Estimating statistical significance with reverse-sequence null models *Why it works and why it fails*

Kevin Karplus, Rachel Karchin, Richard Hughey

karplus@soe.ucsc.edu

Center for Biomolecular Science and Engineering University of California, Santa Cruz

Outline of Talk

- & What is a null model?
- & Why use the reverse-sequence null?
- 4 Two approaches to statistical significance.
- & What distribution do we expect for scores?
- 4 Fitting the distribution.
- A Does calibrating the E-values help?
- & When do reverse-sequence null models fail?

Scoring HMMs and Bayes Rule

- **4** The *model* M is a computable function that assigns a probability Prob $(A \mid M)$ to each string A.
- & When given a string A, we want to know how likely the model is. That is, we want to compute something like Prob $(M \mid A)$.
- 💪 Bayes Rule:

$$\operatorname{Prob}\left(M \mid A\right) = \operatorname{Prob}\left(A \mid M\right) \frac{\operatorname{Prob}(M)}{\operatorname{Prob}(A)}$$

A Problem: Prob(A) and Prob(M) are inherently unknowable.

Null models

Standard solution: ask how much more likely *M* is than some *null hypothesis* (represented by a *null model*).

$$\frac{\operatorname{Prob}\left(M \mid A\right)}{\operatorname{Prob}\left(N \mid A\right)} = \frac{\operatorname{Prob}\left(A \mid M\right)}{\operatorname{Prob}\left(A \mid N\right)} \frac{\operatorname{Prob}(M)}{\operatorname{Prob}(N)}$$

- $\begin{array}{l} \bigstar \\ \frac{\mathsf{Prob}(M)}{\mathsf{Prob}(N)} \text{ is the prior odds ratio, and represents our belief in the likelihood of the model before seeing any data. \end{array}$
- Prob(M|A)is the *posterior odds ratio*, and represents our Prob(N|A)belief in the likelihood of the model after seeing the data.

Standard Null Model

A Null model is an i.i.d (independent, identically distributed) model.

$$\operatorname{Prob}\left(A \mid N, \operatorname{len}(A)\right) = \prod_{i=1}^{\operatorname{len}(A)} \operatorname{Prob}(A_i) .$$

 $\operatorname{Prob}\left(A \mid N\right) = \operatorname{Prob}(\operatorname{string of length} \operatorname{len}(A))$ $\operatorname{len}(A)$

 $\mathsf{Prob}(A_i)$.

i=1

Problems with standard null

- When using the standard null model, certain sequences and нммs have anomalous behavior. Many of the problems are due to unusual composition—a large number of some usually rare amino acid.
- For example, metallothionein, with 24 cysteines in only
 61 total amino acids, scores well on any model with
 multiple highly conserved cysteines.

Reversed model for null

- & We avoid composition bias (and several other problems) by using a reversed model M^r as the null model.
- & The probability of a sequence in M^r is exactly the same as the probability of the reversal of the sequence given M.

$$\frac{\operatorname{Prob}\left(M \mid S\right)}{\operatorname{Prob}\left(M^r \mid S\right)} = \frac{\operatorname{Prob}\left(S \mid M\right)}{\operatorname{Prob}\left(S \mid M^r\right)}$$

A This method corrects for composition biases, length biases, and several subtler biases.

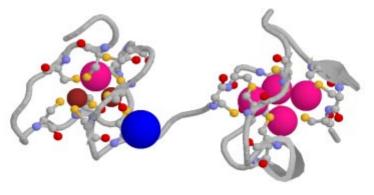
Composition as source of error

A cysteine-rich protein, such as metallothionein, can match any HMM that has several highly-conserved cysteines, even if they have quite different structures:

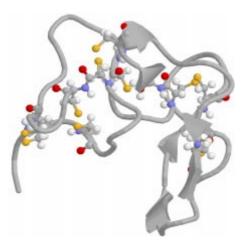
		cost in nats		
		model –	model –	
HMM	sequence	standard null	reversed-model	
1kst	4mt2	-21.15	0.01	
1kst	1tabl	-15.04	-0.93	
4mt2	1kst	-15.14	-0.10	
4mt2	1tabl	-21.44	-1.44	
1tabl	1kst	-17.79	-7.72	
1tabl	4mt2	-19.63	-1.79	

