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Figure 1: GDT TS versus real cost. GDT TS and real cost both measure model quality.
After scoring all server models for all CASP7 targets with structures in the PDB, 2,000 full
models were randomly selected and plotted above. As expected, there is a strong correlation
between the two quality measures; good models tend to be good regardless of the scoring
measure used.
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(a)

Group r̄ ρ̄ GDT τ̄0 τ̄3

under+TM 0.90 0.85 60.4 0.70 0.68
under 0.76 0.76 59.8 0.58 0.59

TASSER 0.63 0.69 59.7 0.54 0.51
Qiu 0.85 0.75 59.0 0.58 0.54

Pcons 0.82 0.75 58.3 0.56 0.52
LEE 0.82 0.78 57.8 0.63 0.59

ModFOLD 0.66 0.55 55.4 0.40 0.37

(b)

Group r̄ ρ̄ GDT τ̄0 τ̄3

under+TM 0.90 0.83 60.7 0.68 0.65
TASSER 0.63 0.67 59.8 0.53 0.50

under 0.86 0.77 59.6 0.61 0.57
Qiu 0.85 0.74 59.3 0.57 0.53
LEE 0.80 0.72 58.1 0.58 0.52
Pcons 0.85 0.75 57.6 0.56 0.51

ModFOLD 0.70 0.62 55.8 0.46 0.43

(c)

Group r̄ ρ̄ RC τ̄0 τ̄3

under+TM 0.93 0.87 39.0 0.72 0.70
under 0.91 0.84 32.2 0.68 0.65

TASSER 0.69 0.73 26.1 0.58 0.55
Qiu 0.85 0.75 25.4 0.59 0.56
LEE 0.80 0.72 10.1 0.57 0.52
Pcons 0.84 0.75 1.7 0.56 0.51

ModFOLD 0.76 0.68 4.9 0.52 0.49

Table 1: Performance of different model quality assessment. These tables show how each
MQA method performs when evaluated against the CASP7 server data set which excludes
Zhang Server models. “under” denotes the Undertaker cost functions only; “under+TM,” the
Undertaker cost functions with the median TM-score consensus term; and Qiu, data from a
scoring function including the median TM-score consensus term, an atom-pairwise distance
potential, and Rosetta terms (1). TASSER, LEE, Pcons, and ModFOLD indicate CASP7
groups 125, 556, 634, and 704. The correlation measures are against negative GDT TS
(a,b) or real cost (c) and are averaged over 89 CASP7 targets. The metrics are Pearson’s r,
Spearman’s ρ, average quality of predicted best model (GDT TS denotes GDT TS; RC, real
cost), Kendall’s τ , and τ3. Training and evaluation was done using five-fold cross-validation
on all models and GDT TS (a), complete models and GDT TS (b); and complete models
and real cost (c). Tables are sorted by the average quality of the best model. The largest
value in each column is presented in bold; the second largest, italics.
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The clens Contact Quality Measure

The clens quality measure was written by Tim Dreszer to assess how well the residue-residue
contacts in a model match contacts observed in an experimentally determined structure.
Only residue pairs in contact in the model or experimental structure are considered. When
computing clens, contacts present in both structures (true positives) are counted, while
contacts present in the model only (false positives) or in the experimental structure only
(false negatives) are penalized. Contacts absent in both structures (true negatives) are
ignored.

More precisely, contact distance is determined by measuring the distance between residue
center spots (Figure 3). The distance between two residues in the model is denoted Dpredicted,
and in the experimental structure, Dobserved. A contact score is determined by summing over
all nonadjacent pairs of residues where Dpredicted ≤ 9 Å, Dobserved ≤ 9 Å, or Dpredicted +

Dobserved ≤ 21 Å,

s =
∑ w(Dobserved −Dpredicted)

P(contact|sep)
(1)

The weighting function for a contact (Figure 2) is defined as

w(x) = e−(x
3 )

