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The sequences of related proteins can diverge beyond the point where
their relationship can be recognised by pairwise sequence comparisons.
In attempts to overcome this limitation, methods have been developed
that use as a query, not a single sequence, but sets of related sequences
or a representation of the characteristics shared by related sequences.
Here we describe an assessment of three of these methods: the SAM-T98
implementation of a hidden Markov model procedure; PSI-BLAST; and
the intermediate sequence search (ISS) procedure. We determined the
extent to which these procedures can detect evolutionary relationships
between the members of the sequence database PDBD40-J. This database,
derived from the structural classi®cation of proteins (SCOP), contains the
sequences of proteins of known structure whose sequence identities with
each other are 40% or less. The evolutionary relationships that exist
between those that have low sequence identities were found by the
examination of their structural details and, in many cases, their functional
features. For nine false positive predictions out of a possible 432,680, i.e.
at a false positive rate of about 1/50,000, SAM-T98 found 35% of the true
homologous relationships in PDBD40-J, whilst PSI-BLAST found 30%
and ISS found 25%. Overall, this is about twice the number of PDBD40-J
relations that can be detected by the pairwise comparison procedures
FASTA (17%) and GAP-BLAST (15%). For distantly related sequences in
PDBD40-J, those pairs whose sequence identity is less than 30%, SAM-
T98 and PSI-BLAST detect three times the number of relationships found
by the pairwise methods.
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Introduction

It is often important to determine whether new
protein sequences are related to other sequences
that have a known function or structure. If
relationships are demonstrated, we obtain infor-
mation on the probable function, structure and
ent of Genetics,
ood Avenue,

n Markov model;
COP, structural
ion-speci®c-iterated;
at have pairwise
redundant protein;
te of false positives.
evolution of the new sequences. Computer pro-
grams that make pairwise comparisons of
sequences, such as BLAST (Altschul et al., 1990)
and FASTA (Pearson, 1988), are the methods most
commonly used to search for such relationships.
These programs match new sequences (queries)
against all the sequences in a database (targets)
and report each query-target pair that represents a
statistically signi®cant match. The experience of
those who ®rst used these procedures showed that
as the sequence identities of related proteins go
below 30% identity, the chance of their relationship
being detected by pairwise procedures becomes
increasingly small. In a recent quantitative study,
we found that, of the evolutionary relationships
known on the basis of structure, sequence and
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function in proteins with 20±30% sequence iden-
tity, only half can be detected by pairwise sequence
comparisons (Brenner et al., 1998) . For related pro-
teins with less than 20% identity the proportion
detected is much smaller. To try and overcome
these limitations, search procedures based on the
shared characteristics of sets of related sequences
have been developed. Examples of such pro-
cedures are templates (Taylor, 1986; Bashford et al.,
1987; Tatusov et al., 1994; Yi & Lander, 1994), pro-
®les (Gribskov et al., 1987; Luthy et al., 1994;
Thompson et al., 1994), hidden Markov models
(HMMs; Krogh et al., 1994; Baldi et al., 1994; Eddy,
1995, 1996; Eddy et al., 1995; Hughey & Krogh,
1996), the position-speci®c-iterated (PSI) version of
BLAST (Altschul et al., 1997), PROBE (Neuwald
et al., 1997), and intermediate sequence searches
(ISS; Park et al., 1997).

Here we describe an assessment of three of these
procedures: HMMs, PSI-BLAST, and ISS. To make
these assessments, we use a database of sequences
that have known distant evolutionary relation-
ships. For the three procedures, we assess (i) their
ability to detect the evolutionary relationships that
are presently known to occur between the
sequences in the database; (ii) how they perform
relative to each other and to pairwise comparison
methods; and (iii) whether or not they ®nd the
same set of evolutionary relationships. We also dis-
cuss the relation between the scoring schemes of
the HMM and PSI-BLAST procedures and their
observed errors.

A Database with Sequences of Low
Homology and Known
Evolutionary Relationships

The structural classi®cation of proteins (SCOP)
database contains a description of the evolutionary
and structural relations of those proteins whose
atomic structure has been determined (Murzin
et al., 1995). The current version is available on the
World Wide Web at http://scop.mrc-lmb.cam.
ac.uk/scop/. The unit of classi®cation in the data-
base is the protein domain. Small proteins, and
most of those of medium size, have a single
domain and are, therefore, treated as a whole. The
domains that form large proteins are classi®ed
individually. Domains are clustered together into
families if they have close evolutionary relation-
ships. A superfamily brings together those families
that have low sequence identities with each other
but whose structural details and, in many cases,
functional features suggest that a common evol-
utionary origin is very probable, e.g. the variable
and constant domains of immunoglobulins. The
fold classi®cation brings together superfamilies
that have the same secondary structures in the
same arrangement. For most superfamilies that
share a common fold, there is good evidence that
they do not have evolutionary relationships. In a
few cases, the situation is less clear in that current
evidence weakly supports the existence of evol-
utionary relationships. In these cases, the super
families are kept separate until the subsequent dis-
covery of intermediate structures provides stronger
support for their merger.