Composition examples

Metallothionein Isoform II (4mt2)

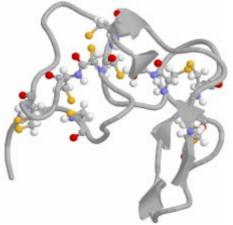


Kistrin (1kst)

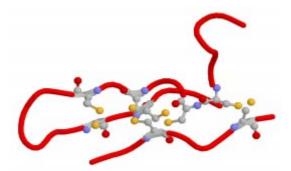


Composition examples

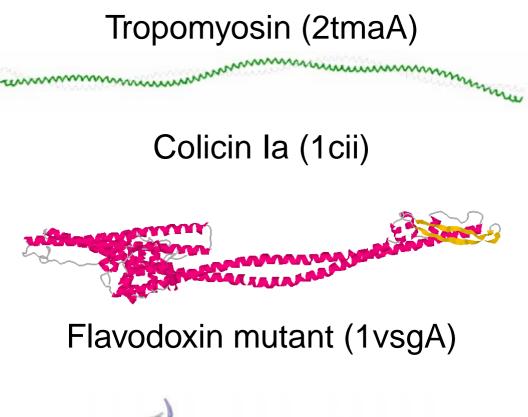
Kistrin (1kst)

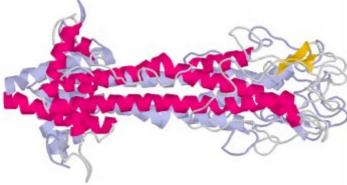


Trypsin-binding domain of Bowman-Birk Inhibitor (1tabl)



Helix examples

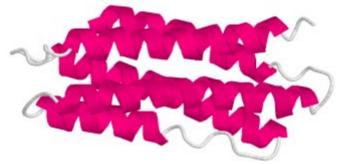




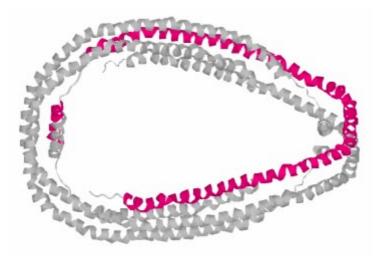
E-values for reverse-sequence null - p.11/32

Helix examples

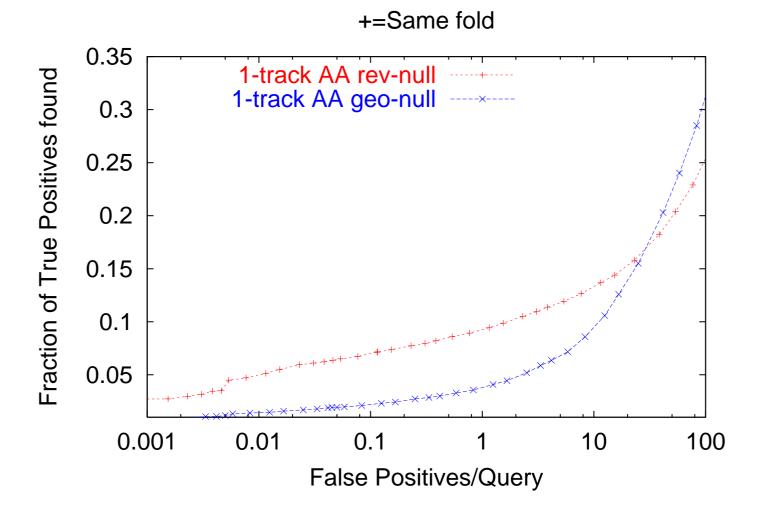
Apolipophorin III (1aep)



Apolipoprotein A-I (1av1A)



Fold Recognition Performance



E-values for reverse-sequence null - p.13/32

What is Statistical Significance?