2

(2)

and the probability of a contact given the sequence separation, P(contact|sep), is listed in
Table 4 and is estimated from a thinned version of the PDB from Dunbrack’s Pisces server1

(2).
Finally, the contact score is converted to a cost by negating and normalizing to the range

[0, 1]:

cost = 1− s

smax

(3)

where
smax =

∑
P(contact|sep)−1 (4)

The GDT TS and Smooth GDT Quality Measures

To compute GDT TS (3) and smooth GDT, Undertaker first computes an array (d) by
sampling superpositions of the model and experimental structure. A value di (1 ≤ i ≤ N
where N is the number of residues in the protein) indicates that a superposition exists
such that i Cα points in the model are within di Å of the corresponding Cα points in the
experimental structure. As Undertaker samples superpositions, d is updated to store the
minimum encountered distance for each value of i.

After sampling superpositions, GDT TS can then be computed as

GDT TS =
1

4N

∑
t∈1,2,4,8

max(i where di ≤ t) (5)

1The set was generated on April 5, 2005 and included structures 1.8 Å or better with an R-factor of less
than or equal to 0.25, thinned to 40% sequence identity.
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Figure 2: Individual residue pair contact score. Ideal true positives (TP) are given a score
of 1, while false positives (FP) and false negatives (FN) are given a score of (practically) 0.
True negatives (TN) are not considered when computing s or smax (Equations 1 and 3).
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z

x

yC αN

C

(−2.66, −5.15, 3.48)

Figure 3: Residue center spot. As shown above, a coordinate system can be defined by
placing the Cα at the origin, the amide N on the x-axis, and the carbonyl C on the z = 0
plane. For the purposes of determining residue-residue contact, a residue is defined as being
located at (-2.66, -5.15, 3.48) in this coordinate system.
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Alternatively, GDT TS (and smooth GDT) can be expressed as

GDT =
1

N

N∑
i=1

v(di) (6)

where, in the case of GDT TS, the value function is

v(d) =


1 d≤ 1
3/4 1 <d≤ 2
1/2 2 <d≤ 4
1/4 4 <d≤ 8
0 8 <d

(7)

Smooth GDT simply uses an alternative definition for the value function

v(d) =


1 if d < 3

√
2/8

−1
9
log2

d2

122 if 3
√

2/8 ≤ d ≤ 12
0 if 12 < d

(8)

These two functions are compared in Figure 4. Since smooth GDT uses a continuous range of
thresholds from about 1/2 Å to 12 Å, the measure does a slightly better job when computing
a score for high and low accuracy models.

The idea behind smooth GDT is very similar to TM-score (4). However, TM-score only
uses only one superposition when compting d—the superposition that maximizes the TM-
score. Accepting that d has a slightly different meaning in the context of TM-score, the
TM-score value function is defined as

v(d) =
1

1 + d
c

(9)

where c is a constant defined in terms of the protein length.

H-bond Scaled Likelihoods

For modeling H-bond geometry, H-bonds were extracted from a thinned version of the PDB
from Dunbrack’s Pisces server2 (2). H-bonds were included in this set if they met a set of
geometric criteria (Table 5 and Figures 5–9). These criteria were subjectively established by
visual inspection of the distributions of geometric features.

Five geometric features were identified and modeled with statistical distributions. For
each feature, different models were fitted to different classes of H-bonds. For example,
backbone H-bonds are those that include both the amide N and carbonyl O; backbone H-
bonds with a separation (the index of the donor minus the index of the acceptor) of 3 (the

2The set was generated on August 15, 2003 and included structures 1.8 Å or better with an R-factor of
less than or equal to 0.25, thinned to 30% sequence identity. Three structures were removed: 1nxb had 106
clashes in 62 residues; 1en2A and 1ejgA both contained microhetrogeneity.
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Figure 4: Smooth GDT, GDT TS, and GDT HA (5) value functions. All of these measures
can be computed as a normalized sum of value functions (Equation 6). The value functions
used for GDT and smooth GDT are plotted for comparison.
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310-helix H-bond) and 4 (the α-helix H-bond) often followed different distributions. Other
characteristics were also used to separate types of H-bonds where appropriate.