To test the sequence matching procedures we
measured the extent to which they could ®nd the
evolutionary relationships described by the super-
families in the SCOP database. As it is straightfor-
ward to ®nd the relationships between those
proteins that have sequence identities of 40% or
more, we use here a database of sequences that
have pairwise identities of 40% or less, which we
call PDBD40-J. This database contains 935
sequences (it is available from http://scop.mrc-
lmb.cam.ac.uk/scop/pdbd.html).

For the purposes of this experiment, a pair of
these sequences is de®ned to be a homologous pair
if they are in the same SCOP superfamily. There
are 2096 homologous pairs, which is 0.48% of the
possible 935 � 934/2 � 436,645 different pairs that
can be formed from sequences in the database. Our
test of the sequence comparison methods is to
determine how well they can distinguish the 2096
homologous pairs from the 432,680 non-homolo-
gous pairs.

The accuracy of our results will, of course,
depend upon the accuracy of the SCOP assign-
ments. Errors will occur (i) when sequences are
listed in SCOP as being related when they are not,
and (ii) when true evolutionary relationships
amongst the sequences are not listed. We expect
that errors of the ®rst kind are rare in SCOP, and
in any event, they will affect all sequence compari-
son methods equally and so will not in¯uence their
relative performance.

In practice, the second kind of error, a failure to
include true evolutionary relationships, would
mean that the domains in SCOP are listed as hav-
ing the same fold but different superfamilies. We
noted above that the classi®cation in SCOP tends
to be somewhat conservative in that it requires
what it's authors regards as good evidence, which
may not be available at present, to put structures
into the same superfamilies rather than just the
same fold category. For this reason, pairs of
sequences that have the same fold, but are not in
the same superfamily, are de®ned as being of
uncertain relationship. We label these pairs as
uncertain to avoid counting it as an error when a
sequence comparison procedure predicts a relation-
ship between two sequences that share the same
fold but not the same superfamily, while at the
same time also not counting it as an error to fail to
detect a relationship between two sequences that
have a common fold, but are not in the same
superfamily. Non-homologous pairs are formed by
any two sequences that have different folds. For
the PDBD40-J sequences there are 432,680 different
non-homologous pairs and 1896 pairs of uncertain
relationship. In fact, we detect only a tiny number
of uncertain matches in this work, and these are
discussed below.

http://scop.mrclmb.cam.ac.uk/scop/pdbd.html
http://scop.mrclmb.cam.ac.uk/scop/pdbd.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://scop.mrc-lmb.cam.ac.uk/scop/


Sequence Comparisons Using Multiple Sequences 1203
The Sequence Comparison Procedures

In this section, we give brief descriptions of the
three sequence comparison methods used in this
work. For further details the reader is referred to
papers cited in the descriptions. We begin by
describing the simplest procedure, ISS, then PSI-
BLAST, and ®nally an HMM procedure called
SAM-T98.

Intermediate sequence searches

The essential idea of this procedure is that two
homologous sequences, which have diverged
beyond the point where their relationship can be
recognised by a direct comparison, can be related
through a third sequence if it has characteristics
that are suitably intermediate between the two
being matched. A high match score between the
®rst and third sequences and between the second
and the third sequences implies that the ®rst and
second sequences are related even though their
own match score is low. Thus, in suitable cases,
the ISS procedure ®nds the relationship between
the two distantly related sequences by collecting,
from a large sequence databank, homologues that
both match with high scores (Park et al., 1997).

Errors can arise in the ISS procedure when two
unrelated multidomain proteins match different
domains of a multidomain intermediate sequence.
For example, if we use A, B, C and D to indicate
domains, and A0 and B0 to indicate homologues of
A and B, a protein with the two domains AB can
match both a protein with domains A0D and one
with B0C, even though the latter two proteins are
unrelated. This would not be a problem if sequence
matches were limited accurately to the domain
boundaries; the requirement that the two query
sequences match the same region of the intermedi-
ate would eliminate such errors. In practice, how-
ever, matches extend beyond domain boundaries
because a region where the match is strong can
support matches made in adjacent regions where it
is weak. To a large extent this problem can be
avoided if the sequences of individual domains of
multidomain proteins are used as separate query
sequences, and the search is carried out as follows:
(i) the query sequences are matched against a large
non-redundant database and the matched pairs of
query-intermediate sequences retained; (ii) the
region of the intermediate sequence matched by
the query sequence is saved and the rest removed;
and (iii) the saved fragment of the intermediate
sequence is then matched against a user-selected
database, and signi®cant hits are collected (Park
et al., 1997). Details if the ISS search method are
available from http://www.mrc-lmb.cam.ac.uk/
genomes/jong/ISS.html.

