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Outline of Talk

What is a null model?

Why use the reverse-sequence null?

Two approaches to statistical significance.

What distribution do we expect for scores?

Fitting the distribution.

Does calibrating the E-values help?

When do reverse-sequence null models fail?
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Scoring HMMs and Bayes Rule

The model M is a computable function that assigns a
probability Prob (A | M) to each string A.

When given a string A, we want to know how likely the
model is. That is, we want to compute something like
Prob (M | A).

Bayes Rule:

Prob
(
M

∣∣∣ A
)

= Prob
(
A

∣∣∣ M
) Prob(M)

Prob(A)
.

Problem: Prob(A) and Prob(M) are inherently
unknowable.
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Null models

Standard solution: ask how much more likely M is than
some null hypothesis (represented by a null model).

Prob (M | A)

Prob (N | A)
=

Prob (A | M)

Prob (A | N)

Prob(M)

Prob(N)
.

Prob(M)

Prob(N)
is the prior odds ratio, and represents our belief in

the likelihood of the model before seeing any data.

Prob

�

M|A�

Prob

�

N|A� is the posterior odds ratio, and represents our

belief in the likelihood of the model after seeing the
data.
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Standard Null Model

Null model is an i.i.d (independent, identically
distributed) model.

Prob
(
A

∣∣∣ N, len (A)
)

=

len(A)∏
i=1

Prob(Ai) .

Prob
(
A

∣∣∣ N
)

= Prob(string of length len (A))

len(A)∏
i=1

Prob(Ai) .

The length modeling is often omitted, but one must be
careful then to normalize the probabilities correctly.
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Problems with standard null

When using the standard null model, certain sequences
and HMMs have anomalous behavior. Many of the
problems are due to unusual composition—a large
number of some usually rare amino acid.

For example, metallothionein, with 24 cysteines in only
61 total amino acids, scores well on any model with
multiple highly conserved cysteines.
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Reversed model for null

We avoid composition bias (and several other problems)
by using a reversed model M r as the null model.

The probability of a sequence in M r is exactly the same
as the probability of the reversal of the sequence given
M .

If we assume that M and M r have equal prior
likelihood, then

Prob (M | S)

Prob (M r | S)
=

Prob (S | M)

Prob (S | M r)
.

This method corrects for composition biases, length
biases, and several subtler biases.
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Composition as source of error

A cysteine-rich protein, such as metallothionein, can match
any HMM that has several highly-conserved cysteines,
even if they have quite different structures:

cost in nats
model − model −

HMM sequence standard null reversed-model
1kst 4mt2 -21.15 0.01
1kst 1tabI -15.04 -0.93
4mt2 1kst -15.14 -0.10
4mt2 1tabI -21.44 -1.44
1tabI 1kst -17.79 -7.72
1tabI 4mt2 -19.63 -1.79
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)
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Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)
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Helix examples

Apolipophorin III (1aep)

Apolipoprotein A-I (1av1A)
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Fold Recognition Performance
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What is Statistical Significance?

The statistical significance of a hit, P1, is the probability
of getting a score as good as the hit “by chance,” when
scoring a single “random” sequence.

When searching a database of N sequences, the
significance is best reported as an E-value—the
expected number of sequences that would score that
well by chance: E = P1N .

Some people prefer the p-value: PN = 1 − (1 − P1)
N ,

For large N and small E, PN ≈ 1 − e−E ≈ E.

I prefer E-values, because our best scores are often not
significant, and it is easier to distinguish between
E-values of 10, 100, and 1000 than between p-values of
0.999955, 1.0 − 4E-44, and 1.0 − 5E-435

E-values for reverse-sequence null – p.14/32



Approaches to Statistical Significance

(Markov’s inequality) For any scoring scheme that uses

ln
Prob (seq | M1)

Prob (seq | M2)

the probability of a score better than T is less than e−T

for sequences distributed according to M2. This method
is independent of the actual probability distributions.

(Classical parameter fitting) If the “random” sequences
are not drawn from the distribution M2, but from some
other distribution, then we can try to fit some
parameterized family of distributions to scores from a
random sample, and use the parameters to compute P1

and E values for scores of real sequences.
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Our Assumptions

Bad assumption 1: The sequence and reversed sequence
come from the same underlying distribution.

Bad assumption 2: The scores with a standard null model are
distributed according to an extreme-value distribution:

P
(
ln Prob

(
seq

∣∣∣ M
)

> T
)
≈ Gk,λ(T ) = 1− exp(−keλT ) .

Bad assumption 3: The scores with the model and the
reverse-model are independent of each other.