- **4** The statistical significance of a hit, P_1 , is the probability of getting a score as good as the hit "by chance," when scoring a single "random" sequence.
- & When searching a database of N sequences, the significance is best reported as an E-value—the expected number of sequences that would score that well by chance: $E = P_1 N$.
- Some people prefer the p-value: $P_N = 1 (1 P_1)^N$, For large N and small E, $P_N \approx 1 - e^{-E} \approx E$.
- I prefer E-values, because our best scores are often not significant, and it is easier to distinguish between E-values of 10, 100, and 1000 than between p-values of 0.999955, 1.0 – 4E-44, and 1.0 – 5E-435

Approaches to Statistical Significance

(Markov's inequality) For any scoring scheme that uses

$$\ln \frac{\operatorname{Prob}\left(\operatorname{seq} \mid M_{1}\right)}{\operatorname{Prob}\left(\operatorname{seq} \mid M_{2}\right)}$$

the probability of a score better than T is less than e^{-T} for sequences distributed according to M_2 . This method is independent of the actual probability distributions.

4 (Classical parameter fitting) If the "random" sequences are not drawn from the distribution M_2 , but from some other distribution, then we can try to fit some parameterized family of distributions to scores from a random sample, and use the parameters to compute P_1 and E values for scores of real sequences.

Our Assumptions

Bad assumption 1: The sequence and reversed sequence come from the same underlying distribution.

Bad assumption 2: The scores with a standard null model are distributed according to an extreme-value distribution:

$$P\left(\ln \operatorname{\mathsf{Prob}}\left(\operatorname{\mathsf{seq}} \mid M\right) > T\right) \approx G_{k,\lambda}(T) = 1 - \exp(-ke^{\lambda T}).$$

Bad assumption 3: The scores with the model and the reverse-model are independent of each other.

Result: The scores using a reverse-sequence null model are distributed according to a sigmoidal function:

$$P(\operatorname{score} > T) = (1 - e^{\lambda T})^{-1}$$
.

Derivation of sigmoidal distribution

(Derivation for costs, not scores, so more negative is better.)

$$P(\operatorname{cost} < T) = \int_{-\infty}^{\infty} P(c_M = x) \int_{x-T}^{\infty} P(c_{M'} = y) dy dx$$

$$= \int_{-\infty}^{\infty} P(c_M = x) P(c_{M'} > x - T) dx$$

$$= \int_{-\infty}^{\infty} k\lambda \exp(-ke^{\lambda x}) e^{\lambda x} \exp(-ke^{\lambda(x-T)}) dx$$

$$= \int_{-\infty}^{\infty} k\lambda e^{\lambda x} \exp(-k(1 + e^{-\lambda T})e^{\lambda x}) dx$$

Derivation of sigmoid (cont.)

If we introduce a temporary variable to simplify the formulas: $K_T = k(1 + \exp(-\lambda T))$, then

$$P(\operatorname{cost} < T) = \int_{-\infty}^{\infty} (1 + e^{-\lambda T})^{-1} K_T \lambda e^{\lambda x} \exp(-K_T e^{\lambda x}) dx$$

$$= (1 + e^{-\lambda T})^{-1} \int_{-\infty}^{\infty} K_T \lambda e^{\lambda x} \exp(-K_T e^{\lambda x}) dx$$

$$= (1 + e^{-\lambda T})^{-1} \int_{-\infty}^{\infty} g_{K_T,\lambda}(x) dx$$

$$= (1 + e^{-\lambda T})^{-1}$$

Fitting λ

- Let A parameter simply scales the scores (or costs) before the sigmoidal distribution, so λ can be set by matching the observed variance to the theoretically expected variance.
- A The mean is theoretically (and experimentally) zero.
- A The variance is easily computed, though derivation is messy:

$$E(c^2) = (\pi^2/3)\lambda^{-2}$$

 \bigstar λ is easily fit by matching the variance:

$$\lambda \approx \pi \sqrt{N/(3\sum_{i=0}^{N-1} c_i^2)} .$$

Two-parameter family

- We made three dangerous assumptions: reversibility, extreme-value, and independence.
- To give ourselves some room to compensate for deviations from the extreme-value assumption, we can add another parameter to the family.
- & We can replace $-\lambda T$ with any strictly decreasing odd function.
- Somewhat arbitrarily, we chose

 $-\operatorname{sign}(T)|\lambda T|^{\tau}$

so that we could match a "stretched exponential" tail.

