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Computing Signal Delay in General RC Networks by 
Tree/Link Partitioning 

PAK K .  CHAN A N D  KEVIN KARPLUS 

Abstract-Most RC simulators handle only tree networks, not arbi- 
trary networks. We present an algorithm for computing signal delays 
in general RC networks using the RC-tree computation as the primary 
operation. We partition a given network into a spanning tree and links. 
Then we compute the signal delay of the spanning tree, and update the 
signal delay as we incrementally add the links back to reconstruct the 
original network. If rn is the number of links, this algorithm requires 
m ( r i i  + 1) /2  updates and !ti  + 1 tree delay evaluations. All the tree 
delay evaluations involve computing signal delays with the same resis- 
tive spanning tree, but with different values for the capacitors. 

I .  INTRODUCTION 
The linear RC model has become an acceptable and pragmatic 

approach for modeling digital MOS circuits in the past decade. Re- 
search has been carried out both in bounding the waveforms [17], 
[22], [24] and in estimating the signal delays 131, [7], [13], [14], 
1191 of RC networks. In particular, Elmore’s notion of signal delay 
[8] has been used widely to approximate the time taken for a signal 
to start from an initial value and reach half of its final value. 

If G is the node conductance matrix of a given RC network and 
C is the capacitance matrix of the network, calculating Elmore’s 
delay. t(,, can be as simple as evaluating the product of G - ’ ,  C, 
and unit vector 1. Since G and C are given, the delay estimation 
problem amounts to computing the resistance matrix, R = G - I .  
Thus delay estimation in RC networks has been viewed as a nu- 
merical problem: inverting G [ 131. The computational requirement 
of this numerical approach limits its applicability to general prob- 
lems. However, if the RC network is a tree, then R can be deter- 
mined by inspection, and t,, can be computed in linear time. Almost 
all MOS timing level simulators treat networks as if they were trees, 
trading off accuracy for simplicity [3], 1141, [19]. 

Signal delays in tree networks are easy to evaluate; unfortu- 
nately, many practical MOS circuits are not trees. The Manchester 
adder with carry-bypass circuitry, as depicted in Fig. 1, isAn ex- 
- ample 1201. Since the bypass transistor B is connected to CO and 
C,, when this transistor is O N  and all the P ,  are high, they form a 
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Fig. I. Manchester adder with carry-bypass 

closed loop of conducting transistors, and cannot be modeled as an 
RC tree. 

The goal of this paper is to provide an efficient way of computing 
signal delays in RC networks that do  not necessarily form trees. 
We partition a given network into a spanning tree and links. We 
then start with the signal delay of the spanning tree, and gradually 
update the signal delay while incrementally piecing the links back 
to reconstruct the original network. The concept of circuit p a r t -  
tioning will be explained in Section 111. A delay computation al- 
gorithm and its complexity will be explained in Section IV. Here, 
we shall consider only RC networks with grounded capacitors at 
each node of the network and no floating capacitors. Extensions to 
handle floating capacitors are discussed in [5]. 

A note on related work: Lin and Mead invented the technique 
of “tree decomposition” and “load redistribution” to calculate 
signal delay in general RC networks [ 131. Their algorithm is relax- 
ation-based, and the number of relaxation steps depends on the re- 
quired accuracy. The algorithm that we are presenting here is based 
on dynamic programming, and terminates in a predetermined num- 
ber of steps with the exact result. 

11. SIGNAL DELAY I N  RC NETWORKS 
The delay estimation problem aims to find the time interval that 

it would take a signal to start from an initial value and reach a 
prescribed value. The most meaningful such value for digital cir- 
cuits is the threshold voltage where the two logic states cross. 
However, locating this delay time precisely can be as hard as  find- 
ing the exact waveform. A notion of delay defined in terms of the 
first moment of the impulse response was introduced by Elmore 
[8]. Many researchers have used the normalized Elmore delay to 
approximate such a delay time [2], [ 3 ] ,  [13], [23]: 

5- h ( t ) r  dt 

r,/ = ( 1 )  
l , ( W )  - u ( 0 )  

where v ( m )  and ~ ( 0 )  are the final and initial voltages. If z ) ( t )  is 
is the voltage response due to a unit step input, then an equivalent 
definition of Elmore delay is [17], [22], [23]: 

Sa [ u ( w )  - ~ ( t ) ]  dr 

I‘/ = ( 2 )  
Z’(W) - P(0)  

Based on this notion of signal delay, closed-form delay expressions 
can be derived for RC networks without floating capacitors. We 
note that for a simple RC circuit with only one resistor and one 
grounded capacitor, Elmore delay is the same as the time constant 
of the circuit. 

