# Applying Undertaker Cost Functions to Model Quality Assessment (Supplementary Materials) 

John Archie and Kevin Karplus

August 20, 2008


Figure 1: GDT_TS versus real cost. GDT_TS and real cost both measure model quality. After scoring all server models for all CASP7 targets with structures in the PDB, 2,000 full models were randomly selected and plotted above. As expected, there is a strong correlation between the two quality measures; good models tend to be good regardless of the scoring measure used.

|  | Group | $\bar{r}$ | $\bar{\rho}$ | $\overline{\mathrm{GDT}}$ | $\bar{\tau}_{0}$ | $\bar{\tau}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | under+TM | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 8 5}$ | $\mathbf{6 0 . 4}$ | $\mathbf{0 . 7 0}$ | $\mathbf{0 . 6 8}$ |
|  | under | 0.76 | 0.76 | 59.8 | 0.58 | 0.59 |
|  | TASSER | 0.63 | 0.69 | 59.7 | 0.54 | 0.51 |
|  | Qiu | 0.85 | 0.75 | 59.0 | 0.58 | 0.54 |
|  | Pcons | 0.82 | 0.75 | 58.3 | 0.56 | 0.52 |
|  | LEE | 0.82 | 0.78 | 57.8 | 0.63 | 0.59 |
|  | ModFOLD | 0.66 | 0.55 | 55.4 | 0.40 | 0.37 |
|  |  |  |  |  |  |  |
|  | Group | $\bar{r}$ | $\bar{\rho}$ | $\overline{\text { GDT }}$ | $\bar{\tau}_{0}$ | $\bar{\tau}_{3}$ |
|  | under+TM | $\mathbf{0 . 9 0}$ | $\mathbf{0 . 8 3}$ | $\mathbf{6 0 . 7}$ | $\mathbf{0 . 6 8}$ | $\mathbf{0 . 6 5}$ |
|  | TASSER | 0.63 | 0.67 | 59.8 | 0.53 | 0.50 |
|  | under | 0.86 | 0.77 | 59.6 | 0.61 | 0.57 |
|  | Qiu | 0.85 | 0.74 | 59.3 | 0.57 | 0.53 |
|  | LEE | 0.80 | 0.72 | 58.1 | 0.58 | 0.52 |
|  | Pcons | 0.85 | 0.75 | 57.6 | 0.56 | 0.51 |
|  | ModFOLD | 0.70 | 0.62 | 55.8 | 0.46 | 0.43 |
|  |  |  |  |  |  |  |
|  | Group | $\bar{r}$ | $\bar{\rho}$ | $\overline{\mathrm{RC}}$ | $\bar{\tau}_{0}$ | $\bar{\tau}_{3}$ |
|  | under+TM | $\mathbf{0 . 9 3}$ | $\mathbf{0 . 8 7}$ | $\mathbf{3 9 . 0}$ | $\mathbf{0 . 7 2}$ | $\mathbf{0 . 7 0}$ |
|  | under | 0.91 | 0.84 | 32.2 | 0.68 | 0.65 |
| (c) | TASSER | 0.69 | 0.73 | 26.1 | 0.58 | 0.55 |
|  | Qiu | 0.85 | 0.75 | 25.4 | 0.59 | 0.56 |
|  | LEE | 0.80 | 0.72 | 10.1 | 0.57 | 0.52 |
|  | Pcons | 0.84 | 0.75 | 1.7 | 0.56 | 0.51 |
|  | ModFOLD | 0.76 | 0.68 | 4.9 | 0.52 | 0.49 |

Table 1: Performance of different model quality assessment. These tables show how each MQA method performs when evaluated against the CASP7 server data set which excludes Zhang Server models. "under" denotes the Undertaker cost functions only; "under+TM," the Undertaker cost functions with the median TM-score consensus term; and Qiu, data from a scoring function including the median TM-score consensus term, an atom-pairwise distance potential, and Rosetta terms (1). TASSER, LEE, Pcons, and ModFOLD indicate CASP7 groups 125, 556, 634, and 704. The correlation measures are against negative GDT_TS ( $\mathrm{a}, \mathrm{b}$ ) or real cost (c) and are averaged over 89 CASP7 targets. The metrics are Pearson's $r$, Spearman's $\rho$, average quality of predicted best model (GDT_TS denotes GDT_TS; RC, real cost), Kendall's $\tau$, and $\tau_{3}$. Training and evaluation was done using five-fold cross-validation on all models and GDT_TS (a), complete models and GDT_TS (b); and complete models and real cost (c). Tables are sorted by the average quality of the best model. The largest value in each column is presented in bold; the second largest, italics.