The scaled likelihood of an H-bond given the geometry is computed as the product of the
scaled likelihoods of

• the donor-acceptor distance,

• the DAC (donor-acceptor-carbon) angle (Figure 6),

• asymmetry divided by the donor-acceptor distance (Figure 7), and

• nonplanarity divided by the donor-acceptor distance (Figure 8) or, if nonplanarity
cannot be computed, the CDA (carbon-donor-acceptor) angle (Figure 5).

Each density function was scaled to have a maximum value of 1, placing each density function
on a similar scale and ensuring that the product of the scaled density functions is in the range
[0, 1]. These four features are almost statistically independent (data not shown).

For modeling distance, the Leonard-Jones 6-12 potential was used to model the energy
of an H-bond,

l(x) = 2
( r

x

)6

−
( r

x

)12

(10)

These energy estimates fitted fairly well to an exponential function,

f(x) = ekl(x)+c (11)

where r, k, and c were fitted constants. The scaled exponential density function is then

f(x) = ekl(x)−k (12)

where values for r and k are listed in Table 5.
Each of the geometric features (the CDA and DAC angles, asymmetry, and nonplanarity)

were fitted to normal distributions (Figures 5–8). The scaled normal density function is then
expressed as

f(x) = e−
1
2(

x−µ
σ )

2

(13)

For backbone H-bonds with separation of four, nonplanarity is modeled by a uniform
because the distribution is too flat. When a nonbackbone H-bond has the backbone O as an
acceptor, asymmetry is modeled by a uniform distribution. Whenever a measurement cannot
be computed for any reason, the uniform distribution is also used as a way of ignoring that
feature.

Alphabets for Quality Assessment

Burial is defined as a nonnegative integer and can be computed for a residue by counting
the number of other residues that are in close proximity in a 3D coordinate system. For
near-backbone-11, each residue has the same center spot (-2.66, -5.15, 3.48) as clens (Figure
3) and a count spot (1.24, 0.64, 0.23) near the backbone N. For a given residue, burial is
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letter burial range
A 0 ≤ x < 4
B 4 ≤ x < 6
C 6 ≤ x < 7
D 7 ≤ x < 10
E 10 ≤ x < 13
F 13 ≤ x < 16
G 16 ≤ x < 20
H 20 ≤ x < 23
I 23 ≤ x < 26
J 26 ≤ x < 29
K 29 ≤ x < ∞

Table 2: Near-backbone-11 alphabet. Near-backbone-11 describes the degree of burial from
A (least buried) to K (most buried). Burial is computed by counting the number of other
residues that are in close proximity in a 3D coordinate system. For near-backbone-11, each
residue has the same center spot (-2.66, -5.15, 3.48) as clens (Figure 3) and a count spot
(1.24, 0.64, 0.23) near the backbone N. For a given residue, burial is defined as the number
of count spots within a 9.65 Å radius of that residue’s center spot.

defined as the number of count spots within a 9.65 Å radius of that residue’s center spot.
The near-backbone-11 alphabet is defined in Table 2.

The n notor alphabet uses the NOtor torsion angle (Figure 9) and other H-bond prop-
erties to place the backbone N to place residues into categories; the alphabet is defined in
Table 3.

Optimization of τ3 and GDT on Complete Models

When doing the five-fold cross validation, below are the weight sets defined when using full
models and GDT as a measure of model quality.
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letter NOtor range meaning
G separation 3 H-bonds (310-helix)
H separation 4 H-bonds (α-helix)
P x < −133 or x > 76 often parallel β-strand
B −133 ≤ x ≤ −17 often antiparallel β-strand
A −17 < x ≤ 76 often antiparallel β-strand
S H-bond to sidechain
M multiple H-bonds
N no H-bond

Table 3: N notor alphabet. The n notor alphabet places residues into three categories defined
by the NOtor torsion angle (Figure 9) of the backbone N (P, B, and A). There are special
cases for helical (G and H) H-bonds, as well as for when the backbone N does not form a
single NOtor angle (S, M, and N).