PSI blast

This procedure, recently described by Altschul
et al. (1997), iteratively collects sets of intermediate
sequences to ®nd homologues. The main steps of
the procedure are: (i) for a given query sequence,
an initial set of homologues is collected from the
sequence database using GAP-BLAST, a new ver-
sion of BLAST that generates gapped alignments,
and a conventional score matrix (here we use BLO-
SUM-62); (ii) a weighted multiple alignment is
made from the query sequence and the homol-
ogues whose match scores are better than a speci-
®ed cut-off value (EM); (iii) a position speci®c score
matrix is constructed from this alignment; (iv) this
matrix is then used to search the database for new
homologues; (v) new homologues with a good
match score are used to construct a new position-
speci®c score matrix, which is then used in a
further search for homologues; and (vi) rounds of
matrix reconstruction and new searches are iter-
ated either until no new homologues are found or
until the number of iterations reaches a speci®ed
limit (j). (Altschul et al., 1997).

The procedure uses two parameters that can be
set by the user. The ®rst parameter, EM, is the
GAP-BLAST E-value cut-off used for selecting
homologues for the alignments and the position-
speci®c score matrix. If EM is too low, only close
homologues of the query sequence are used to
make the position-speci®c score matrix and the
sequence variation is too limited for it to ®nd dis-
tant homologues. If EM is too high, non-homol-
ogues of the query sequence are included amongst
the sequences used to make the position-speci®c
score matrix which, in further iterations, will col-
lect additional non-homologues and so become too
``polluted'' to be useful.

The second parameter, j, is the number of rounds
(iterations) of new sequence searches and matrix
reconstruction that are carried out to ®nd new hom-
ologues. Too few iterations may mean that distant
homologues are missed, especially if EM is too low.
Too many will allow erroneous matches to be
made, especially if EM is not low enough.

To ®nd good values for these parameters we
performed tests using PDBD40-J that will be
described elsewhere. We found that to achieve a
low rate of false positive homology predictions in
our experiments, effective parameters for detecting
true sequence relationships are EM � 0.0005 and
j � 20. In the calculations described below, all PSI-
BLAST calculations were carried out using these
parameters. This E-value cut-off differs signi®-
cantly from the default value of EM � 0.01, which
we observed to give considerably worse perform-
ance in our tests.

Inspection of those PSI-BLAST searches that con-
tinue to ®nd new homologues over more than a
few iterations showed that there are cases where
the recognition properties of the position speci®c
score matrix did not just grow with the number of
iterations, but changed. The effect of this matrix
migration is that some sequences that matched
with high scores at one stage of the calculation are
not matched at subsequent stages. This problem
was overcome by collecting the high scoring hits

http://www.mrc-lmb.cam.ac.uk/genomes/jong/ISS.html
http://www.mrc-lmb.cam.ac.uk/genomes/jong/ISS.html


1204 Sequence Comparisons Using Multiple Sequences
(with E-values less than 0.00001) made during each
iteration and ensuring that they were included in
all subsequent iterations.

The NCBI version of PSI-BLAST can be found
at http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/
nph-psi blast.

SAM-T98 hidden Markov model method

This is a procedure somewhat similar to PSI-
BLAST, but using an HMM and its associated
parameter estimation procedures in place of a
position speci®c scoring matrix. The ®rst step is to
create an initial HMM from a single given query
sequence (or a query sequence along with some
aligned homologues, if these are available). Then a
database of potential homologues of the query
sequence is constructed by searching a large pro-
tein database using WU-BLAST with a very loose
score cut-off. Finally, the following steps are iter-
ated three times: (i) select new sequences from the
database of potential homologues that have good
local alignment scores to the HMM; (ii) create a
new HMM and a new multiple alignment for the
query sequence and the selected additional
sequences using sequence weighting and Dirichlet
mixture priors (Sjolander et al., 1996).

After these iterations, the ®nal HMM can be
used to search a user-selected database for homol-
ogues of the query sequence.