## The clens Contact Quality Measure

The clens quality measure was written by Tim Dreszer to assess how well the residue-residue contacts in a model match contacts observed in an experimentally determined structure. Only residue pairs in contact in the model or experimental structure are considered. When computing clens, contacts present in both structures (true positives) are counted, while contacts present in the model only (false positives) or in the experimental structure only (false negatives) are penalized. Contacts absent in both structures (true negatives) are ignored.

More precisely, contact distance is determined by measuring the distance between residue center spots (Figure 3). The distance between two residues in the model is denoted $\mathrm{D}_{\text {predicted }}$, and in the experimental structure, $\mathrm{D}_{\text {observed }}$. A contact score is determined by summing over all nonadjacent pairs of residues where $\mathrm{D}_{\text {predicted }} \leq 9 \AA$, $\mathrm{D}_{\text {observed }} \leq 9 \AA$, or $\mathrm{D}_{\text {predicted }}+$ $\mathrm{D}_{\text {observed }} \leq 21 \AA$,

$$
\begin{equation*}
s=\sum \frac{w\left(\mathrm{D}_{\text {observed }}-\mathrm{D}_{\text {predicted }}\right)}{\mathrm{P}(\text { contact } \mid \mathrm{sep})} \tag{1}
\end{equation*}
$$

The weighting function for a contact (Figure 2) is defined as

$$
\begin{equation*}
w(x)=e^{-\left(\frac{x}{3}\right)^{2}} \tag{2}
\end{equation*}
$$

and the probability of a contact given the sequence separation, P (contact|sep), is listed in Table 4 and is estimated from a thinned version of the PDB from Dunbrack's Pisces server ${ }^{1}$ (2).

Finally, the contact score is converted to a cost by negating and normalizing to the range $[0,1]$ :

$$
\begin{equation*}
\operatorname{cost}=1-\frac{s}{s_{\max }} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{\max }=\sum \mathrm{P}(\text { contact } \mid \mathrm{sep})^{-1} \tag{4}
\end{equation*}
$$

## The GDT_TS and Smooth GDT Quality Measures

To compute GDT_TS (3) and smooth GDT, Undertaker first computes an array (d) by sampling superpositions of the model and experimental structure. A value $d_{i}(1 \leq i \leq N$ where $N$ is the number of residues in the protein) indicates that a superposition exists such that $i \mathrm{C}_{\alpha}$ points in the model are within $d_{i} \AA$ of the corresponding $\mathrm{C}_{\alpha}$ points in the experimental structure. As Undertaker samples superpositions, $\boldsymbol{d}$ is updated to store the minimum encountered distance for each value of $i$.

After sampling superpositions, GDT_TS can then be computed as

$$
\begin{equation*}
\text { GDT_TS }=\frac{1}{4 N} \sum_{t \in 1,2,4,8} \max \left(i \text { where } d_{i} \leq t\right) \tag{5}
\end{equation*}
$$

[^0]

Figure 2: Individual residue pair contact score. Ideal true positives (TP) are given a score of 1 , while false positives (FP) and false negatives (FN) are given a score of (practically) 0. True negatives (TN) are not considered when computing $s$ or $s_{\text {max }}$ (Equations 1 and 3).


Figure 3: Residue center spot. As shown above, a coordinate system can be defined by placing the $\mathrm{C}_{\alpha}$ at the origin, the amide N on the $x$-axis, and the carbonyl C on the $z=0$ plane. For the purposes of determining residue-residue contact, a residue is defined as being located at ( $-2.66,-5.15,3.48$ ) in this coordinate system.

