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Outline of Talk
What is Biomolecular Engineering? Bioinformatics?

Pattern Recognition in Bioinformatics

Protein Structure Prediction and Protein Design

Genome Assembly
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What is Biomolecular Engineering?
Engineering with, of, or for biomolecules. For example,

with: using proteins (or DNA, RNA, . . . ) as sensors or for
self-assembly.

of: protein engineering—designing or artificially evolving
proteins to have particular functions

for: designing high-throughput experimental methods to
find out what molecules are present, how they are
structured, and how they interact.
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What is Bioinformatics?
Bioinformatics: using computers and statistics to make sense
out of the mountains of data produced by high-throughput
experiments.

Genomics: finding important sequences in the genome
and annotating them.

Phylogenetics: “tree of life”.

Systems biology: piecing together various control
networks.

DNA microarrays and RNA-seq: what genes are turned
on under what conditions.

Proteomics: what proteins are present in a mixture.

Protein structure prediction.

. . .
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Classification and Parsing Problems
Many problems in bioinformatics can be viewed as
classification or parsing or segmentation problems:

Diagnosis: What type of cancer does a particular DNA or
RNA come from? What viruses are infecting a patient?

Prognosis: What are the chances of 5-year survival for a
cancer patient? What drug treatments will be most
effective?

Which bases in a genome are part of non-coding RNA
genes? promoters? 5’ UTR? exons? introns? 3’ UTRs?

Which residues in a protein are parts of α-helices?
β-sheets? turns? other local structures?

What family does a protein belong to?

. . .
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Data is noisy
Biological data from wet-lab work is usually very
noisy—sequence data from a sequencing machine has a
1–15% error rate.

The error rate depends on the sequencing technology,
the position in the fragment being sequenced, the type of
base, the location on the sequencing chip, who prepared
the DNA library, when the machine was last serviced, . . .

The error type depends mainly on the technology (base
miscalling, insertions and deletions, homopolymer
run-length errors).
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Systematic error
Errors are not white noise, but often systematic biases that
stem from unknown causes.

Shotgun sequencing assumes that DNA is randomly
fragmented and that all positions for the DNA are equally
likely, but sequencer output shows a much wider range
of coverage than that model implies.

Some DNA overrepresented (perhaps adjacent to fragile
points in DNA).

Some DNA underrepresented or missing entirely
(perhaps not amplified in PCR steps).
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Biased sampling
Biologists often study problems that interest the
community, so there may be a huge amount of data for
one organism or protein, and little or none for a closely
related one.

Training data may all come from one, non-representative
example.

Of 15 million protein sequences in the “non-redundant”
database, 490,000 (3%) are from HIV virus strains,
though there are only a dozen HIV proteins.

Training and testing sets often need to be “thinned” to
remove too-similar examples.

Failure to thin, resulting in unrealistically good
performance estimates, it the most common newbie
mistake.
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Too Much Data/Too Little Data
We often have so much data that we can’t fit it all in the
computer at once. (A genome assembly may start from
250E9 bases of sequence data.)

Labeled data is scarce and expensive—determining
correct classification often requires time-consuming,
expensive, and error-prone wet-lab work.

Lots of unlabeled data, only a little labeled data, and
labeled data has a high rate of mislabeling.

It is common to do a combination of supervised and
unsupervised learning, to try to get value from both the
labeled and the unlabeled data.
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Outline for proteins
What is a protein?

The folding problem and variants on it:
Ï Local structure prediction
Ï Fold recognition
Ï Secondary structure prediction
Ï Hidden Markov Models
Ï Contact prediction
Ï CASP experiment
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What is a protein?
There are many abstractions of a protein: a band on a
gel, a string of letters, a mass spectrum, a set of 3D
coordinates of atoms, a point in an interaction
graph, . . . .

For us, a protein is a long skinny molecule (like a string of
letter beads) that folds up consistently into a particular
intricate shape.