We use the UCSC SAM package to create the
HMMs and to score sequences with the HMMs
(Hughey & Krogh, 1996; http://www.cse.ucsc.
edu/research/compbio/sam.html). To create an
initial database of homologues, the procedure
takes the query sequence and conducts a search of
a non-redundant protein database using WU-
BLASTP (Altschul & Gish, 1996; http://blast.wus-
tl.edu/blast). Two sets of sequences are collected:
(i) close homologues that match the query with
E-values of 0.00003 or less, and (ii) a large set of
sequences that match the query with E-values of
500 or less, and will therefore include more distant
homologues. WU-BLASTP is used in this search
for two reasons. Firstly, in the initial step of the
procedure, an HMM estimated from one sequence
would probably not perform as well as WU-
BLAST. Secondly, in all steps of the procedure the
HMM searches are computer-intensive, so it is
more ef®cient to ®rst ®lter the non-redundant data-
base with WU-BLAST and thus reduce the size of
subsequent searches.

In the ®rst iteration, the use of low E-values by
WU-BLAST, and a strict HMM scoring threshold,
ensures that only close homologues are used. In
the three subsequent iterations, we use gradually
decreasing HMM score thresholds and search for
additional matching sequences in the large set that
includes distant homologues. This action with the
score thresholds of HMM parameters is balanced
by the use of alignment gap penalties that are
more lenient for the ®rst iterations and stricter for
the last iteration. Further details can be found in
publications by Karplus et al. (1997, 1998). The pro-
cedure is available at http://www.cse.ucsc.edu/
research/compbio/HMM-apps/.

Assessment Procedure

The ISS, PSI-BLAST and SAM-T98 procedures
all use intermediate sequences to ®nd relation-
ships between a query sequence and a target
sequence. In our tests, ISS and PSI-BLAST used
NRDB90 as a source for intermediate sequences.
This database contains 152,228 sequences
assembled from various other databases and has
been made non-redundant by removing
sequences that have greater than 90% sequence
identity (Holm & Sander, 1998). For its initial
WU-BLASTP search for homologues, SAM-T98
used the NRP (non-redundant protein) Database.
(This is distributed on the Internet via anon-
ymous FTP from ftp.ncifcrf.gov, under the aus-
pices of the National Cancer Institute's Frederick
Biomedical Supercomputing Center.) The per-
formance differences using different non-redun-
dant database versions were negligible for the ISS
search method (data not shown), and would be
expected to be negligible for the other methods
as well.

To test the ISS procedure, we performed an all-
against-all search of the PDBD40-J database. As
described above, each of the 935 sequencess was
used to search NRDB90 for intermediate sequences
and these intermediate sequences were then used
to search PDBD40-J for homologues of the original
sequence. Since each of the PDBD40-J sequences is
used both as a query and a target sequence, every
pair (seq1, seq2) of sequences in PDBD40-J will
have two raw scores, one when seq1 is the query
and one when seq2 is the query. The ®nal score for
this pair is taken to be the better of these two
scores; it should be noted that the two scores are
usually very close, if not identical.

This all-against-all search was repeated using
PSI-BLAST and SAM-T98. For these procedures,
each query sequence was used to build either a
position-speci®c scoring matrix or an HMM with
the help of intermediate sequences from NRDB90
or NRP, and this position-speci®c scoring matrix or
HMM was used to score all sequences in the
PDBD40-J database. In the case of PSI-BLAST,
PDBD40-J was simply added to NRDB90 before
the PSI-BLAST iterations were begun. With SAM-
T98, PDBD40-J was not included in this initial
phase, but only scored at the end, after the HMM
was built from NRP sequences. The PSI-BLAST
®nal score for the pair (seq1, seq2) was the better
of the two raw scores (as for ISS), but, for historical
reasons, the SAM-T98 ®nal score was the sum of
the two raw scores. For all three methods, taking
the sum of the raw scores instead of the better of
the raw scores gave no signi®cant difference in
performance.

http://www.cse.ucsc.edu/research/compbio/HMM-apps/
http://www.cse.ucsc.edu/research/compbio/HMM-apps/
http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-psi_blast
http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-psi_blast
http://www.cse.ucsc.edu/research/compbio/sam.html
http://www.cse.ucsc.edu/research/compbio/sam.html
http://blast.wustl.edu/blast
http://blast.wustl.edu/blast


Figure 1. Coverage versus error plot. To construct this
plot, we calculate, for each method, all matches between
a query and a target PDBD40-J sequence. These matches
include both homologous pairs (true matches) and non-
homologous pairs (false matches). Pairs with uncertain
relationship are excluded. The matches are ranked by
score from best to worst. Starting from the best score,
we sweep down, calculating the number of true matches
and the number of false matches at each possible score
threshold.