Alternatively, GDT_TS (and smooth GDT) can be expressed as

$$
\begin{equation*}
\mathrm{GDT}=\frac{1}{N} \sum_{i=1}^{N} v\left(d_{i}\right) \tag{6}
\end{equation*}
$$

where, in the case of GDT_TS, the value function is

$$
\begin{equation*}
v(d)=\left\{\right. \tag{7}
\end{equation*}
$$

Smooth GDT simply uses an alternative definition for the value function

$$
v(d)= \begin{cases}1 & \text { if } d<3 \sqrt{2} / 8  \tag{8}\\ -\frac{1}{9} \log _{2} \frac{d^{2}}{12^{2}} & \text { if } 3 \sqrt{2} / 8 \leq d \leq 12 \\ 0 & \text { if } 12<d\end{cases}
$$

These two functions are compared in Figure 4. Since smooth GDT uses a continuous range of thresholds from about $1 / 2 \AA$ to $12 \AA$, the measure does a slightly better job when computing a score for high and low accuracy models.

The idea behind smooth GDT is very similar to TM-score (4). However, TM-score only uses only one superposition when compting $\boldsymbol{d}$-the superposition that maximizes the TMscore. Accepting that $\boldsymbol{d}$ has a slightly different meaning in the context of TM-score, the TM-score value function is defined as

$$
\begin{equation*}
v(d)=\frac{1}{1+\frac{d}{c}} \tag{9}
\end{equation*}
$$

where $c$ is a constant defined in terms of the protein length.

## H-bond Scaled Likelihoods

For modeling H-bond geometry, H-bonds were extracted from a thinned version of the PDB from Dunbrack's Pisces server ${ }^{2}$ (2). H-bonds were included in this set if they met a set of geometric criteria (Table 5 and Figures 5-9). These criteria were subjectively established by visual inspection of the distributions of geometric features.

Five geometric features were identified and modeled with statistical distributions. For each feature, different models were fitted to different classes of H-bonds. For example, backbone H -bonds are those that include both the amide N and carbonyl O ; backbone H bonds with a separation (the index of the donor minus the index of the acceptor) of 3 (the

[^1]
## GDT Value Functions



Figure 4: Smooth GDT, GDT_TS, and GDT_HA (5) value functions. All of these measures can be computed as a normalized sum of value functions (Equation 6). The value functions used for GDT and smooth GDT are plotted for comparison.
$3_{10}$-helix H-bond) and 4 (the $\alpha$-helix H-bond) often followed different distributions. Other characteristics were also used to separate types of H -bonds where appropriate.

The scaled likelihood of an H-bond given the geometry is computed as the product of the scaled likelihoods of

- the donor-acceptor distance,
- the DAC (donor-acceptor-carbon) angle (Figure 6),
- asymmetry divided by the donor-acceptor distance (Figure 7), and
- nonplanarity divided by the donor-acceptor distance (Figure 8) or, if nonplanarity cannot be computed, the CDA (carbon-donor-acceptor) angle (Figure 5).

Each density function was scaled to have a maximum value of 1, placing each density function on a similar scale and ensuring that the product of the scaled density functions is in the range $[0,1]$. These four features are almost statistically independent (data not shown).

For modeling distance, the Leonard-Jones 6-12 potential was used to model the energy of an H-bond,

$$
\begin{equation*}
l(x)=2\left(\frac{r}{x}\right)^{6}-\left(\frac{r}{x}\right)^{12} \tag{10}
\end{equation*}
$$

These energy estimates fitted fairly well to an exponential function,

$$
\begin{equation*}
f(x)=e^{k l(x)+c} \tag{11}
\end{equation*}
$$

where $r, k$, and $c$ were fitted constants. The scaled exponential density function is then

$$
\begin{equation*}
f(x)=e^{k l(x)-k} \tag{12}
\end{equation*}
$$

where values for $r$ and $k$ are listed in Table 5.
Each of the geometric features (the CDA and DAC angles, asymmetry, and nonplanarity) were fitted to normal distributions (Figures 5-8). The scaled normal density function is then expressed as

$$
\begin{equation*}
f(x)=e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \tag{13}
\end{equation*}
$$

For backbone H-bonds with separation of four, nonplanarity is modeled by a uniform because the distribution is too flat. When a nonbackbone H -bond has the backbone O as an acceptor, asymmetry is modeled by a uniform distribution. Whenever a measurement cannot be computed for any reason, the uniform distribution is also used as a way of ignoring that feature.