Cost Function Pooled SD Description
align constraint 3.278 selected alignment predicted constraints
pred nb11 back 0.961 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 0.825 neural net predicted alpha torsion angle

noncontacts bonus 0.771 alignment predicted noncontacts
align bonus 0.318 selected alignment predicted constraints

dry5 0.182 propensity predicted burial, dry-5 definition
pred o sep back 0.159 predicted H-bond sequence separation for O
rejected bonus 0.147 rejected alignment predicted constraints
near backbone 0.140 propensity predicted burial, near-backbone-11 definition
pred cb14 back 0.139 nerual net predicted burial, Cβ-14 alphabet
pred n sep back 0.138 predicted H-bond sequence separation for N
ehl2 constraint 0.095 secondary structure constraints

contact 0.083 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

is align 0.024 detects missing backbone atoms or chainbreaks
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Cost Function Pooled SD Description
align constraint 2.128 selected alignment predicted constraints

rejected constraint 0.871 rejected alignment predicted constraints
noncontacts bonus 0.792 alignment predicted noncontacts
pred alpha back 0.774 neural net predicted alpha torsion angle
pred nb11 back 0.715 neural net predicted burial, near-backbone-11 alphabet

align bonus 0.451 selected alignment predicted constraints
near backbone 0.240 propensity predicted burial, near-backbone-11 definition

dry5 0.172 propensity predicted burial, dry-5 definition
pred o sep back 0.115 predicted H-bond sequence separation for O
contact order 0.101 average chain separation of contacting residues

contact 0.059 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

Cost Function Pooled SD Description
align constraint 5.286 selected alignment predicted constraints
pred nb11 back 2.253 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 1.504 neural net predicted alpha torsion angle

align bonus 1.078 selected alignment predicted constraints
noncontacts 0.854 alignment predicted noncontacts

ehl2 constraint 0.327 secondary structure constraints
rejected bonus 0.288 rejected alignment predicted constraints
contact order 0.248 average chain separation of contacting residues

pred o sep back 0.247 predicted H-bond sequence separation for O
dry5 0.242 propensity predicted burial, dry-5 definition

pred n sep back 0.223 predicted H-bond sequence separation for N
near backbone 0.223 propensity predicted burial, near-backbone-11 definition

contact 0.142 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

is align 0.040 detects missing backbone atoms or chainbreaks
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Cost Function Pooled SD Description
align constraint 5.519 selected alignment predicted constraints
pred nb11 back 2.044 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 1.599 neural net predicted alpha torsion angle

noncontacts 0.922 alignment predicted noncontacts
dry12 0.526 propensity predicted burial, dry-12 definition

rejected bonus 0.476 rejected alignment predicted constraints
ehl2 constraint 0.347 secondary structure constraints
pred o sep back 0.245 predicted H-bond sequence separation for O
sidechain clashes 0.193 number of severe sidechain clashes

contact order 0.163 average chain separation of contacting residues
contact 0.079 average number of contacts (centroids of the backbone

and sidechain within 8 Å) per residue
is align 0.060 detects missing backbone atoms or chainbreaks

