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Outline of Talk

What is Biomolecular Engineering? Bioinformatics?

What is a protein?

The folding problem and variants on it.

What is a null model (or null hypothesis) for?

Example 1: is a conserved ORF a protein?

Example 2: is residue-residue contact prediction better
than chance?

Example 3: how should we remove composition biases
in HMM searches?
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What is Biomolecular Engineering?

Engineering with , of , or for biomolecules. For example,

with: using proteins as sensors or for self-assembly.

of: protein and RNA engineering—designing or artificially
evolving proteins or RNA to have particular functions

for: designing high-throughput experimental methods to
find out what molecules are present, how they are
structured, and how they interact.
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What is Bioinformatics?

Bioinformatics: using computers and statistics to make
sense out of the mountains of data produced by
high-throughput experiments.

Genomics: finding important sequences in the genome
and annotating them.

Phylogenetics: “tree of life”, ancestral genome
reconstruction.

Systems biology: piecing together various networks of
molecular interactions.

DNA microarrays: what genes are turned on under
what conditions.

Proteomics: what proteins are present in a mixture.

Protein structure prediction.
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What is a protein?

There are many abstractions of a protein: a band on a
gel, a string of letters, a mass spectrum, a set of 3D
coordinates of atoms, a point in an interaction
graph, . . . .

For us, a protein is a long skinny molecule (like a string
of letter beads) that folds up consistently into a
particular intricate shape.

The individual “beads” are amino acids, which have 6
atoms the same in each “bead” (the backbone atoms: N,
H, CA, HA, C, O).

The final shape is different for different proteins and is
essential to the function.

The protein shapes are important, but are expensive to
determine experimentally.
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Folding Problem

The Folding Problem:
If we are given a sequence of amino acids (the letters on a
string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK

ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN

YFDVPPHKYR MTNMQGESRF LHPLNHYNS

↓

Too hard!
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Fold-recognition problem

The Fold-recognition Problem:
Given a sequence of amino acids A (the target sequence)
and a library of proteins with known 3-D structures (the
template library),
figure out which templates A match best, and align the
target to the templates.

The backbone for the target sequence is predicted to be
very similar to the backbone of the chosen template.

Progress has been made on this problem, but we can
usefully simplify further.
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Remote-homology Problem

The Homology Problem:
Given a target sequence of amino acids
and a library of protein sequences,
figure out which sequences A is similar to and align them to
A.

No structure information is used, just sequence
information. This makes the problem easier, but the
results aren’t as good.

This problem is fairly easy for recently diverged, very
similar sequences, but difficult for more remote
relationships.
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New-fold prediction

What if there is no template we can use?

We can try to generate many conformations of the
protein backbone and try to recognize the most
protein-like of them.

Search space is huge, so we need a good conformation
generator and a cheap cost function to evaluate
conformations.

We can also try to predict local properties (e.g.,
secondary structure or burial) or contact between
residues.

Better than Chance – p.9/42



Scoring (Bayesian view)

A model M is a computable function that assigns a
probability P (A | M) to each sequence A.

When given a sequence A, we want to know how likely
the model is. That is, we want to compute something like
P (M | A).

Bayes Rule:

P
(
M

∣∣∣ A
)

= P
(
A

∣∣∣ M
) P(M)

P(A)
.

Problem: P(A) and P(M) are inherently unknowable.
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Null models

Standard solution: ask how much more likely M is than some
null hypothesis (represented by a null model N ):

P (M | A)

P (N | A)
=

P
“
A|M”

P
“
A|N” P(M)

P(N)
.

↑ ↑ ↑
posterior odds likelihood ratio prior odds
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Test your hypothesis

Thanks to Larry Gonick The Cartoon Guide to Statistics
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Scoring (frequentist view)

We believe in models when they give a large score to our
observed data.

Statistical tests (p-values or E-values) quantify how often
we should expect to see such good scores “by chance”.