## Alphabets for Quality Assessment

Burial is defined as a nonnegative integer and can be computed for a residue by counting the number of other residues that are in close proximity in a 3D coordinate system. For near-backbone-11, each residue has the same center spot ( $-2.66,-5.15,3.48$ ) as clens (Figure $3)$ and a count spot $(1.24,0.64,0.23)$ near the backbone N. For a given residue, burial is

| letter | burial range |
| :--- | :--- |
| A | $0 \leq x<4$ |
| B | $4 \leq x<6$ |
| C | $6 \leq x<7$ |
| D | $7 \leq x<10$ |
| E | $10 \leq x<13$ |
| F | $13 \leq x<16$ |
| G | $16 \leq x<20$ |
| H | $20 \leq x<23$ |
| I | $23 \leq x<26$ |
| J | $26 \leq x<29$ |
| K | $29 \leq x<\infty$ |

Table 2: Near-backbone-11 alphabet. Near-backbone-11 describes the degree of burial from A (least buried) to K (most buried). Burial is computed by counting the number of other residues that are in close proximity in a 3D coordinate system. For near-backbone-11, each residue has the same center spot ( $-2.66,-5.15,3.48$ ) as clens (Figure 3) and a count spot $(1.24,0.64,0.23)$ near the backbone N . For a given residue, burial is defined as the number of count spots within a $9.65 \AA$ radius of that residue's center spot.
defined as the number of count spots within a $9.65 \AA$ radius of that residue's center spot. The near-backbone-11 alphabet is defined in Table 2.

The n_notor alphabet uses the NOtor torsion angle (Figure 9) and other H-bond properties to place the backbone N to place residues into categories; the alphabet is defined in Table 3.

## Optimization of $\tau_{3}$ and GDT on Complete Models

When doing the five-fold cross validation, below are the weight sets defined when using full models and GDT as a measure of model quality.

| letter | NOtor range | meaning |
| :--- | :--- | :--- |
| G |  | separation 3 H-bonds $\left(3_{10}\right.$-helix $)$ |
| H |  | separation 4 H-bonds $(\alpha$-helix $)$ |
| P | $x<-133$ or $x>76$ | often parallel $\beta$-strand |
| B | $-133 \leq x \leq-17$ | often antiparallel $\beta$-strand |
| A | $-17<x \leq 76$ | often antiparallel $\beta$-strand |
| S |  | H-bond to sidechain |
| M |  | multiple H-bonds |
| N |  | no H-bond |

Table 3: N_notor alphabet. The n_notor alphabet places residues into three categories defined by the NOtor torsion angle (Figure 9) of the backbone $\mathrm{N}(\mathrm{P}, \mathrm{B}$, and A). There are special cases for helical ( G and H ) H-bonds, as well as for when the backbone N does not form a single NOtor angle (S, M, and N).

| Cost Function | Pooled SD | Description |
| :---: | :--- | :--- |
| align_constraint | 3.278 | selected alignment predicted constraints |
| pred_nb11_back | 0.961 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back | 0.825 | neural net predicted alpha torsion angle |
| noncontacts_bonus | 0.771 | alignment predicted noncontacts |
| align_bonus | 0.318 | selected alignment predicted constraints |
| dry5 | 0.182 | propensity predicted burial, dry-5 definition |
| pred_o_sep_back | 0.159 | predicted H-bond sequence separation for O |
| rejected_bonus | 0.147 | rejected alignment predicted constraints |
| near_backbone | 0.140 | propensity predicted burial, near-backbone-11 definition |
| pred_cb14_back | 0.139 | nerual net predicted burial, C ${ }_{\beta}$-14 alphabet <br> pred_n_sep_back <br> ehl2_constraint |
| 0.138 | 0.095 | predicted H-bond sequence separation for N <br> secondary structure constraints <br> contact |
|  | 0.083 | average number of contacts (centroids of the backbone <br> and sidechain within $8 \AA$ A) per residue |
| is_align | 0.024 | detects missing backbone atoms or chainbreaks |