Cost Function Pooled SD Description
align constraint 5.636 selected alignment predicted constraints
pred nb11 back 1.946 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 1.592 neural net predicted alpha torsion angle

noncontacts 0.961 alignment predicted noncontacts
align bonus 0.672 selected alignment predicted constraints

dry5 0.253 propensity predicted burial, dry-5 definition
rejected bonus 0.246 rejected alignment predicted constraints

pred n sep back 0.244 predicted H-bond sequence separation for N
near backbone 0.211 propensity predicted burial, near-backbone-11 definition
ehl2 constraint 0.186 secondary structure constraints

contact 0.171 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

is align 0.030 detects missing backbone atoms or chainbreaks

Optimization of τ3 and Real Cost on Complete Models

When doing the five-fold cross validation, below are the weight sets defined when using full
models and real cost as a measure of model quality.
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Cost Function Pooled SD Description
align constraint 1.323 selected alignment predicted constraints
pred nb11 back 1.061 neural net predicted burial, near-backbone-11 alphabet

align bonus 1.014 selected alignment predicted constraints
pred n notor back 0.866 neural net predicted H-bond properties, including NOtor

torsion angle
pred alpha back 0.776 neural net predicted alpha torsion angle

noncontacts bonus 0.733 alignment predicted noncontacts
contact 0.176 average number of contacts (centroids of the backbone

and sidechain within 8 Å) per residue
rejected bonus 0.144 rejected alignment predicted constraints
near backbone 0.130 propensity predicted burial, near-backbone-11 definition

pred n sep back 0.122 predicted H-bond sequence separation for N
dry5 0.116 propensity predicted burial, dry-5 definition

sidechain 0.112 the negative log-probability of observing the sidechain
and backbone conformation

ehl2 constraint 0.110 secondary structure constraints
pred o sep back 0.093 predicted H-bond sequence separation for O

is align 0.051 detects missing backbone atoms or chainbreaks
hbond dist 0.048 H-bond distance cost function, using LJ 6-12 potential

Cost Function Pooled SD Description
align constraint 1.155 selected alignment predicted constraints

pred n notor back 0.789 neural net predicted H-bond properties, including NOtor
torsion angle

noncontacts bonus 0.758 alignment predicted noncontacts
pred nb11 back 0.725 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 0.715 neural net predicted alpha torsion angle

align bonus 0.603 selected alignment predicted constraints
rejected constraint 0.239 rejected alignment predicted constraints

rejected bonus 0.218 rejected alignment predicted constraints
near backbone 0.218 propensity predicted burial, near-backbone-11 definition

sidechain 0.155 the negative log-probability of observing the sidechain
and backbone conformation

contact 0.138 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

cb14 0.101 propensity predicted burial, Cβ-14 definition
bystroff 0.061 propensity predicted Bystroff alphabet

hbond dist 0.048 H-bond distance cost function, using LJ 6-12 potential
contact order 0.046 average chain separation of contacting residues

is align 0.044 detects missing backbone atoms or chainbreaks
way back 0.028 propensity predicted burial, way-back
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Cost Function Pooled SD Description
align constraint 2.387 selected alignment predicted constraints
pred nb11 back 1.078 neural net predicted burial, near-backbone-11 alphabet

pred n notor back 0.908 neural net predicted H-bond properties, including NOtor
torsion angle

pred alpha back 0.817 neural net predicted alpha torsion angle
noncontacts bonus 0.776 alignment predicted noncontacts

align bonus 0.490 selected alignment predicted constraints
rejected bonus 0.245 rejected alignment predicted constraints

sidechain 0.239 the negative log-probability of observing the sidechain
and backbone conformation

near backbone 0.192 propensity predicted burial, near-backbone-11 definition
ehl2 constraint 0.173 secondary structure constraints
contact order 0.069 average chain separation of contacting residues

contact 0.067 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

hbond geom backbone 0.065 negative log-likelihood of backbone H-bonds
pred o sep back 0.047 predicted H-bond sequence separation for O

is align 0.044 detects missing backbone atoms or chainbreaks

Cost Function Pooled SD Description
align constraint 1.998 selected alignment predicted constraints
pred nb11 back 1.292 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 0.981 neural net predicted alpha torsion angle

pred n notor back 0.755 neural net predicted H-bond properties, including NOtor
torsion angle

noncontacts bonus 0.733 alignment predicted noncontacts
align bonus 0.457 selected alignment predicted constraints

rejected bonus 0.334 rejected alignment predicted constraints
sidechain 0.239 the negative log-probability of observing the sidechain