For a given RC network with n grounded capacitors, let 

G,,!  be the branch conductance between nodes i a n d j  (and by 
reciprocity, G, , f  = G , , ( ) ;  
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G,.l be the sum of all branch conductances connected to node 

C, denote the capacitance at node i .  

The node conductance matrix of the network has the following 

i ;  

form: 

With this, Elmore’s delay for the ith node in the RC network is 
n 

c R ! . / C , [ l \ ( W )  - z:(O)] 
J =  I 

t d , ,  E ( 3 )  
Z j , ( W )  - v , ( O )  

or in matrix form 

R C [ Z ) ( W )  - ~ ( o ) ]  
T ,  E ( 4 )  

v ( w )  - 4 0 )  
where R = G-I ,  C is a diagonal matrix with entries (Cl ,  C?, 
. . . , C,) and U( 03) and v(0) are the final and initial node volt- 
ages. 

Speaking in terms of the components of the R = ( R , ,  / )  matrix, 
R, , ,  is the driving-point resistance between node i and the input 
node, and R,,J is the transfer resistance between nodes i and j .  If 
the given RC network is a tree, then it has only one spanning tree 
and R,, is the resistance of the portion of the unique path between 
the input and the j t h  node that is common with the unique path 
between the input and node i .  In particular, R,, ,  is the resistance 
between the input and node i [17].  Hence, the resistance matrix R 
can readily be found by inspection. Evaluating delays for all n nodes 
of a tree network requires only n multiplications. 

We shall focus on treatments of RC networks which are not nec- 
essarily trees for the rest of the paper. 

111. CIRCUIT PARTITIONING 
Tearing is a means of partitioning circuits into several smaller, 

more manageable subcircuits to enhance computational efficiency. 
A large circuit is “torn” into simpler subcircuits, we solve the 
subcircuits, then we piece together the subcircuit solutions with a 
formal mechanism to yield the composite result. 

An RC circuit is abstracted as a circuit graph 9 = ( N ,  E ), con- 
sisting of a set of nodes N = { no, n I, . . . , n,, } and a set of edges 
E = { e , ,  . . * , e , , } .  Each node in the RC circuit has a grounded 
capacitor, and each edge has a resistor. Without loss of generality, 
the node no designates the input node. Furthermore, we can parti- 
tion 9 into two parts: a spanning tree consisting of n edges; and 
b - n edges that do  not belong to the tree, called links. 

3. I .  Tree/Link Partitioning 
Given a circuit graph, we can partition it into a spanning tree 

and links using a simple depth-first search of the graph. We start 
by solving the spanning tree, and update the solution by incremen- 
tally adding the links back to reconstruct the original network. The 
mechanism that we use for updating the solution is based on a for- 
mula in [I61 where Kron’s idea of circuit partitioning was advo- 
cated [ 121.’ Rohrer shows the consequence of adding a resistor to 
a circuit that has been solved. Adding more than one resistor can 
be treated inductively by adding one resistor at a time. The idea of 
tree/link partitioning has previously been applied to computing the 
voltage drops along a power distribution net [ 1 I], to a piecewise 
linear circuit simulator [IO], [15],  and to solving linear equations 
by tree relaxation 1181. 

‘Similar ideas have been explored in different contexts, see 141, 191. 

I 

(b) 
Fig. 2 .  Updating a resistive circuit 

3.2. Adding a Single Resistor 
Suppose that we have already computed all the node voltages v 

of a resistive circuit R driven by the current source vector i (Fig. 
2(a)), and we wish to ascertain the consequences of adding a resis- 
tor of value GI between its kth and Ith nodes, as illustrated in Fig. 
2(b). 

Rohrer [I61 shows that the effect on the circuit node voltages of 
the addition of a resistor 6l between nodes k and I is 

where{, , , i sacolumnvectorwitha “ + I ”  i n t h e k t h r o w ,  a “ - I ”  
in the Ith row, and zeros everywhere else. We note that the con- 
nection vector indicates that the resistor to be added is con- 
nected from node k to  node 1 .  

3.3. Applying TreeILink Partitioning to Signal Delay Estimation 
First we consider networks with only one driving-source (either 

V,, o r  ground), such that all node voltages U , (  03) attain the same 
final value. The effect of multiple driving-sources and different ini- 
tial and final node voltages will be considered in Section 111-3.4. 
Assuming that all initial and final node voltages are the same, from 
( 5 )  we obtain 

i q w )  - O ( r )  

= V ( W )  - U(?) 