The individual “beads” are amino acids, which have 6
atoms the same in each “bead” (the backbone atoms: N,
H, CA, HA, C, O).

The final shape is different for different proteins and is
essential to the function.

The protein shapes are important, but are expensive to
determine experimentally.
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Folding Problem
The Folding Problem:
If we are given a sequence of amino acids (the letters on a
string of beads), can we predict how it folds up in 3-space?

MTMSRRNTDA ITIHSILDWI EDNLESPLSL EKVSERSGYS KWHLQRMFKK
ETGHSLGQYI RSRKMTEIAQ KLKESNEPIL YLAERYGFES QQTLTRTFKN
YFDVPPHKYR MTNMQGESRF LHPLNHYNS

↓

Too hard!
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Fold-recognition problem
The Fold-recognition Problem:
Given a sequence of amino acids A (the target sequence)
and a library of proteins with known 3-D structures (the
template library),
figure out which templates A match best, and align the target
to the templates.

The backbone for the target sequence is predicted to be
very similar to the backbone of the chosen template.
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New-fold prediction
What if there is no template we can use?

We can try to generate many conformations of the
protein backbone and try to recognize the most
protein-like of them.

Search space is huge, so we need a good conformation
generator and a cheap cost function to evaluate
conformations.
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Secondary structure Prediction
Instead of predicting the entire structure, we can predict
local properties of the structure.

One popular choice is a 3-valued helix/strand/other
alphabet. Typically, predictors get about 80% accuracy
on 3-state prediction.

Many machine-learning methods have been applied to
this problem, but the most successful is neural networks.
(Random forests also doing well.)

Using Conditional Random Fields can improve sampling
of sequences, without improving accuracy on individual
residues.
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Neural Net Structure
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Neural Net Windowing
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Local Structure Alphabets
What local properties do we choose?

We want properties that are well-conserved through
evolution, easily predicted, and useful for finding and
aligning templates.

We have investigated many alphabets.

Current favorites are str2, a 13-state secondary-structure
alphabet that distinguishes between different β strands,
and near-backbone-11, an 11-state burial alphabet.
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Sequence logos (NN)
Summarize local structure prediction:
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Fold recognition
Do iterative search to find similar sequences in
databases of other proteins

Use multiple sequence alignment to do local structure
prediction.

Build HMM that has multiple tracks (amino-acid and
local structure alphabets).

Search PDB using final HMM.
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Fold recognition
Do iterative search to find similar sequences in
databases of other proteins:

Ï Make a Hidden Markov Model from sequence or
alignment.

Ï Use HMM to search for similar sequences.
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Ï Align sequences using HMM.
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prediction.

Build HMM that has multiple tracks (amino-acid and
local structure alphabets).

Search PDB using final HMM.

—20/47



Fold recognition
Do iterative search to find similar sequences in
databases of other proteins

Use multiple sequence alignment to do local structure
prediction.

Build HMM that has multiple tracks (amino-acid and
local structure alphabets).

Search PDB using final HMM.

—20/47



Fold recognition
Do iterative search to find similar sequences in
databases of other proteins

Use multiple sequence alignment to do local structure
prediction.

Build HMM that has multiple tracks (amino-acid and
local structure alphabets).

Search PDB using final HMM.

—20/47



Fold recognition
Do iterative search to find similar sequences in
databases of other proteins

Use multiple sequence alignment to do local structure
prediction.

Build HMM that has multiple tracks (amino-acid and
local structure alphabets).

Search PDB using final HMM.
Ï Look for similar sequences in database of solved protein

structures.
Ï Use multi-track HMM to align target to solved structures.
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Profile HMM
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Sequence logos (MSA)
Summarize multiple alignment:
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Transmembrane Helices

http://www.genetics.org/content/175/2/867/F3.large.jpg

Gunnarsson et al. Genetics February 2007 vol. 175 no. 2 867-877 doi: 10.1534/genetics.106.063107
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TMHMM (a non-profile HMM)

Anders Krogh, Bjön Larsson, Gunnar von Heijne, and Erik L.L Sonnhammer. Predicting transmembrane protein topology

with a hidden Markov model: application to complete genomes. Journal of Molecular Biology Volume 305, Issue 3, 19

January 2001, Pages 567–580 doi:10.1006/jmbi.2000.4315
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Contact prediction
Predict that residues separated along the chain are close
in 3-space.