These tests are based on a null model or null hypothesis.
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Small p-value to reject null hypothesis

Thanks to Larry Gonick The Cartoon Guide to Statistics
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Statistical Significance (2 approaches)

Markov’s inequality For any scoring scheme that uses

ln
P (seq | M)

P (seq | N)

the probability of a score better than T is less than e−T for
sequences distributed according to N .

Parameter fitting For “random” sequences drawn from some
distribution other than N , we can fit a parameterized
family of distributions to scores from a random sample,
then compute P and E values.
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Null models

P-values (and E-values) often tell us nothing about how
good our hypothesis is.

What they tell us is how bad our null model (null
hypothesis) is at explaining the data.

A badly chosen null model can make a very wrong
hypothesis look good.
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Example 1: long ORF

A colleague found an ORF in an archæal genome that
was 388 codons long and was wondering if it coded for a
protein and what the protein’s structure was.

We know that short ORFs can appear “by chance”.

So how likely is this ORF to be a chance event?
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Null Model 1

DNA is undergoing no selection at all

G+C content bias. (GC is 36.7%, AT is 63.3%.)

Probability of stop codon
TAG= 0.3165*0.3165*0.1835=0.0184, TGA=0.0184,
TAA=0.0317, so p(STOP)=0.0685.

P(388 codons without stop) = (1 − p(STOP))388 = 1.1e-12

E-value in a 3 Megabase genome is about 3.3e-6.

We can easily reject the null hypothesis!
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Null Model 2

I forgot to tell you: this ORF is on the opposite strand of a
known 560-codon ribosomal gene.

What is the probability of this long an ORF, on opposite
strand of known gene?

Generative model: simulate random codons using the
codon bias of the organism, take reverse complement,
and see how often ORFs 388-long or longer appear.

Taking 100,000 samples, we get estimates of P-value in
the range 3e-05 to 6e-05.

There are about 3000 genes, giving us an E-value of 0.09
to 0.18.
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Null Model 3

We can do the same sort of simulation, but restrict the
codons to ones that would code for exactly the same
protein on the forward strand.

Now we get P-value of around 0.01 for long ORFs on the
reverse strand of genes coding for this protein.
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Protein or chance ORF?

Thanks to Larry Gonick The Cartoon Guide to Statistics
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Not a protein

+ A tblastn search with the sequence revealed similar ORFs
in many genomes.

− All are on opposite strand of homologs of same gene.

− “Homologs” found by tblastn often include stop codons.

− There is no evidence for a TATA box upstream of the ORF.

− No strong evidence for selection beyond that explained by
known gene.

Conclusion: it is rather unlikely that this ORF encodes a
protein.
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Example 1b: another ORF

pae0037: ORF, but probably not protein gene in
Pyrobaculum aerophilum

chr:
--->

JGI genes

PAE0037

16850 16900 16950 17000 17050 17100 17150 17200

GC Percent in 20 Base Windows

Genbank RefSeq Gene Annotations

Arkin Lab Operon Predictions
Gene annotation from JGI

Alternative ORFs noted by Sorel Fitz-Gibbon

Log-odds scan for promoters on plus strand (16 base window)

Log-odds scan for promoters on minus strand  (16 base window)

Poly-T Terminators plus strand (7 nt window)

Poly-T Terminators minus strand (7 nt window)

PAE0039

GC Percent

Promoter +

Promoter -

Poly-T term (+)

Poly-T term (-)

Promoter on wrong side of ORF.

High GC content (need local, not global, null)

Strong RNA secondary structure.
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Example 2: contacts

Is residue-residue contact prediction better than chance?

Early predictors (1994) reported results that were 1.4 to
5.1 times “better than chance” on a sample of 11 proteins.

But they used a uniform null model:

P(residue i contacts residue j) = constant .