| Cost Function | Pooled SD | Description |
| :---: | :---: | :---: |
| align_constraint | 2.128 | selected alignment predicted constraints |
| rejected_constraint | 0.871 | rejected alignment predicted constraints |
| noncontacts_bonus | 0.792 | alignment predicted noncontacts |
| pred_alpha_back | 0.774 | neural net predicted alpha torsion angle |
| pred_nb11_back | 0.715 | neural net predicted burial, near-backbone-11 alphabet |
| align_bonus | 0.451 | selected alignment predicted constraints |
| near_backbone | 0.240 | propensity predicted burial, near-backbone-11 definition |
| dry5 | 0.172 | propensity predicted burial, dry-5 definition |
| pred_o_sep_back | 0.115 | predicted H -bond sequence separation for O |
| contact_order | 0.101 | average chain separation of contacting residues |
| contact | 0.059 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| Cost Function | Pooled SD | Description |
| align_constraint | 5.286 | selected alignment predicted constraints |
| pred_nb11_back | 2.253 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back | 1.504 | neural net predicted alpha torsion angle |
| align_bonus | 1.078 | selected alignment predicted constraints |
| noncontacts | 0.854 | alignment predicted noncontacts |
| ehl2_constraint | 0.327 | secondary structure constraints |
| rejected_bonus | 0.288 | rejected alignment predicted constraints |
| contact_order | 0.248 | average chain separation of contacting residues |
| pred_o_sep_back | 0.247 | predicted H -bond sequence separation for O |
| dry5 | 0.242 | propensity predicted burial, dry-5 definition |
| pred_n_sep_back | 0.223 | predicted H -bond sequence separation for N |
| near_backbone | 0.223 | propensity predicted burial, near-backbone-11 definition |
| contact | 0.142 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| is_align | 0.040 | detects missing backbone atoms or chainbreaks |


| Cost Function | Pooled SD | Description |
| :---: | :---: | :---: |
| align_constraint | 5.519 | selected alignment predicted constraints |
| pred_nb11_back | 2.044 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back | 1.599 | neural net predicted alpha torsion angle |
| noncontacts | 0.922 | alignment predicted noncontacts |
| dry12 | 0.526 | propensity predicted burial, dry-12 definition |
| rejected_bonus | 0.476 | rejected alignment predicted constraints |
| ehl2_constraint | 0.347 | secondary structure constraints |
| pred_o_sep_back | 0.245 | predicted H -bond sequence separation for O |
| sidechain_clashes | 0.193 | number of severe sidechain clashes |
| contact_order | 0.163 | average chain separation of contacting residues |
| contact | 0.079 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| is_align | 0.060 | detects missing backbone atoms or chainbreaks |
| Cost Function | Pooled SD | Description |
| align_constraint | 5.636 | selected alignment predicted constraints |
| pred_nb11_back | 1.946 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back | 1.592 | neural net predicted alpha torsion angle |
| noncontacts | 0.961 | alignment predicted noncontacts |
| align_bonus | 0.672 | selected alignment predicted constraints |
| dry5 | 0.253 | propensity predicted burial, dry-5 definition |
| rejected_bonus | 0.246 | rejected alignment predicted constraints |
| pred_n_sep_back | 0.244 | predicted H-bond sequence separation for N |
| near_backbone | 0.211 | propensity predicted burial, near-backbone-11 definition |
| ehl2_constraint | 0.186 | secondary structure constraints |
| contact | 0.171 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| is_align | 0.030 | detects missing backbone atoms or chainbreaks |

## Optimization of $\tau_{3}$ and Real Cost on Complete Models

When doing the five-fold cross validation, below are the weight sets defined when using full models and real cost as a measure of model quality.

