classification results from using HMM search 
techniques and generalized-profile search techniques 
on the same model (summarized in Table 5) are 
comparable. For both search methods the scores were 
normalized 

Pm(w) -log,, - 
P,(w) 

The generalized-profile scores were normalized by 
fitting an extreme-value distribution to the high 

Table 5. Results of various attempts to model globins using HMMs and generalized profiles. The scores reported are all normalized 
to be -log,, probability, and for the size database searched, scores larger than about 7 should be significant. The “gap” reported 
is the difference in score between the lowest complete globin domain and the highest non-globin. Because the HMM program SAM 
has difficulty with X characters, high scoring non-globins with many Xs were classified as false positives, and the highest scoring 
non-globin was chosen from among the sequences with fewer than 30 Xs. The performance of the old hand-constructed PROSITE 

motif description is included for comparison. 

Profile-3d Profile-333 HMM-333 HMM-prof-3d 

Search using generalized profile 
Lowest gfobin score 7.11 5.34 8.25 9.44 
Highest non-globin score 6.89 7.78 1.78 7.65 
Gap 0.22 -2.54 0.47 I .79 
Mean of 5 highest non-globin scores 6.51 7.11 7.15 6.98 
Number of globin sequences (domains) missed 3(4) 0 0 
Number of fragments missed s 2 2 2 

Search using HMM 
Lowest globin score 2.49 6.08 9.26 10.75 
Highest non-globin score 6.39 8.73 6.58 7.35 
Gap -3.90 -2.65 2.68 3.40 
Mean of 5 highest non-globin scores 6.32 1.69 6.39 6.68 
Number of globin sequences missed 8 6 0 0 
Number of fragments missed 5 4 4 4 
Number of false positives I3 12 12 II 

Old PROSITE profile 
Number of globin domains missed 0 
Number of fragments missed I 
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scores obtained from scoring a window-shuffled ver- 
sion of Swiss-Prot release 29 (Pearson, 1990). The 
HMM results were normalized by subtracting off the 
scores of the null model, and changing the base of the 
logarithm from e to 10. 

The following differences are noticeable. 

l SAM is not able to handle wild-card characters 
correctly, assigning them a probability of one in- 
stead of the more natural choice 2-entropyoftab’e. As a 
result, sequences with many wildcards get much too 
high a score. There are 23 sequences in the database 
with 30 or more X characters, and about half of 
them cause problems with the HMM classification. 
These sequences have not been counted in choosing 
the highest scoring non-globin, but are listed in 
Table 5 as false positives. 

l SAM does a poorer job in finding fragments than 
searches using generalized profiles. This difference 
comes from a difference in alignment modes. The 
SAM package (Hughey & Krogh, 1995) used for 
linear HMM search supports only the family 
and domain models introduced by Krogh et al. 
(1994) which represent special cases of the 
more general model proposed in Section 4 of this 
article. The models available with SAM can only do 
global and domain-global searches, which makes 
finding the fragments difficult, while the profiles 
were all set to semiglobal alignment mode (see 
Table 1). 

l The HMM scoring system generally creates a larger 
gap between the worst-scoring globin and the best- 
scoring non-globin with native HMMs, indicating a 
clearer separation of the classes. 

Given the similarity in search results, is there any 
point to having both HMM and generalized-profile 
software? Definitely-our best model HMM-prof-3d 
was generated by a hybrid method. First we created 
a generalized profile from a structural alignment, 
then converted to an HMM, did HMM training on 
a larger set of unaligned sequences, and finally con- 
verted back to a generalized profile for searching with 
semiglobal alignment. 

Our conversion methods lead to new insights into 
how to normalize HMM scores appropriately, and 
suggested several minor improvements to the SAM 
HMM tool. 

7. CONCLUSIONS 

We have presented a unified formalism to describe 
biomolecular sequence motifs and motif search algor- 
ithms. Underlying this formalism is a specific 
motif concept with biological and mathematical 
connotations. Central to the concept is that a 
motif instance is a specific alignment of a sequence 
region with a motif descriptor, not just the sequence 
region alone. This motif concept can be applied 
to groups of protein or nucleic acid sequences that 
share some common sequence features, because of 

either a common function or a common evolutionary 
origin. 