and backbone conformation
pred bys back 0.162 neural net predicted bystroff alphabet

cb14 0.137 propensity predicted burial, Cβ-14 definition
alpha 0.127 propensity predicted alpha angle

hbond dist 0.100 H-bond distance cost function, using LJ 6-12 potential
dry5 0.074 propensity predicted burial, dry-5 definition

contact 0.072 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

is align 0.048 detects missing backbone atoms or chainbreaks
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Cost Function Pooled SD Description
align constraint 1.568 selected alignment predicted constraints
pred nb11 back 1.093 neural net predicted burial, near-backbone-11 alphabet
pred alpha back 0.914 neural net predicted alpha torsion angle

pred n notor back 0.770 neural net predicted H-bond properties, including NOtor
torsion angle

align bonus 0.757 selected alignment predicted constraints
noncontacts bonus 0.725 alignment predicted noncontacts
nn700 constraint 0.188 neural net predicted contact constraints

sidechain 0.181 the negative log-probability of observing the sidechain
and backbone conformation

pred bys back 0.179 neural net predicted bystroff alphabet
near backbone 0.159 propensity predicted burial, near-backbone-11 definition

alpha 0.135 propensity predicted alpha angle
dry5 0.089 propensity predicted burial, dry-5 definition

pred n sep back 0.085 predicted H-bond sequence separation for N
rejected bonus 0.077 rejected alignment predicted constraints

hbond dist 0.064 H-bond distance cost function, using LJ 6-12 potential
break 0.052 penalizes chain breaks

contact 0.049 average number of contacts (centroids of the backbone
and sidechain within 8 Å) per residue

is align 0.033 detects missing backbone atoms or chainbreaks

Undertaker Availablilty

Unfortunately, we do not have the resources to provide undertaker as an easily installable
package. However, the undertaker source code (with an i686 binary), some supporting files,
and the scripts we are using for CASP8 MQA are available at http://www.soe.ucsc.edu/
compbio/undertaker-mqa.tgz. We only provide the package so that people could examine
the source code to see implementation details. The program comes with no documentation
and will be difficult to get working. We may release a version that is easier to install in the
future, but currently have no funding for development work.

References

[1] Qiu J, Sheffler W, Baker D, Noble WS. Ranking predicted protein structures with support
vector regression. Proteins: Structure, Function, and Bioinformatics. 2008;69(3):184–193.

[2] Wang G, Dunbrack RL Jr. PISCES: a protein sequence culling server. Bioinformatics.
2003;19(12):1589–1591.

[3] Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids
Res. 2003;31(13):3370–3374.

15



[4] Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure
template quality. Proteins. 2004;57(4):702–710.

[5] Kryshtafovych A, Prlic A, Dmytriv Z, Daniluk P, Milostan M, Eyrich V, Hubbard T,
Fidelis K. New tools and expanded data analysis capabilities at the Protein Structure
Prediction Center. Proteins. 2007;69(S8):19–26.

sep probability
1 1.000000
2 0.00194422
3 0.176576
4 0.149368
5 0.278609
6 0.0788494
7 0.0658937
8 0.0690079
9 0.0658018
10 0.0577989
11 0.0537069
12 0.0564388

sep probability
13 0.0546504
14 0.0501612
15 0.0492639
16 0.0482015
17 0.0475167
18 0.0484386
19 0.0481162
20 0.048748
21 0.0484083
22 0.0494527
23 0.0512322
24 0.0508363

sep probability
25 0.0522208
26 0.0512311
27 0.0526647
28 0.0509335
29 0.0518978
30 0.0515381
31 0.0504663
32 0.0493822
33 0.0484552
34 0.0482571
35 0.0475389

Table 4: P(contact|sep). Probabilities for contacts with a separation of greater than 35 are
well estimated by 0.81(sep)−0.8.
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type CDA
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one C 111.253 18.2975