Figure 2. Plot of the proportion of the total number of
true matches versus the rate of false positives. This plot
is constructed similarly to Figure 1 except that the
X-axis is the rate of false positives (RFP), where RFP �
(number of false matches)/(935 � 934/2 ÿ 3965; see the
text.) On the Y-axis we show the proportion of the total
number of true matches at a given RFP (see the text).
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In the PSI-BLAST calculation the number of iter-
ations allowed to be made by the query sequence,
j, was 20. Of the 935 sequences, 61% ®nished their
search after 2±4 iterations, 18% after 5±10 iter-
ations and 11% after 11±20 iterations.

To display and compare the results of these tests
we use the ``coverage versus error (CVE)`` plots
described by Brenner et al. (1998). To construct
these plots, we ®rst collect all matches between a
query PDBD40-J sequence and target PDBD40-J
sequences. This collection includes both the pair of
homologous sequences (which we call true
matches) and pairs of non-homologous sequences
(which we call false matches or false positive pre-
dictions). Pairs that form uncertain relationships are
excluded. The entries in this collection of matches
are ranked by their scores from best to worst score.
Ideally, all true matches would be ranked before
any false matches. In practice, of course, this does
not occur. At the top of the list almost all matches
are true; at the bottom almost all matches are false,
and in between they are mixed. By moving down
the list and tabulating the number of true and false
matches, we can calculate the number of true match
pairs for different numbers of false match pairs. By
plotting the number of true matches versus false
matches, as in Figure 1, one can graphically depict
the performance of the methods.
The Comparative Performance and
Overall Detection Rate of ISS,
PSI-BLAST and SAM-T98

For each procedure, we can calculate the pro-
portion of the total number of true matches found at
a given error rate. The proportion of the total num-
ber of true matches is the number of true matches
(homologous pairs) divided by 2096 (the number of
homologous sequence pairs in PDBD40-J, see
above). For reasons described in the section on scor-
ing schemes, the error rate is best given as the
observed rate of false positive (RFP) predictions: if
for a given score threshold the procedure makes
four false positive predictions out of the possible
432,680, then the observed rate of false positives is
approximately 1/100,000. Rates of 1/10,000 and 1/
1000 correspond to 43 and 433 false matches,
respectively. In Figure 2, for the three procedures,
the proportion of the total number of the possible
true matches made is plotted against the RFP.
Table 1A shows, for RFP values in the range of 1/
100,000 to 1/1000, the actual number of true homol-
ogues detected and the percentage of the total num-
ber of the possible true matches that this number
represents.

The data in Table 1A and Figures 1 and 2 show
that at a low rate of false positives, 1/100,000,
SAM-T98 detects 29% of the homologues relation-



Table 1. The number of homologous matches made between PDBD40-J sequences at different rates of false positives

Homologous matches found at different error rates
Errors (actual number and its percentage of total in PDBD40-J)

Rate of false
positives

Number
of errors

SAM-T98 PSI-BLAST ISS FASTA ktup � 1 GAP-BLAST

A. All homologous pairs found in PDBD40-J
1/100,000 4 608; 29 562; 27 506; 24 328; 16 300; 14
1/50,000 9 726; 35 620; 30 529; 25 346; 17 304; 15
1/10,000 43 857; 41 763; 36 580; 28 386; 18 329; 16
1/5000 87 907; 43 814; 39 626; 30 407; 19 353; 17
1/1000 432 1037; 50 920; 44 708; 34 477; 23 396; 19

B. Matches found for homologous pairs in PDBD40-J that have sequence identities of less than 30%
1/100,000 4 414; 22 411; 22 318; 17 153; 8 134; 7
1/50,000 9 522; 28 455; 25 340; 18 165; 9 137; 7
1/10,000 43 649; 35 574; 31 383; 22 199; 11 154; 8
1/5000 87 697; 38 621; 34 423; 23 214; 12 176; 10
1/1000 432 822; 45 722; 39 502; 27 276; 15 213; 12
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ships in PDBD40-J, PSI-BLAST detects 27% and ISS
detects 24%. At a high rate of false positives,
1/1000, the three methods detect 50%, 44% and
34%, respectively.

The Performance Relative to that of
Pairwise Comparison Methods

To see how results found for the multiple
sequence procedures compare with those produced
by pairwise comparison procedures, FASTA
(ktup � 1) and GAP-BLAST were used to match the
PDBD40-J sequences in a similar all-against-all test.
The sequence matches made by FASTA and GAP-
BLAST were processed in a manner described above
for the multiple sequence methods and the results
are given in Figures 1 and 2 and Table 1A. Inspection
of these data shows that SAM-T98 and PSI-BLAST
®nd about twice as many homologous matches as
the pairwise procedures FASTA and GAP-BLAST
(Table 1A). Thus, the proportion of the PDBD40-J
relationships that are found at a rate of false positive
of 1/50,000 by the various multiple sequence pro-
cedures is about one-third in contrast to the one-
sixth found by the two pairwise procedures.