Result: The scores using a reverse-sequence null model
are distributed according to a sigmoidal function:

P (score > T ) = (1 − eλT )−1 .
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Derivation of sigmoidal distribution

(Derivation for costs, not scores, so more negative is better.)

P (cost < T ) =

∫ ∞

−∞
P (cM = x)

∫ ∞

x−T
P (cM ′ = y)dydx

=

∫ ∞

−∞
P (cM = x)P (cM ′ > x − T )dx

=

∫ ∞

−∞
kλ exp(−keλx)eλx exp(−keλ(x−T ))dx

=

∫ ∞

−∞
kλeλx exp(−k(1 + e−λT )eλx)dx

E-values for reverse-sequence null – p.17/32



Derivation of sigmoid (cont.)

If we introduce a temporary variable to simplify the
formulas: KT = k(1 + exp(−λT )), then

P (cost < T ) =

∫ ∞

−∞
(1 + e−λT )−1KT λeλx exp(−KT eλx)dx

= (1 + e−λT )−1

∫ ∞

−∞
KT λeλx exp(−KT eλx)dx

= (1 + e−λT )−1

∫ ∞

−∞
gKT ,λ(x)dx

= (1 + e−λT )−1
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Fitting λ

The λ parameter simply scales the scores (or costs)
before the sigmoidal distribution, so λ can be set by
matching the observed variance to the theoretically
expected variance.

The mean is theoretically (and experimentally) zero.

The variance is easily computed, though derivation is
messy:

E(c2) = (π2/3)λ−2 .

λ is easily fit by matching the variance:

λ ≈ π

√√√√N/(3
N−1∑
i=0

c2
i ) .
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Two-parameter family

We made three dangerous assumptions: reversibility,
extreme-value, and independence.

To give ourselves some room to compensate for
deviations from the extreme-value assumption, we can
add another parameter to the family.

We can replace −λT with any strictly decreasing odd
function.

Somewhat arbitrarily, we chose

− sign(T )|λT |τ

so that we could match a “stretched exponential” tail.
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Fitting a two-parameter family

For two-parameter symmetric distribution, we can fit using
2nd and 4th moments:

E(c2) = λ−2/τK2/τ

E(c4) = λ−4/τK4/τ

where Kx is a constant:

Kx =

∫ ∞

−∞
yx(1 + ey)−1(1 + e−y)−1dy

= −Γ(x + 1)

∞∑
k=1

(−1)k/kx .
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Fitting a two-parameter family (cont.)

The ratio E(c4)/(E(c2))2 = K4/τ/K
2
2/tau is independent

of λ and monotonic in τ , so we can fit τ by binary
search.

Once τ is chosen we can fit λ using E(c2) = λ−2/τK2/τ .
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Student’s t-distribution

On the advice of statistician David Draper, we tried
maximum-likelihood fits of Student’s t-distribution to our
heavy-tailed symmetric data.

We couldn’t do moment matching, because the degrees
of freedom parameter for the best fits turned out to be
less than 4, where the 4th moment of Student’s t is
infinite.

The maximum-likelihood fit of Student’s t seemed to
produce too heavy a tail for our data.

We plan to investigate other heavy-tailed distributions.
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What is single-track HMM looking for?
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Example for single-track HMM
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What is second track looking for?
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Example for two-track HMM
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Fold recognition results
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What went wrong?

Why did random calibrated fold recognition fail for
2-track HMMs?

“Random” secondary structure sequences (i.i.d. model)
are not representative of real sequences.

Fixes:
Better secondary structure decoy generator
Use real database, but avoid problems with
contamination by true positives by taking only costs
> 0 to get estimate of E(cost2) and E(cost4).
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Fold recognition results
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What went wrong with Protein Blocks?

The HMMs using de Brevern’s protein blocks did much
worse after calibration. Why?

The protein blocks alphabet strongly violates
reversibility assumption.

Encoding cost in bits for secondary structure strings:

alphabet 0-order 1st-order reverse-forward
amino acid 4.1896 4.1759 0.0153
stride 2.3330 1.0455 0.0042
dssp 2.5494 1.3387 0.0590
pb 3.3935 1.4876 3.0551
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Web sites

UCSC bioinformatics info:
http://www.soe.ucsc.edu/research/compbio/

SAM tool suite info:
http://www.soe.ucsc.edu/research/compbio/sam.html

HMM servers: http://www.soe.ucsc.edu/research/compbio/HMM-apps/

SAM-T02 prediction server:
http://www.soe.ucsc.edu/research/compbio/

HMM-apps/T02-query.html

These slides:
http://www.soe.ucsc.edu/˜karplus/papers/e-value-germany02.pdf
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