Figure 5: CDA (carbon-donor-acceptor) angle. The CDA angle (top) can be computed
whenever the H-bond donor is covalently bonded to at least one C. For H-bond detection,
the CDA angle must be within a certain range (center). When the N-terminal N is a donor,
the permitted CDA angles have a slightly different range due to the different geometry. For
determining the likelihood of an H-bond, the CDA angle is only used if one cannot compute
nonplanarity (Figure 8), because only one C is bonded to the donor. The CDA angle is
modeled as a normal distribution (bottom).
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type separation DAC
bb 3 [85, 160]
bb >3 [0, 120]

acceptor has H [85, 160]
nonbb [85, 180]

type separation µ σ
bb 3 120.313 10.0430
bb 4 154.699 5.84436
bb >4 154.389 11.7149

bb N, not bb O 127.207 19.0664
not bb N, bb O 133.497 18.8650

not bb N, not bb O 119.710 17.8554

Figure 6: DAC (donor-acceptor-carbon) angle. The DAC angle (top) can be computed
whenever the H-bond acceptor is covalently bonded to at least one C. For H-bond detection,
the DAC angle must be within a certain range (center). For determining the likelihood
of an H-bond, the DAC angle is modeled as normal distributions (bottom). Backbone is
abbreviated as “bb.”
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type separation µ σ
bb 3 0.42275 0.15418
bb 4 -0.0249 0.20357
bb >4 -0.3355 0.31008

bb N, not bb O 0.18500 0.45128
not bb N, bb O – –

not bb N, not bb O 0.06418 0.52032

Figure 7: Asymmetry. Asymmetry (top) is computed as vCC · vAD. Asymmetry can be
computed whenever the H-bond donor is covalently bond to two C. For H-bond detection,
asymmetry must be within a certain range (center). For determining the likelihood of an
H-bond, asymmetry is divided by the donor-acceptor distance, and this statistic modeled as
normal distributions (bottom). Backbone is abbreviated as “bb.”
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bb 3 [-3.5, 2.3]
bb 4 [-4.0, 3.0]
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type separation µ σ
bb 3 0.16879 0.37696
bb 4 – –
bb >4 -0.0898 0.31779

nonbb -0.0641 0.46044

Figure 8: Nonplanarity. Nonplanarity (top) is computed as (vCD1 × vCD2) · vAD and can
be computed whenever the H-bond donor forms a covalent bond with two C atoms. For
H-bond detection, nonplanarity must be within a certain range (center). For determining
the likelihood of an H-bond, nonplanarity is divided by the donor-acceptor distance, and
this statistic is modeled as normal distributions (bottom). Backbone (bb) H-bonds with
a separation of greater than four have a relatively flat distribution and are therefore not
modeled. Backbone is abbreviated as “bb.”
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Figure 9: NOtor torsion angle. The NOtor torsion angle (top) is a geometric torsion angle
that can only be computed for backbone H-bonds. For H-bond detection, the NOtor angle
must be within a certain range for nearby backbone H-bonds (bottom). The NOtor angle is
not used when computing the likelihood of an H-bond. Note that the rule for backbone H-
bonds with a separation of 4 does exclude some rare antiparallel β-strand H-bonds. Backbone
is abbreviated as “bb.”
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type sep dist
bb 3 [2.7, 3.6]
* * [2.5, 3.6]

type separation r k
bb 3 2.99516 6.41089
bb 4 2.92963 9.79637
bb >4 2.86875 10.6398

acceptor has H 2.96613 2.72088
not bb N or O, asymmetry computable 2.85315 6.51087

not bb N, bb O 2.82832 3.06984
all other cases 2.80461 3.23124

Table 5: Distance constraints. To be detected as a hydrogen bond, the distance between the
donor and acceptor atoms must be within the certain limits (top). Distance is modeled as
exponential distributions of Leonard-Jones energies (bottom) with fitted constants r and k
(Equations 10 and 12). Backbone is abbreviated as “bb.”

22