Fitting a two-parameter family

For two-parameter symmetric distribution, we can fit using 2nd and 4th moments:

$$E(c^2) = \lambda^{-2/\tau} K_{2/\tau}$$
$$E(c^4) = \lambda^{-4/\tau} K_{4/\tau}$$

where K_x is a constant:

$$K_x = \int_{-\infty}^{\infty} y^x (1+e^y)^{-1} (1+e^{-y})^{-1} dy$$

= $-\Gamma(x+1) \sum_{k=1}^{\infty} (-1)^k / k^x$.

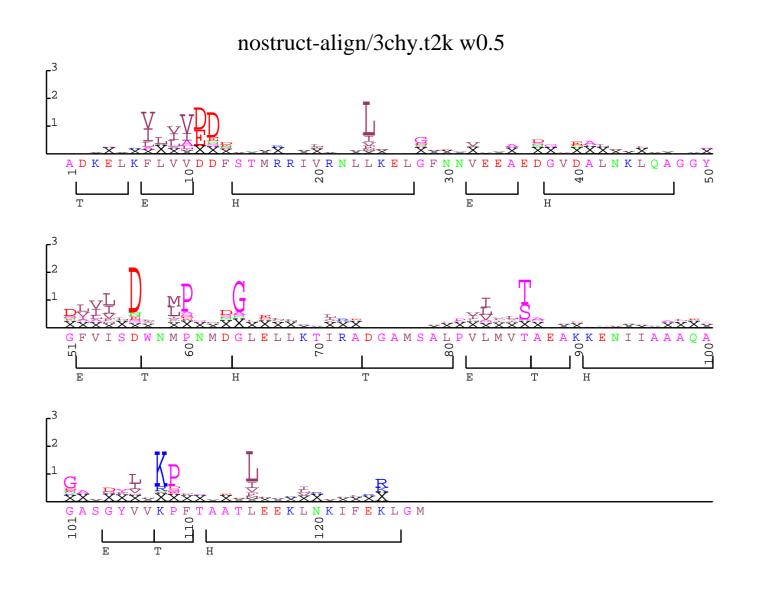
Fitting a two-parameter family (cont.)

- **4** The ratio $E(c^4)/(E(c^2))^2 = K_{4/\tau}/K_{2/tau}^2$ is independent of λ and monotonic in τ , so we can fit τ by binary search.
- **4** Once τ is chosen we can fit λ using $E(c^2) = \lambda^{-2/\tau} K_{2/\tau}$.