| Cost Function | Pooled SD | Description |
| :---: | :---: | :---: |
| align_constraint | 1.323 | selected alignment predicted constraints |
| pred_nb11_back | 1.061 | neural net predicted burial, near-backbone-11 alphabet |
| align_bonus | 1.014 | selected alignment predicted constraints |
| pred_n_notor_back | 0.866 | neural net predicted H-bond properties, including NOtor torsion angle |
| pred_alpha_back | 0.776 | neural net predicted alpha torsion angle |
| noncontacts_bonus | 0.733 | alignment predicted noncontacts |
| contact | 0.176 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| rejected_bonus | 0.144 | rejected alignment predicted constraints |
| near_backbone | 0.130 | propensity predicted burial, near-backbone-11 definition |
| pred_n_sep_back | 0.122 | predicted H-bond sequence separation for N |
| dry5 | 0.116 | propensity predicted burial, dry- 5 definition |
| sidechain | 0.112 | the negative log-probability of observing the sidechain and backbone conformation |
| ehl2_constraint | 0.110 | secondary structure constraints |
| pred_o_sep_back | 0.093 | predicted H -bond sequence separation for O |
| is_align | 0.051 | detects missing backbone atoms or chainbreaks |
| hbond_dist | 0.048 | H-bond distance cost function, using LJ 6-12 potential |
| Cost Function | Pooled SD | Description |
| align_constraint | 1.155 | selected alignment predicted constraints |
| pred_n notor_back | 0.789 | neural net predicted H-bond properties, including NOtor torsion angle |
| noncontacts_bonus | 0.758 | alignment predicted noncontacts |
| pred_nb11_back | 0.725 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back | 0.715 | neural net predicted alpha torsion angle |
| align_bonus | 0.603 | selected alignment predicted constraints |
| rejected_constraint | 0.239 | rejected alignment predicted constraints |
| rejected_bonus | 0.218 | rejected alignment predicted constraints |
| near_backbone | 0.218 | propensity predicted burial, near-backbone-11 definition |
| sidechain | 0.155 | the negative log-probability of observing the sidechain and backbone conformation |
| contact | 0.138 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| cb14 | 0.101 | propensity predicted burial, $\mathrm{C}_{\beta}-14$ definition |
| bystroff | 0.061 | propensity predicted Bystroff alphabet |
| hbond_dist | 0.048 | H-bond distance cost function, using LJ 6-12 potential |
| contact_order | 0.046 | average chain separation of contacting residues |
| is_align | 0.044 | detects missing backbone atoms or chainbreaks |
| way_back | 0.028 | propensity predicted burial, way-back |


| Cost Function Pooled SD Description |  |  |
| :---: | :---: | :---: |
| align_constraint | 2.387 | selected alignment predicted constraints |
| pred_nb11_back | 1.078 | neural net predicted burial, near-backbone-11 alphabet |
| pred_n_notor_back | 0.908 | neural net predicted H -bond properties, including NOtor torsion angle |
| pred_alpha_back | 0.817 | neural net predicted alpha torsion angle |
| noncontacts_bonus | 0.776 | alignment predicted noncontacts |
| align_bonus | 0.490 | selected alignment predicted constraints |
| rejected_bonus | 0.245 | rejected alignment predicted constraints |
| sidechain | 0.239 | the negative log-probability of observing the sidechain and backbone conformation |
| near_backbone | 0.192 | propensity predicted burial, near-backbone-11 definition |
| ehl2_constraint | 0.173 | secondary structure constraints |
| contact_order | 0.069 | average chain separation of contacting residues |
| contact | 0.067 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| hbond_geom_backbone | ne 0.065 | negative log-likelihood of backbone H -bonds |
| pred_o_sep_back | 0.047 | predicted H -bond sequence separation for O |
| is_align | 0.044 | detects missing backbone atoms or chainbreaks |
| Cost Function P | Pooled SD | Description |
| align_constraint 1. | 1.998 | selected alignment predicted constraints |
| pred_nb11_back 1, | 1.292 | neural net predicted burial, near-backbone-11 alphabet |
| pred_alpha_back 0 | 0.981 | neural net predicted alpha torsion angle |
| pred_n_notor_back 0 | 0.755 | neural net predicted H -bond properties, including NOtor torsion angle |
| noncontacts_bonus 0 | 0.733 | alignment predicted noncontacts |
| align_bonus 0. | 0.457 | selected alignment predicted constraints |
| rejected_bonus 0 | 0.334 | rejected alignment predicted constraints |
| sidechain 0 | 0.239 | the negative log-probability of observing the sidechain and backbone conformation |
| pred_bys_back 0 | 0.162 | neural net predicted bystroff alphabet |
| cb14 0 | 0.137 | propensity predicted burial, $\mathrm{C}_{\beta}-14$ definition |
| alpha 0 | 0.127 | propensity predicted alpha angle |
| hbond_dist 0 | 0.100 | H-bond distance cost function, using LJ 6-12 potential |
| dry5 0 | 0.074 | propensity predicted burial, dry- 5 definition |
| contact 0.0 | 0.072 | average number of contacts (centroids of the backbone and sidechain within $8 \AA$ ) per residue |
| is_align 0. | 0.048 | detects missing backbone atoms or chainbreaks |