Use mutual information between columns.

Thin alignments aggressively (30%, 35%, 40%, 50%, 62%).

Compute e-value for mutual info (correcting for
small-sample effects).

Compute rank of log(e-value) within protein.

Feed log(e-values), log rank, contact potential, joint
entropy, and separation along chain for pair, and
amino-acid profile, predicted burial, and predicted
secondary structure for each residue of pair into a neural
net.
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Full 3D modeling
Copy backbone atoms from aligned PDB file

Copy fragments from shorter alignments to other PDB
files.

Combine randomly.

Stochastic search to optimize “energy” function, which
may include constraints from alignments, predicted
contacts, local structure prediction, . . . .
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CASP Competition Experiment
Everything published in literature “works”

CASP set up as true blind test of prediction methods.

Sequences of proteins about to be solved released to
prediction community.

Predictions registered with organizers.

Experimental structures compared with solution by
assessors.

“Winners” get papers in Proteins: Structure, Function,
and Bioinformatics.
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T0298 domain 2 (130–315)
RMSD= 2.468Å all-atom, 1.7567Å Cα, GDT=82.5%
best model 1 submitted to CASP7 (red=real)
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Computational Protein Design
Train neural nets to take local-structure inputs and
provide amino-acid outputs.

Use RosettaDesign to design sequences, constrained by
neural net outputs.

Target applications: specific binding of carbon
nanotubes, mimics for AGRP (agouti-related protein)
binding to different melanocortin receptor.
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Outline of genome assembly
What is a genome?

What sequencing technologies are currently used?

The assembly problem

Algorithms for assembly
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What is a genome?
Complete sequence of all DNA in a cell (exceptions for
plasmids, viruses, organelles).

Varies from cell to cell, so we usually approximate to get
a “typical” genome.

Usually want an annotated genome which has genes and
other features labeled and indexed.
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Current sequencing technologies
Sequencing by size sorting

Sequencing by ligation

Sequencing by replication

Single-molecule sequencing
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Sequencing by size sorting
Need pure sample: many copies of one DNA molecule.

Generate “prefixes” of DNA, with known last base.
Ï Maxam-Gilbert sequencing (obsolete): cuts DNA at

specific base.
Ï Sanger sequencing: copies DNA stopping at specific base.
Ï Hood variant: copies DNA using fluorescent label for last

base.

Measure lengths of prefixes by electrophoresis.

About $1.50/read, 800–1200 bases/read

Error rate about 0.05% (1 in 2000)
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Sequencing by ligation
Only 1 platform (SOLiD)

Shreds DNA, then does emulsion PCR to get beads with
pure DNA fragments.

Ligates small stretch of DNA to template.

Unusual “color-space” reads. Color encodes 2 bases, but
only 4 colors:

0 (blue): AA, GG, CC, TT
1 (green): AC, GT, CA, TG

2 (yellow): AG, GA, CT, TC
3 (red): AT, GC, CG, TA

Takes a week to process a sample

Get about 200–300 million 50-base reads.

Error rate about 1.6%
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Sequencing by replication
Bases added one at a time, with detector to tell whether a
base is added (or which base is added).

Pyrosequencing (454)

Illumina/Solexa (Genome Analyzer)

Ion Torrent
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Pyrosequencing (454 machine)
After shearing and size-selecting DNA, attach to beads.

Do emulsion-PCR to get a polony on each bead.

Put beads into one-bead wells in picotiter plate.

Do polymerization with one base type at a time.