A better null model:

P (residue i contacts residue j) =

P
(

contact
∣∣∣ separation = |i − j|

)
.
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P(contact|separation)

Using CASP definition of contact, CB within 8 Å, CA for GLY.
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Can get accuracy of 100%

By ignoring chain separations, the early predictors got
what sounded like good accuracy (0.37–0.68 for L/5
predicted contacts)

But just predicting that i and i + 1 are in contact would
have gotten accuracy of 1.0 for even more predictions.

More recent work has excluded small-separation pairs,
with different authors choosing different thresholds.

CASP uses separation ≥ 6, ≥ 12, and ≥ 24, with most
focus on ≥ 24.
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Evaluating contact prediction

Two measures of contact prediction:

Accuracy: ∑
χ(i, j)∑

1

Weighted accuracy:

∑ χ(i,j)

P
“
contact|separation=|i−j|

”
∑

1

= 1 if predictions no better than chance, independent of
separations for predicted pairs.
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Separation as predictor

If we predict all pairs with given separation as in contact, we
do much better than uniform model.

sep P
“

contact
˛̨
˛ |i − j| = sep

”
P

“
contact

˛̨
˛ |i − j| ≥ sep

”
“better than chance”

6 0.0751 0.0147 4.96

9 0.0486 0.0142 3.42

12 0.0424 0.0136 3.13

24 0.0400 0.0116 3.46
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CASP7 Contact prediction

Use mutual information between columns of thinned
alignment (≤ 50% identity)

Compute e-value for mutual info (correcting for
small-sample effects).

Compute rank of e-value within protein.

Feed log(e-value), log(rank), contact potential, joint
entropy, and separation along chain for pair, and
amino-acid profile, predicted burial, and predicted
secondary structure for window around each residue of
pair into a neural net.
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Now doing better

separation ≥ 9

Predictions/residue taken separately for each protein.
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Contacts per residue

We can also use our null model to predict the number of
contacts per residue (which is not a constant).
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Example 3: HMM

Hidden Markov models assign a probability to each
sequence in a protein family.

A common task is to choose which of several protein
families (represented by different HMMs) a protein
belongs to.
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Standard Null Model

Null model is an i.i.d (independent, identically distributed)
model.

P
(
A

∣∣∣ N, len (A)
)

=

len(A)∏
i=1

P(Ai) .

P
(
A

∣∣∣ N
)

= P(sequence of length len (A))

len(A)∏
i=1

P(Ai) .
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Composition as source of error

When using the standard null model, certain sequences
and HMMs have anomalous behavior. Many of the
problems are due to unusual composition—a large
number of some usually rare amino acid.

For example, metallothionein, with 24 cysteines in only 61
total amino acids, scores well on any model with multiple
highly conserved cysteines.
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Composition examples

Metallothionein Isoform II (4mt2)

Kistrin (1kst)
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Composition examples

Kistrin (1kst)

Trypsin-binding domain of Bowman-Birk Inhibitor (1tabI)
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Reversed model for null

We avoid this (and several other problems) by using a
reversed model M r as the null model.

The probability of a sequence in M r is exactly the same
as the probability of the reversal of the sequence given
M .

This method corrects for composition biases, length
biases, and several subtler biases.
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Helix examples

Tropomyosin (2tmaA)

Colicin Ia (1cii)

Flavodoxin mutant (1vsgA)
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Improvement from reversed model
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Fold recognition results
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Take-home messages

Base your null models on biologically meaningful null
hypotheses, not just computationally convenient math.

Generative models and simulation can be useful for more
complicated models.

Picking the right model remains more art than science.
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Web sites

List of my papers: http://www.soe.ucsc.edu/˜karplus/papers/

These slides: http://www.soe.ucsc.edu/˜karplus/papers/

better-than-chance-sep-07.pdf

Reverse-sequence null: Calibrating E-values for hidden Markov models with

reverse-sequence null models. Bioinformatics, 2005. 21(22):4107–4115;

doi:10.1093/bioinformatics/bti629

Archæal genome browser: http://archaea.ucsc.edu

UCSC bioinformatics (research and degree programs) info:

http://www.soe.ucsc.edu/research/compbio/
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