| Cost Function | Pooled SD | Description |
| :---: | :--- | :--- |
| align_constraint | 1.568 | selected alignment predicted constraints |
| pred_nb11_back | 1.093 | neural net predicted burial, near-backbone-11 alphabet <br> pred_alpha_back |
| neural net predicted alpha torsion angle |  |  |
| pred_n_notor_back | 0.914 | neural net predicted H-bond properties, including NOtor <br> torsion angle |
| align_bonus | 0.757 | selected alignment predicted constraints <br> alignment predicted noncontacts |
| noncontacts_bonus | 0.725 | neural net predicted contact constraints <br> nn700_constraint |
| the negative log-probability of observing the sidechain <br> sidechain | 0.188 | and backbone conformation |
| pred_bys_back | 0.179 | neural net predicted bystroff alphabet |
| near_backbone | 0.159 | propensity predicted burial, near-backbone-11 definition <br> propensity predicted alpha angle |
| alpha | 0.135 | propensity predicted burial, dry-5 definition <br> dry5 |
| predicted H-bond sequence separation for N |  |  |

## Undertaker Availablilty

Unfortunately, we do not have the resources to provide undertaker as an easily installable package. However, the undertaker source code (with an i686 binary), some supporting files, and the scripts we are using for CASP8 MQA are available at http://www.soe.ucsc.edu/ compbio/undertaker-mqa.tgz. We only provide the package so that people could examine the source code to see implementation details. The program comes with no documentation and will be difficult to get working. We may release a version that is easier to install in the future, but currently have no funding for development work.

## References

[1] Qiu J, Sheffler W, Baker D, Noble WS. Ranking predicted protein structures with support vector regression. Proteins: Structure, Function, and Bioinformatics. 2008;69(3):184-193.
[2] Wang G, Dunbrack RL Jr. PISCES: a protein sequence culling server. Bioinformatics. 2003;19(12):1589-1591.
[3] Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003;31(13):3370-3374.
[4] Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins. 2004;57(4):702-710.
[5] Kryshtafovych A, Prlic A, Dmytriv Z, Daniluk P, Milostan M, Eyrich V, Hubbard T, Fidelis K. New tools and expanded data analysis capabilities at the Protein Structure Prediction Center. Proteins. 2007;69(S8):19-26.

| sep | probability | sep | probability |  | sep | probability |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000000 |  | 0.0546504 |  | 25 | 0.0522208 |
| 2 | 0.00194422 |  | 14 | 0.0501612 |  | 26 |
| 3 | 0.176576 |  | 0.0512311 |  |  |  |
| 4 | 0.149368 | 16 | 0.0492639 |  | 27 | 0.0526647 |
| 5 | 0.278609 | 17 | 0.0482015 |  | 28 | 0.0509335 |
| 6 | 0.0788494 | 18 | 0.0484386 | 29 | 0.0518978 |  |
| 7 | 0.0658937 | 19 | 0.0481162 | 30 | 0.0515381 |  |
| 8 | 0.0690079 | 20 | 0.048748 | 31 | 0.0504663 |  |
| 9 | 0.0658018 | 21 | 0.0484083 | 32 | 0.0493822 |  |
| 10 | 0.0577989 | 22 | 0.0494527 | 33 | 0.0484552 |  |
| 11 | 0.0537069 | 23 | 0.0512322 | 34 | 0.0482571 |  |
| 12 | 0.0564388 | 24 | 0.0508363 | 35 | 0.0475389 |  |