( d w )  - Z ) k ( f ) )  - (24(w) - 4 t ) )  
RtL.1. - 

GI + R 1 . h  + - 2Rh,I 
Then we apply Elmore’s definition of delay to obtain the following 
formula for updating delay values: 

The strategy for computing the signal delay for arbitrary RC net- 
works is clear: we remove all the links until we have a spanning 
tree, compute the signal delay of the tree, and then gradually add 
back the previously deleted links using (6). 

This approach has the following desirable properties: first, the 
order of the removal of the links is arbitrary, which makes imple- 
mentation easier. Second, it is not necessary to compute the signal 
delay of all nodes-the computation involved can be limited to the 
nodes for which signal delays are required, for instance, the pri- 
mary output nodes. Third, the complexity of this approach depends 
on  the number of links. Since VLSI circuits have few links, this 
approach lends itself well to VLSI applications. 

Most existing RC timing simulators handle only tree networks 
[ I ] ,  1191. To facilitate the incorporation of our idea into these sini- 
ulators, we shall formulate our method using the tree delay evalu- 
ation as the primary operation. Referring to (6 ) ,  we note that R(1.i 
can be conceived of as a delay calculation with the grounded ca- 
pacitances of the kth and Ith nodes set to + I and - I ,  respectively, 
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and the rest set to zeros. Furthermore, if we define r = ( r , )  = 
R(l , , ,  then the delay expression can be reformulated as 

( 7 )  

This formula, and the algorithm to be presented in Section IV,  con- 
stitute the major result of this article. 

Example: Fig. 3 shows an instance (with P ,  = I ,  G, = 0, and 
CO = 1 f o r i  = I ,  . . . , 4 )  of the RC model for the transistor loop 
in the Manchester adder as shown in Fig. 1. With the switch ( C K )  
closed, deleting any one of the resistors R , ,  . . . , R5 from the 
circuit will result in a tree, so we arbitrarily remove R3 and com- 
pute the signal delay of the remaining spanning tree, as  shown in 
Fig. 4(a):  

Let’s call this an RC tree delay operation. To compute r ,  we 
simply set C3 to + I ,  C, to - 1, and the rest of the capacitors to 
zeros in (8) ,  as depicted in Fig. 4(b). This gives us 

0 

r =  [ : l + R 2  I=[ - 30 

-(R4 + R,)  
- R? - 20 

Now, we merge td and r using (7) to obtain the Elmore signal delay 
of the original network: 

1000.0 

t d . 3  - t‘l.4 

R3 + r3 - r, 
id = t d  - 

L 1333.3 J 
For a connected network with n + 1 nodes and n edges, only 

one tree delay evaluation is needed. We have just shown that it 
takes two tree delay evaluations to compute the signal delay of the 
carry-bypass circuit with a single loop. In general, i t  takes b - n 
+ 1 tree delay evaluations for a network consisting of n + 1 nodes, 
b edges, and b - n links. A general analysis will be given in Sec- 
tion IV. 

3.4.  RC Networks with Two Driving Sources 
To compute signal delays in a network with two driving sources, 

we need to know the final node voltages. We partition the network 
into subnetworks, each driven by a single source. We use (5) to 
compute the final node voltages (with the renaming r = RF,, , ) ,  
namely: 

( 9 )  
L ’ A ( C O )  - z ’ / ( C O )  

8( 0 3 )  = U (  0 3 )  - r. 
03 + r, - r1 

Cl T C5T OT OT 
(a)  (b) 

Fig. 4. Two tree evaluations as a result of partitioning. 

(b)  ( C )  

Fig. 5 .  Tree evaluations as a result of partitioning 

The effect of initial and final node voltages on signal delays can be 
easily accommodated by the following trick. Referring to (3),  
imagining that each node capacitance is of value Q, = C,[ it,( 00) 

- O , ( O ) ] ,  we compute the “signal delays” of each subnetwork 
with these “capacitances.” The “signal delay” values computed 
are merged by using (7); then are divided by O,( C O )  - D , ( O )  to 
obtain the actual signal delay. The following simple example will 
illustrate the idea. 

Fig. 5(a) shows an RC network with a leakage path to ground. 
Let V (  0 3 )  = 1 V ,  and v I  ( 0 )  = ~ ~ ( 0 )  = 0 V. The signal delay of 
this network can be computed by considering the subnetworks (for- 
est) shown in Fig. 5(b) and 5(c),  obtained by deleting R, from Fig. 
5(a).  First, we obtain r by considering the subnetworks shown in 
Fig. 5(c) 

= [ 3 
By (9). the final node voltages are 

;”, + “‘1. 1 
RI + Rz + R? 