Use light emission to determine how many copies of
base are added to end of chains.

1,000,000 reads, 500–1000 bases/read

about $3k for a run

Error rate about 0.9%

When several bases in a row are identical, determining
exactly how many bases of that type were present can be
difficult. (homopolymer errors)
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Pyrosequencing (454 machine)
After shearing and size-selecting DNA, attach to beads.
Do emulsion-PCR to get a polony on each bead.
Put beads into one-bead wells in picotiter plate.

Nature Biotechnology 21, 1425–1427 (2003)

doi:10.1038/nbt1203-1425

Do polymerization with one base type at a time.
Use light emission to determine how many copies of
base are added to end of chains.
1,000,000 reads, 500–1000 bases/read
about $3k for a run
Error rate about 0.9%
When several bases in a row are identical, determining
exactly how many bases of that type were present can be
difficult. (homopolymer errors)
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Illumina/Solexa
Polonies grown as spots on a slide rather than separate
beads.

One base at a time reading, all 4 bases read at once
(different color fluorophores).

≈ 5 billion 2×100-long paired-end reads.

Error rate about 1.5%
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Ion Torrent
small, cheap machine (about $50,000)

Electronic readout, no fluorescent molecules, no optics

medium throughput, fast, low cost per run

same homopolymer problems as 454 technology

reads under 100 long
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Single-molecule sequencing
Several new technologies that don’t require amplifying
DNA:

Ï Pacific Bioscience (SMRT)
Ï Helicos Bioscience (Helicos)
Ï nanopores

All have super high error rates (10–20%).

Same molecule must be read repeatedly to get useful
data.

PacBio occasionally gets very long reads, but various
tricks are needed, making data analysis difficult.
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Characteristics of data
platform reads/run read length error rate cost per base
Sanger 1–384 500–1200 very low very high
454 1e6 500–1000 low medium
Illumina 4e9 2×100 high low
SOLiD 300e6 50 high low
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Different data representations
base space

flow space (454, Ion Torrent)

color space

Each sequencer and each program uses different data
formats and different quality information.
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The assembly problem
Jigsaw puzzle with millions of pieces that overlap.

Need much more DNA sequence than target genome
(generally 15–100×)

Want to end up with single sequence for each
chromosome
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Problems
Sequence data is noisy.

Repeats can have identical sequences in different parts
of genome.

DNA sample may have variations within sample.

Data is huge (larger than computer memory).
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Algorithms for assembly
Overlap-consensus graph (needs long reads)

de Bruijn graph (has trouble with high error rates and
long reads)
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Overlap consensus
Each node is a single read. Edges represent overlaps
between the end of one read and the beginning of
another.

Clusters of connected nodes can be used to build
consensus contigs.

Overlap must be large enough to be unique location in
genome, or chimeric contigs can get built.

Finding overlaps is expensive part.

Clusters have to be broken where continuation of contig
is ambiguous, so repeats tend to be represented by single
consensus contig.

Best method for 454 and Sanger data.
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de Bruijn graph
Each node is a k-mer. Edges connect window [i, i+k) to
window [i+1, i+k+1) of read, and have counts of
occurrence.

Each read becomes a path in the graph.

Contigs build from strongly supported paths.

Errors create “bubbles” and “dead-ends” that need to be
merged into main paths.

No need to find overlaps, but graphs get huge.
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Web sites
These slides:

http://users.soe.ucsc.edu/~karplus/papers/

Ravenna-methods-sep-2011.pdf

UCSC bioinformatics info:
http://www.bme.ucsc.edu/

SAM-T08 prediction server: http://compbio.soe.ucsc.edu/

SAM_T08/T08-query.html

CASP2 through CASP8—all our results and working notes:
http://users.soe.ucsc.edu/~karplus/casp2/

. . .
http://users.soe.ucsc.edu/~karplus/casp8/

Banana Slug Genomics wiki:
http://banana-slug.soe.ucsc.edu/
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