In presenting this formalism, we made a clear 
distinction between three different problems related 
to sequence motifs. 

l Deriving a sequence motif from initial data. We 
have not addressed this problem in detail here, 
relying instead on existing techniques for profiles 
and HMMs. 

l Describing the shared sequence properties consti- 
tuting a sequence motif. The generalized profiles 
represent a generalization of many of the previously 
used motif descriptors, including a certain class of 
HMMs. The relationship between these descriptors 
has been analyzed in detail and conversion pro- 
cedures for HMMs and generalized profiles have 
been given. 

l Locating and identifying instances of an already 
defined motif in functionally uncharacterized se- 
quences. We defined several different alignment 
modes. One of them, semiglobal alignment, is 
perhaps more useful than traditional modes such 
as local or global alignment. We emphasized 
the distinction between the classification and the 
motif search problem. Methods addressing the first 
one are primarily useful for evaluating the validity 
of motif models on sequence regions of known 
function, but not in situations where the total 
number, as well as the start and end points of 
an individual motif instance are not known in 
advance. 

The motif search problem stated here relies on four 
essential concepts. The first is the motif descriptor 
itself, alternatively called a model. The second is the 
definition of the alignment, which in conjunction with 
a motif description and a target sequence, defines the 
search space. The third is the scoring function for 
alignments. The fourth is a disjointness definition, 
which together with the alignment scoring function, 
serves to define a non-redundant set of potentially 
interesting motif instances. We kept the first three 
components fixed and left the specific definition of the 
disjointness open. The basic outline of this formu- 
lation can provide a framework for defining motif 
search methods based on more complex descriptors 
such as general HMMs and SCFGs, if the definitions 
of the alignment and disjointness relation are appro- 
priately modified. 

The benefits from having a common formalism are 
manifold. Being able to convert motif descriptions 
derived by many different techniques obviously eases 
the design of versatile motif databases and search 
software. A formal framework allows concise de- 
scription of the behavior of motif search software 
independently of the specific algorithm used. 

Besides this, the study of the relationship between 
different methods can lead to better understanding of 
the underlying theories and improvement of the 
existing tools. We have exemplified this aspect by 



comparing linear hidden Markov models with gener- 
alized profiles, at a theoretical level as well as by a 
case study. This comparison has been productive in 
many ways-the two most important achievements 
being the design of a more effective search technique 
for HMMs, and the formulation of local alignment 
in the theor&ical framework of hidden Markov 
models. 
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APPENDIX 

Calculation of the optimal alignment score 
The score of the best alignment is given by the score of 

a highest scoring path from the source vertex B+ to the 
destination vertex E in the graph given in Fig. Al. Each edge 
coming from B+ corresponds to an initiation score, and 
each edge ending at E to a termination score. With the 
exception of the special vertices B+ and E, this graph is 
structured as a grid where each node is composed of eight 
vertices: B, M, I, D M+, I+, D + and E+. Each of these 
vertices is indexed by two values x and y starting from 0, the 
row index and the column index of the node the vertex 
belongs to. Each edge contained in a node corresponds to 
a state transition score. Each edge linking two nodes 
corresponds either to a match, an insertion or a deletion 
score. Table Al shows the relationship between profile 
parameters and the edges of the graph, using the following 
notation: 
l a, denotes the y”“’ residue of the sequence. 

*b,(Y) = 
6, when y = 0, 
6, otherwise. 

f-6 when y = n, where n is the length of the 

*e,(v)={ sequence, 

br otherwise. 

Table Al. Relationship between profile par- 
ameters and edges. Tbe Yand W+ in the last 
line are variables representing any of the 
possible extension nodes: YE {B, M, I, D} 

and IV+ E {M*, I+, D+, E+} 
E&e Profile parameter 
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take the one minimizing y, and if they are equal, the one X E {B, M, I, D}. There is only one path from vertex B+ to 
minimizing x. This choice is induced by the computation vertex BXy composed by one edge, thus: 
order of the algorithm. 