We would expect the other pairwise methods to
give similar results. In a previous assessment of
pairwise sequence methods using a more recent
PDB40D sequence database we showed that the
performances of SSEARCH and WU-BLAST are
only slightly better than that of FASTA (ktup � 1),
whilst BLAST is a little worse (Brenner et al., 1998).

PDBD40-J contains homologues that have
sequence identities of up to 40%. It is found gener-
ally that relationships between homologous
sequences that have greater than 30% identity can
be found by pairwise comparison methods. This
view is supported by calculations on PDBD40
which showed that, except for short sequences,
pairwise methods detect essentially all the relation-
ships between homologous pairs that have
sequence identities of over 30% (Brenner et al.,
1998). Serious failures by pairwise methods are in
the region where homologues have sequence iden-
tities below 30%. PDBD40-J has 222 homologous
pairs whose sequence identities are 30% or greater
(as measued by the sequence identity in the match
region given by a FASTA alignment.) To make
comparisons of the results for the region below
30% identity, we removed from the matches made
by each method all homologous pairs that have
sequence identities of 30% or over. The number of
matches that remain are given in Table 1B. Inspec-
tion of this Table shows that, for homologous pairs
with sequence identities of less than 30%, multiple
sequence comparison methods detect three times
as many homologues as pairwise methods.

The Relation of the Scoring Schemes
of PSI-BLAST and SAM-T98 to the
Observed Error Rate

The matches found by PSI-BLAST are given a
raw log odds score S, which is then converted into
a normalised score S0, expressed in bits, by the
equation:

S0 � �lgSÿ ln Kg�= ln 2

where lg � 0.251 and Kg � 0.031 are experimen-
tally estimated constants, and ln denotes the natu-
ral logarithm (Altschul et al., 1997). The expected
number of (false) matches with score S0 or better
that would be found searching a database of ran-
dom protein sequences that has N possible matches
should be approximated by the E-value:

E � N2ÿS0

Thus:

log2 E � log2 N ÿ S0 � ÿaS� b;

where a � lg/ln 2 and b � ln Kg/ln 2 � log2 N.
Thus, the theory predicts that the logarithm of the
expected number of false matches is linearly
related to the log odds score S. However, when
using gapped alignments, the precise theory of the
log odds scores has been dif®cult to work out, so
exact relationship between the expected number of



Figure 4. PSI-BLAST, sequence match scores and the
observed error rate. This is the same as Figure 3, except
that here we used the ranked list of matches for PSI-
BLAST, and plot the logarithm base ten of the PSI-
BLAST E-value on the X-axis. We show a linear
regression for the data with the logarithm of the E-value
between 0 and 3.8 (6162 data points). The slope of this
regression line is 0.76 and the Y-intercept is 1.29.

Figure 3. SAM-T98, sequence match scores and the
observed error rate. Using the same data as in Figure 1,
on the X-axis we plot the SAM-T98 score and on the
Y-axis the logarithm base ten of the number of false posi-
tive matches observed with that score or better. One box
is plotted for each point in the ranked list of matches.
Also shown is a linear regression computed for the data
with scores between ÿ12 and ÿ4 (917 data points). The
slope of this regression line is 0.248 and the Y-intercept is
3.95.
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false matches and the log odds score is to some
extent empirical.

The same is true for the log odds scores used by
SAM-T98. In this method, the score S for a given
sequence X and HMM M is de®ned to be the log
likelihood ratio:

S � ln�P�XjM�P�XRjM��
where XR denotes the reverse of the sequence X and
P(XjM) is the probability of the sequence X under the
model de®ned by the HMM M. Here a local match
model is used. This means that the modelling and
probability calculation is done in such a way that it
is allowed (and expected) that only a part of the
sequence X will match to a part of the model M; see
Karplus et al. (1998) for further discussion.

Recall that in our all-against-all searches, the
®nal score for (seq1, seq2) is the best of the two
possible scores for PSI-BLAST and the sum of the
two scores for SAM-T98. However, in each case,
for signi®cant scores, this should not, in theory,
greatly affect the predicted linear relationship
between the score and the logarithm of the number
of false positives. When p is the probability of get-
ting a false match from one of the two raw scores,
then (assuming independence) the probability of
getting a false match from taking the better of the
two scores is 2p ÿ p2, which is larger than p by a
nearly constant factor of 2 for all small p, preser-
ving the linear relationship. Thus, for small p we
can discount the event of probability p2 in which
both raw scores are signi®cant purely by chance.
Similar reasoning shows that the linear relationship
should also be approximately preserved for small p
when the log odds scores are added.