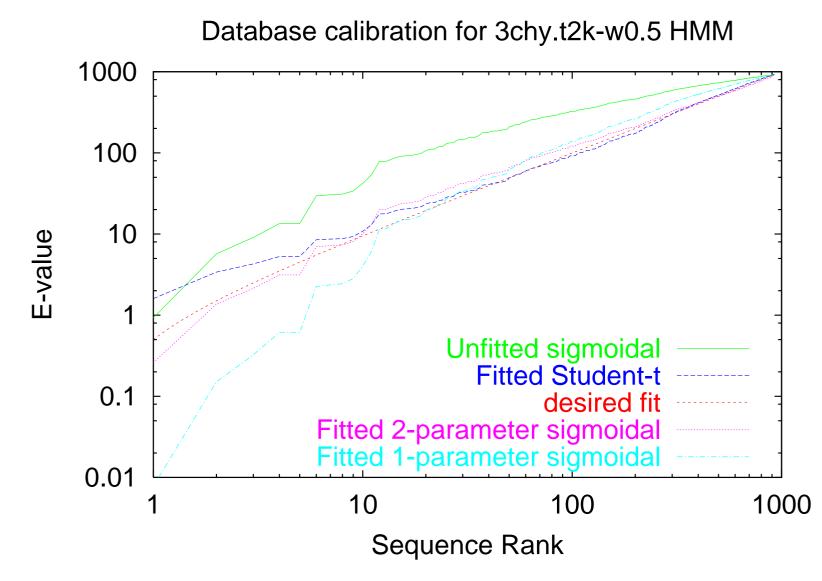
Student's t-distribution

- A On the advice of statistician David Draper, we tried maximum-likelihood fits of Student's t-distribution to our heavy-tailed symmetric data.
- We couldn't do moment matching, because the degrees of freedom parameter for the best fits turned out to be less than 4, where the 4th moment of Student's t is infinite.
- A The maximum-likelihood fit of Student's t seemed to produce too heavy a tail for our data.
- & We plan to investigate other heavy-tailed distributions.

What is single-track HMM looking for?