Table 4: P (contact|sep). Probabilities for contacts with a separation of greater than 35 are well estimated by $0.81(\mathrm{sep})^{-0.8}$.


| type | CDA |
| :---: | :---: |
| N-term N | $[95,140]$ |
| $*$ | $[60,165]$ |


| type | $\mu$ | $\sigma$ |
| :---: | :---: | :---: |
| one C | 111.253 | 18.2975 |

Figure 5: CDA (carbon-donor-acceptor) angle. The CDA angle (top) can be computed whenever the H -bond donor is covalently bonded to at least one C. For H-bond detection, the CDA angle must be within a certain range (center). When the N -terminal N is a donor, the permitted CDA angles have a slightly different range due to the different geometry. For determining the likelihood of an H-bond, the CDA angle is only used if one cannot compute nonplanarity (Figure 8), because only one C is bonded to the donor. The CDA angle is modeled as a normal distribution (bottom).


Figure 6: DAC (donor-acceptor-carbon) angle. The DAC angle (top) can be computed whenever the H -bond acceptor is covalently bonded to at least one C . For H -bond detection, the DAC angle must be within a certain range (center). For determining the likelihood of an H-bond, the DAC angle is modeled as normal distributions (bottom). Backbone is abbreviated as "bb."


Figure 7: Asymmetry. Asymmetry (top) is computed as $\mathbf{v}_{\mathbf{C C}} \cdot \mathbf{v}_{\mathbf{A D}}$. Asymmetry can be computed whenever the H-bond donor is covalently bond to two C. For H-bond detection, asymmetry must be within a certain range (center). For determining the likelihood of an H-bond, asymmetry is divided by the donor-acceptor distance, and this statistic modeled as normal distributions (bottom). Backbone is abbreviated as "bb."


Figure 8: Nonplanarity. Nonplanarity (top) is computed as $\left(\mathbf{v}_{\mathbf{C D}} \times \mathbf{v}_{\mathbf{C D} \mathbf{2}}\right) \cdot \mathbf{v}_{\mathbf{A D}}$ and can be computed whenever the H -bond donor forms a covalent bond with two C atoms. For H -bond detection, nonplanarity must be within a certain range (center). For determining the likelihood of an H-bond, nonplanarity is divided by the donor-acceptor distance, and this statistic is modeled as normal distributions (bottom). Backbone (bb) H-bonds with a separation of greater than four have a relatively flat distribution and are therefore not modeled. Backbone is abbreviated as "bb."


Figure 9: NOtor torsion angle. The NOtor torsion angle (top) is a geometric torsion angle that can only be computed for backbone H-bonds. For H-bond detection, the NOtor angle must be within a certain range for nearby backbone H-bonds (bottom). The NOtor angle is not used when computing the likelihood of an H-bond. Note that the rule for backbone Hbonds with a separation of 4 does exclude some rare antiparallel $\beta$-strand H -bonds. Backbone is abbreviated as "bb."


Table 5: Distance constraints. To be detected as a hydrogen bond, the distance between the donor and acceptor atoms must be within the certain limits (top). Distance is modeled as exponential distributions of Leonard-Jones energies (bottom) with fitted constants $r$ and $k$ (Equations 10 and 12). Backbone is abbreviated as "bb."


[^0]:    ${ }^{1}$ The set was generated on April 5, 2005 and included structures $1.8 \AA$ or better with an R-factor of less than or equal to 0.25 , thinned to $40 \%$ sequence identity.

[^1]:    ${ }^{2}$ The set was generated on August 15, 2003 and included structures $1.8 \AA$ or better with an R-factor of less than or equal to 0.25 , thinned to $30 \%$ sequence identity. Three structures were removed: 1 nxb had 106 clashes in 62 residues; 1en2A and 1ejgA both contained microhetrogeneity.