We examined the extent to which the scores from
PSI-BLAST and SAM-T98 are linearly related to the
logarithm of the observed number of false positive
matches. The results are shown in Figures 3 and 4,
which plot the score versus the logarithm of the
number of observed false positives with that score
or better for SAM-T98 and for PSI-BLAST, respect-
ively, as well as a linear regression to these data.
For PSI-BLAST, we tried plotting both the normal-
ised bit score versus the logarithm of the number of
false positives, and the logarithm of the E-value
versus the logarithm of the number of false posi-
tives. Because the number N of possible matches
depends to a certain extent on the length of the
query sequence, the latter gives a smoother plot
when data from different length queries are com-
bined, so that is the plot we show for PSI-BLAST.

The curves do seem to be linear for most of the
range of scores, but not for the extremely good
scores. Here we seem to be getting more false posi-
tives than expected. It is possible that some of
these false positives that score extremely well vio-
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late the assumptions implicit in the null models
used in the score theory, and hence have unusual
scores. When estimating the regression lines, these
data points from unusually good scores were con-
sidered outliers and removed from the data set.
Data from very poor scores were also removed.
The usual statistics for the ®t of the regression line
to the remaining data (t-values, etc.) show this ®t
to be quite signi®cant, but because the data points
are generated by sweeping through one ranked
list, they are highly dependent, and hence these
statistics are not appropriate here.

One can extrapolate the linear regression lines
for SAM-T98 and PSI-BLAST scores to obtain
empirical predictions of the rate of false positives
for extremely good scores. For example, a SAM-
T98 score of ÿ15 would, by this extrapolation,
seem to give a Y-value of zero, representing one
false positive out of about 430,000. This is more
optimistic than the estimate of the rate of false posi-
tives for a score of ÿ15 that is obtained from the
data, which is 10(�6.3) out of 432,680, where 10 is
the observed number of false positives and the
�6.3 represents about two standard deviations, or
roughly a 95% con®dence interval. The relatively
high variance of this latter estimate, and the fact
that these ten data points appear as outliers, leads
us to expect that the estimation of the rate of false
positives obtained by the linear extrapolation
would prove to be the more accurate one were we
to do this experiment on a much larger data set. On
the other hand, because of the dependence in the
data mentioned above, we do not have good
knowledge of the variance in the slope of the
regression line, so this extrapolation must be inter-
preted with caution as well. In particular, we can-
not explain the fact that the slope of the regression
line for PSI-BLAST was 0.76, when the theory
would predict a slope of 1.0.

Finally, we note that, for observed rates of false
positives of 1/100,000, 1/50,000, 1/10,000, and 1/
1000, the SAM-T98 scores are ÿ25.3, ÿ15.0, ÿ9.4
and ÿ5.1, respectively, and the PSI-BLAST normal-
ised bit score S0 are 59.8 (E � 6 � 10ÿ9), 45.7
(E � 5 � 10ÿ5), 31.4 (E � 2.0) and 26.2 (E � 64),
respectively. These values may provide some gui-
dance to practitioners who use these methods,
though it should be noted that the searches
described here use the sequences of the protein
domains in SCOP. Small proteins, and most med-
ium sized proteins, are built of one such domain
and searches with their sequences would be
expected to behave in a manner similar to those
used here. Large proteins built of multiple domains
would probably give a somewhat higher false posi-
tive rate. Further calculations and experiments are
needed to obtain a general quantitative theory of
the expected number of false matches that would
be directly applicable to more general settings of
protein homology search and match the empirical
data well.
Similarities and Differences in the True
Matches and Errors made by the
Three Methods

Although all three of the procedures discussed
here use multiple sequences, the ways in which
they do so are different. Thus, we might expect
some procedures to be more appropriate for par-
ticular families than others. We determined the
extent to which each of the procedures found the
same pairs of homologues as one or both of the
other two procedures, and the extent to which they
made unique matches. The results are given in
Figure 5(a) for all matches and in Figure 5(b) for
matches between distantly related homologues
(those whose sequence identities are less than 30%).
At a rate of false positives of 1/50,000, the three
procedures found altogether 830 homologous pairs.
Of these, 444 were found by all three procedures,
and 535 by both SAM-T98 and PSI-BLAST. The
number of unique matches made by SAM-T98, PSI-
BLAST and ISS are 132, 80 and 21, respectively.
A total of 624 distantly related homologous pairs
were found and their distribution between the
different procedues is shown in Figures 5(b).