@X,& = MY). (A3) 
s(E) = max ME&) + dvll. (Al) 

(OCxCm.OCyCn) When x = 0, there is no access to vertices MXJ and Ox,, 

GivenxandywithO<xdmandO<y<n,anypath and when y = 0, there is no access to vertices MXy and ZXJ. 

ending at vertex E,:, comes from a vertex XX, where The scores of the highest scoring paths ending at those 

XE {B, D, M, I}. Equation (A2) gives the s(Ez!) value. vertices are set to - co. When x > 1 and y > 1, any path 

When more than one argument maximims s(E: ), we take ending at vertex MI, comes from a vertex .I’, _ ,+ _ , via vertex 

the one respecting the priority B, D, M and I, w&ch favors M,+_ ,J _ , , any path ending at vertex Ix, cornea from a vertex 

the alignment compactness along the sequence. XX, _ , via vertex I& _ , , and tinally, any path ending at vertex 

s(E&) = max W’,,) + L, WE (.%D.M.l) 
I. (A2) 

Dzq comes from a vertex XX_ la via vertex D,‘_ ,+., where 
X E {B, D, iU, I}. Therefore, the values s(M&), s(I&) and 
s(D$,) are given by equations (A4), (A5) and (A6). Ties are 

Now, we have to compute s(X,,) for each resolved the same way as described for equation (A2). 
--co ifx=Oory=O, 

SW,,) = ~~~~~~~~~~-ly-I~+~w~M~-x-l+~x~~y~ otl=wiw 
(A4) 

. * 

i 

--oo if x = 0, 

SK,& = max [SW,,-,)+ ~w~IJ+~X(eY) otherwise, 
(As) 

WE lB.D,MJl 

-Co ify=O, 

W,,) = ,.$vMI, [s(W,-,,~)+r,,,-,l+d, otherwise. 
(A6) 

. . * 

I 

SEQUENCE 
Residue No1 Residue No2 I I I I L 

\ 

Fig. Al. Alignment graph. 
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BEST-SCORE(Sepuence, Profile) 
Compute is,0 from equations (Ad), (AS) and (A@ 
Compute a(.@,) from equation (A2) 
s + S(.QO) + eo 
for I t 1 to m do 

Compute r?,,o from equations (A4). (A5) and (A6) 
Compute s(EL,) from equation(A2) 
if s(EL,) + e, > S then 

S + a@,) + e, 
for y t 1 to n do 

Compute .GQ from equations (A4). (A5) and (A6) 
Compute s(E&,) from equation (A2) 
if s(E&) + q,(y) > S then 

S + @;,) + eo(?/) 
for z t 1 to m do 

profile using the recursive equations described above. Define 
&Y as the triplet of scores s(M,,), s(J,,) and s(D._). This 
algorithm requires O(mn) operations. It can be im- 
plemented with O(m) memory using the traditional method 
consisting of storing the necessary information as a vector, 
here triplets of scores instead of single scores. At any state 
of the algorithm, for given x and y, the following data are 
available before computing the triplet &,: 

.? a vector of m + 1 triplets c,, , c, such that: 

if 0 Q i < X, 
ifx<i<m and I<y<n, 

otherwise; 

Compute Sz,y from equations (A4). (A3 and (A6) 
Compute s(E&) from equation (A2) l c _ a triplet such that: 

if s(E&) + e,(y) > S then 
S + s(E;,) + e=(y) 

return s c- = 
i 

L I.y- I if l,<x<m and l<ydn, 

undefined otherwise; 
Fig. A2. Algorithm finding the score of a best alignment 

between a sequence and a profile. 
if l<x<m 

The BEST-SCORE algorithm described in Fig. A2 finds * ifl<y<n 

the score of a best alignment between a sequence and a ifl<x<mandIgy<n. 