- - 
RI 

Next, we compute the “signal delays” of Fig. 5(b), which yields 

Finally, we combine (4) and (7) into 
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A Tree Delay Evaluation 

D 0 Merge operation 

( m - 1 . m  

Fig. 6 .  Combining subcircuits. 

to obtain the result 

Iv. COMPLEXITY 

Let n + 1 be the number of nodes and b be the number of edges 
in a given network. Let m = n - b be the number of links. We 
show that the algorithm uses m + 1 tree evaluations and m ( m  + 
1 ) / 2  merges. Notice that the update operation in (7) can be applied 
only to two circuits with the same structure R.  After the update, 
the new delays correspond to a different resistance structure. To  
add another link to the circuit, we first have to compute the delay 
for that branch with the modified resistance structure. 

Given a network with circuit graph S = ( N ,  E ) ,  let: 

s 5 n be the number of specific nodes for which signal delays 
are required; 

. L =  { b , ,  . * . , b,,, } be any set of links, and ( p ,  , q , )  be the 
nodes to  which the link b, is connected; 

X ( i )  be a circuit with the original capacitors but with links 
b, + I to b,,, deleted from 6; 

Z (  i, j ) be a contrived circuit with links b, + I to b,,, deleted 
from S, and with the + 1 and - 1 capacitors connected to nodes p ,  
and q,, respectively, and the rest of capacitors zeroed; defined only 
f o r j  > i. 

The m + 1 tree evaluations are performed on X (  0 )  (the spanning 
tree with the original capacitors), and { Z ( 0 ,  j ); j = I ,  . . . , m )  

(the spanning trees with the + 1 and - 1 capacitors connected to 
nodes p, and q,). Each tree evaluation requires 

Starting with the trees X ( 0 ) ,  Z ( 0 ,  I ), . . . . Z ( 0 ,  m), the al- 
gorithm for combining the circuits can be expressed by the recur- 
rences: 

operations. 

z ( i , j )  = merge(Z(i  - 1, i ) ,  Z ( i  - I . ; ) ) ,  

i = I ,  . . .  . m : j  > i 
~ ( i )  = merge(X(i - I ) .  Z ( i  - I ,  i ) ) .  

, m i =  1, . . .  

where merge denotes the operation of computing dclay using (7); 
with the first argument providing t ,  and the second providing r .  
Because the merge operation that involves link h, needs the signal 
delays of nodes ( p , ,  q , ) ,  the merge operation takes O ( n )  additions 
and multiplications. Overall, the time complexity of the algorithm 
is O(nm’) ,  and the space complexity is O(nm’).’ 

The structure of the computation is illustrated in  Fig. 6, clearly 
showing the m ( m  + I ) / 2  merges that are required. Each triangle 
denotes a tree delay evaluation of the labeled circuit, and each dia- 
mond denotes a merge operation using (7). W e  reiterate the im- 
portant point that all m + 1 tree delay evaluations use the same 
resistive spanning tree, but with different values for the capacitors. 

If O(nm’)  operations are too many for some applications, faster 
approximate answers can be obtained by restoring only a few of 
the links. The circuits X(O) ,  . . . . X ( m  - 1 )  can be considered 

‘If m is much smaller than t7 and the delay of only .s nodes is required, 
then each merge can be computed in O (  1 ~ 7  + s) time giving a time com- 
p l e x i t y o f ~ ( r i ( m  + I )  + in‘ + sni’). 
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as approximations to X(m). Premature termination of the algo- 
rithm will deliver the signal delay of an  approximated circuit. 

If 6 is a connected simple planar graph, the maximum number 
of edges is 3 ( n  + 1 ) - 6 [ 2  11. Therefore, the time complexity of 
the algorithm for a planar circuit is O ( n 7 ) .  The performance on 
real circuits is expected to  be much better-nearly linear in  n ,  since 
VLSI circuits are tree-dominant. 

V .  REMARKS A N D  CONCLUSIONS 
We have presented a simple technique for computing delays in 

arbitrary networks of resistors with grounded capacitors. The tech- 
nique allows rapid computation for R C  networks that have a few 
links. It is, therefore, particularly appropriate for MOS timing sim- 
ulators. 

Not only is our method able to  handle arbitrary R C  networks for 
timing simulation, but it also provides the basis for the analysis of 
CMOS circuits with transistor loops. For  example, in designing a 
Manchester adder with variable carry-skip [6], we need to deter- 
mine the carry-ripple and carry-skip delays of a k-bit CMOS 
Manchester adder block (Fig. 1 shows a 4-b Manchester adder 
block). Using our technique we derived analytical RCdelay models 
for carry-ripple and carry-skip, and determined the optimal config- 
uration for the adder. This would not have been possible with the 
more numerical nature of Lin and Mead’s method 1131. 
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