In Figure 5(c), we show the extent to which the
top 10, 20 and 30 false positive predictions for each
of the three procedures are found by more than
one procedure. This Figure shows that there are
only a few instances where two or more of these
procedures make the same false positive predic-
tions with very good scores. Thus, unlike the dis-
covery of true matches, the production of errors is
strongly dependant on the exact nature of the pro-
cedures.

Relationships between Different
Superfamilies in the Same
Fold Category

At the beginning of this paper we described how
the fold classi®cation brings together superfamilies
that have the same secondary structures in the
same arrangement. Most superfamilies in this cat-
egory are strongly believed not to have evolution-
ary relationships. For some superfamilies, how-
ever, the situation is less clear in that the current
evidence makes the relationships possible but
weak. In these cases, the superfamilies are kept
separate until the subsequent discovery of inter-
mediate structures provides strong support for
their merger (see Murzin (1998) for a description of
such cases). Given this ambiguity, pairs of matched
sequences that have the same fold, but are not in
the same superfamily, are de®ned here as being
uncertain relationships and not counted as true
homologues or errors (see above).

We examined the matched sequences to deter-
mine the number of uncertain relationships found
with good match scores. For a low rate of false
positives of 1/50,000 or less, only a small number
are found: one by SAM-T98, one by PSI-BLAST



Figure 5. (a and b) Venn diagrams showing, for a
RFP of 1/50,000 or less, the extent to which matched
sequences are found by one or more of the three
sequence comparison methods. The numbers in (a) are
for all true matches in PDBD40-J. The numbers in (b)
are for the true matches between those pairs of
sequences that have less than 30% sequence identity.
(c) Venn diagram showing the extent to which the same
non-homologous pairs are found by one or more of the
three sequence comparison methods. The numbers
here are for the top 30, 20 and 10 errors found by each
procedure
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and none by ISS. Going to a higher rate of 1/
10,000 or less increases the number of matches
only a little: three for SAM-T98, two by PSI-BLAST
and one by ISS. The folds in which these matches
are found are those of the NAD binding domains;
the barrel-sandwich hybrid; the a/b barrels; and
the knottins. For the ®rst three of these four, evol-
utionary relationships between the particular
superfamilies are plausible. Proteins in the different
knottins superfamilies are not thought to be
related, however. These proteins are small and
have a high proportion of cysteine residues and
false matches between such proteins are common.

Discussion

We have described an assessment of three
sequence comparison methods that use multiple
sequence information to ®nd distant evolutionary
relatives. Using additional sequences increases the
sensitivity of search methods by a factor of 3 in the
region where the sequence identities of homolo-
gous pairs are less than 30%. Because the number
of sequences in databases continues to increase
dramatically from the output of genome sequen-
cing projects, we will reach a stage in the near
future where many unknown sequences can be
matched instantly with multiple intermediate
sequences and the models and pro®les derived
from them.

All methods tested contain parameters that must
be adjusted, based on how remote a homologue
one is interested in ®nding. These include substi-
tution matrices, gap costs, sequence weighting
methods, number of iterations, and threshold for
inclusion on each iteration. For all methods, par-
ameters were adjusted to try and ®nd those that
would be most effective for assessment described
here, although for SAM-T98 most of the adjust-
ments were made on just part of the dataset
(Karplus et al., 1998).

In the procedures described here the SAM-T98
HMMs are created by four iterative searches for
homologous sequences. PSI-BLAST was allowed to
perform up to 20 iterations and for 39% of queries
found homologues after the fourth round (see
above). ISS only makes one search for homologues.
The performance of SAM-T98 and ISS would be
expected to be further improved by increasing
their number of iterative searches.

Scoring is another area where these methods
may be improved. The scoring system for PSI-
BLAST is based on a solid statistical theory, but
some of the assumptions made in this theory are
occasionally violated in practice, and the theory is
not easily applied in cases were many insertions
and deletions are made. On the other hand, no sig-
ni®cant theoretical work has been done yet on the
SAM-T98 scoring method used in this study,
which used the reversed sequence as a null model.
Further analysis may lead to improvements in this
scoring function.
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Even though these methods are still at a rela-
tively early stage in their development, this study
shows that ISS is about twice as effective as
FASTA and GAP-BLAST (and by implication other
pairwise methods) at ®nding the distant evolution-
ary relations in PDBD40-J, and that SAM-T98 and
PSI-BLAST are three times as effective.
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