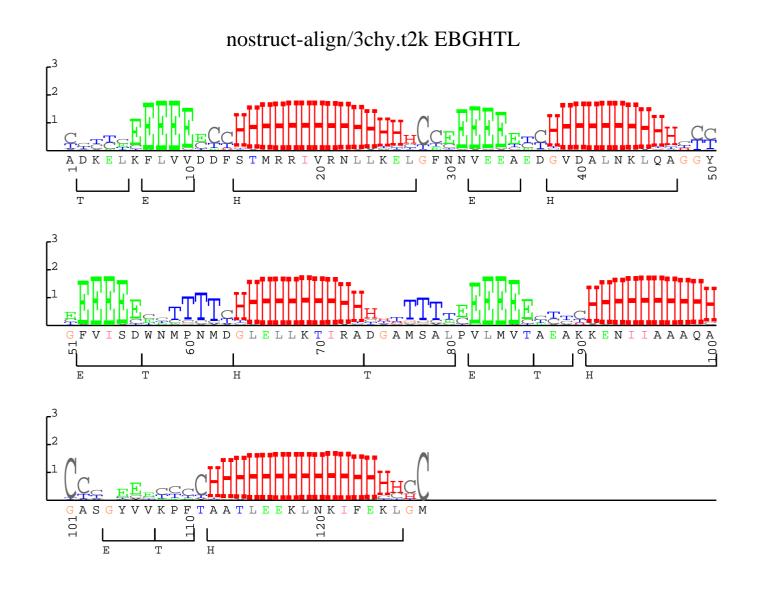


Example for single-track HMM

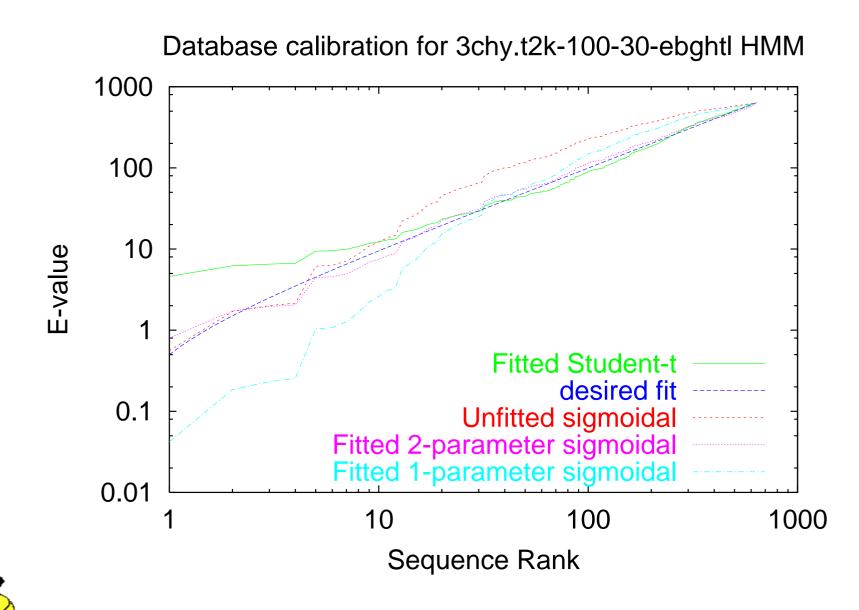


E-values for reverse-sequence null - p.25/32

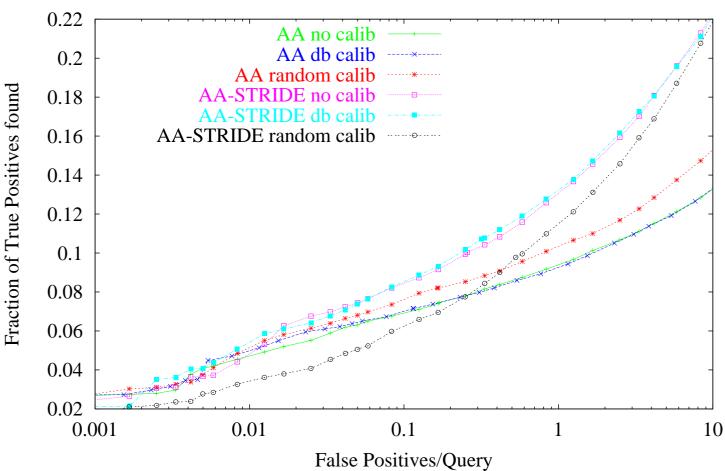
What is second track looking for?

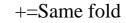


Example for two-track HMM



Fold recognition results

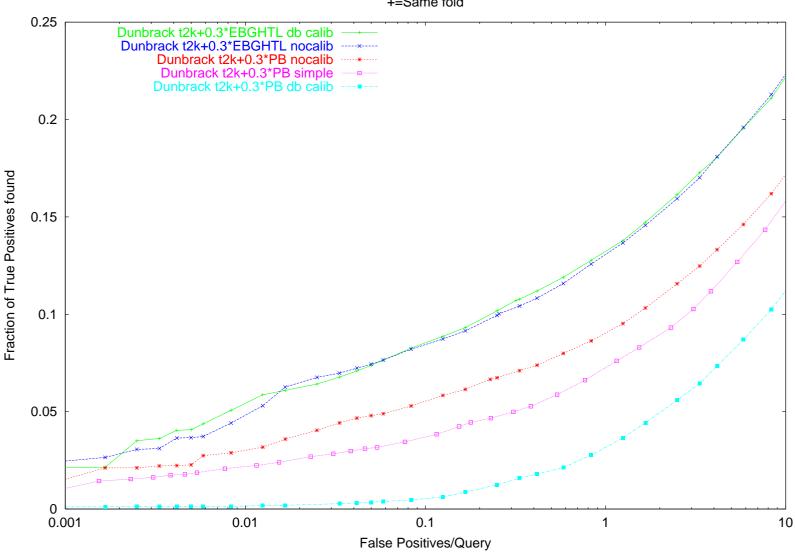




What went wrong?

- Why did random calibrated fold recognition fail for 2-track HMMs?
- "Random" secondary structure sequences (i.i.d. model) are not representative of real sequences.
- 🍇 Fixes:
 - Better secondary structure decoy generator
 - Use real database, but avoid problems with contamination by true positives by taking only costs > 0 to get estimate of E(cost²) and E(cost⁴).

Fold recognition results



+=Same fold

What went wrong with Protein Blocks?

- A The ниме using de Brevern's protein blocks did much worse after calibration. Why?
- A The protein blocks alphabet strongly violates reversibility assumption.
- Encoding cost in bits for secondary structure strings:

alphabet	0-order	1st-order	reverse-forward
amino acid	4.1896	4.1759	0.0153
stride	2.3330	1.0455	0.0042
dssp	2.5494	1.3387	0.0590
pb	3.3935	1.4876	3.0551

Web sites

UCSC bioinformatics info:

http://www.soe.ucsc.edu/research/compbio/

SAM tool suite info:

http://www.soe.ucsc.edu/research/compbio/sam.html

HMM servers: http://www.soe.ucsc.edu/research/compbio/HMM-apps/

SAM-T02 prediction server:

http://www.soe.ucsc.edu/research/compbio/

HMM-apps/T02-query.html

These slides:

http://www.soe.ucsc.edu/~karplus/papers/e-value-germany02.pdf

