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Abstract—A new method for estimating the pack-
ing quality of protein structures is presented. Atoms
in high quality protein crystal structures are very
uniformly distributed which is difficult to reproduce
using structure prediction methods. Packing quality
measures can therefore be used to assess structures
of low quality and even to refine them.

Previous methods mainly use the Voronoi cells
of atoms to assess packing quality. The presented
method uses only the lengths of edges in the De-
launay complex which is faster to compute since
volumes of Voronoi cells are not evaluated explicitly.
This is a novel application of the Delaunay complex
that can improve the speed of packing quality
computations. Doing so is an important step for,
e.g., integrating packing measures into structure
refinement methods. High- and low-resolution X-ray
crystal structures were chosen to represent well- and
poorly-packed structures respectively. Our results
show that the developed method is correlated to the
well-established RosettaHoles2 but three times faster.
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I. INTRODUCTION

The resolution of a protein structure indicates
how accurate the experimentally determined posi-
tions of atoms are in the protein. Protein structures
with resolutions less than 1.8Å are generally con-
sidered good and they are, paradoxically, referred
to as high-resolution structures. High-resolution
structures are characterized by a uniform dis-
tribution of atoms in the core. Low-resolution
structures and structures solved partially or wholly
by computational methods tend to form clusters of
atoms in some places and holes or voids in others.
This is referred to as bad packing of the atoms.
An estimate of the packing quality can be used
to improve structure assessment software such as
WHAT-CHECK [1], PROCHECK [2] or ProSA
[3]. Also, it can be added as an additional term
in free energy functions used in protein structure
prediction or refinement.

A number of methods have been developed
to characterize packing [4], [5], many of which
use the volumes of Voronoi cells for atoms [6],
[7], [8]. A very recent and popular method is
RosettaHoles2 [9], [10]. This method uses the
Voronoi diagram and a support vector machine to
output a packing energy. For each atom, twenty
spheres with increasing radii are centered on the
atom. The volumes of the intersections between
the spheres and the Voronoi cell of the atom
are used as input features to the support vector
machine. The number characterizing the packing,
the RosettaHoles2 cost, is found by averaging the
output of the support vector machine for all atoms.

We use the Delaunay complex of all heavy
(non-hydrogen) atoms to quantify the packing
quality of protein structures. The Delaunay com-
plex, DC(A), of a set of points, A, consists of
all 3-simplices (tetrahedra) whose circumsphere
does not contain a point of A in its interior, as
well as all faces of simplices in DC(A). The 1-
simplices in DC(A) are a set of edges between
points of A. In this study we assume that all atoms
have roughly the same radii and hence can be
represented by a set of points. The packing quality
is found using only the edges of DC(A) as input
features to a feed-forward neural network. Because
the faces of the Voronoi cell intersect the edges
of the Delaunay complex at their midpoints, the
lengths of edges roughly capture the geometry of
the Voronoi cell. However, much less computation
is required when the cell volume is not explicitly
calculated. For training purposes, high-resolution
and low-resolution structures are used to represent
well-packed and poorly-packed structures respec-
tively.

Our method distinguishes itself from other
methods in two ways. First, it uses the edges
of the Delaunay complex and therefore does not
require volume calculations of the Voronoi cells.
Second, only low-resolution X-ray structures are
chosen to represent poorly-packed molecules. This



is in contrast to RosettaHoles2, where predicted
structures generated by Rosetta [11] are also in-
cluded. There exist many scoring methods that
separates predicted structures from native struc-
tures, but poor packing is one of the things that
often distinguishes low-resolution structures from
high-resolution ones. The main conclusion of this
paper is that the edges of the Delaunay complex
characterize packing as well as the volume inte-
gration of the Voronoi cell used in RosettaHoles2,
but can be computed faster.

II. METHODS

The output of the method described here is
a packing cost which is a quantification of the
packing quality of a protein structure. The packing
cost of a structure is the average atom packing
cost of the individual atoms in the structure. The
following section describes how the atom packing
cost is calculated and why averaging atom packing
costs to get the packing cost is reasonable. Finally,
the data sets used for training and testing are
described.

First, the Delaunay complex of the centers of
all heavy atoms, A, is found using the insertion
algorithm described by Ledoux [12]. Although this
algorithm has a O(n2) worst-case running time
(where n = |A|), in practice it runs fast for two
reasons. First, the atoms are inserted in the order
they appear in the protein chain. When searching
for the tetrahedron containing the inserted point,
the method walks from an adjacent tetrahedron
of the previously inserted point and, in practice,
only traverses a constant number of tetrahedra.
Second, the method uses flipping to reinstate the
Delaunay criterion after a point is inserted. Since
the flipping only affects tetrahedra whose circum-
sphere contains the newly inserted point, insertion
is, in practice, a constant-time operation for evenly
distributed points. Assuming that both the point-
location and reinstating the Delaunay criterion are
expected O(1) time operations, the algorithm runs
in expected O(n) time.

We define an atom to be buried if none of its
adjacent tetrahedra are exposed. A tetrahedron, τ ,
is exposed iff there exist a sequence of adjacent
tetrahedra, all with circumradii larger than 2.4Å,
starting at τ and ending at a tetrahedron which
has a face on the convex hull. The radius of 2.4Å
is often used as the combined radii of an average
heavy atom and a water molecule. Therefore, if
a tetrahedron is exposed it indicates that a water
molecule can gain access to its interior.

An atom packing cost is assigned to each heavy
atom using a feed-forward neural network with
10 input neurons, 20 hidden neurons and 1 output
neuron. The values assigned to the input neurons
are based on the lengths of edges incident to
the atom in the Delaunay complex. Ten bins are
defined as shown in Table I. The value of an
input neuron is the number of incident edges
whose length fall within that bin. When train-
ing, the desired atom packing cost for the neural
network is 0 if the atom is in a structure with
resolution less than 1.8Å and 1 otherwise. The
actual output of the neural network is the atom
packing cost. Because different types of atoms
(carbon, nitrogen, oxygen and sulfur) might appear
in different contexts within a protein, a separate
neural network is trained for each of the four types
of atoms. Sulfur, for instance, has a significantly
larger radius than either of the other three atom
types. Edges adjacent to a sulfur atom will there-
fore typically be longer, which is not necessarily
an indication of bad packing.

Bin Interval
0 [0, 1.15)
1 [1.15, 2.04)
2 [2.04, 2.13)
3 [2.13, 2.44)
4 [2.44, 2.72)
5 [2.72, 3.01)
6 [3.01, 3.34)
7 [3.34, 3.71)
8 [3.71, 4.13)
9 [4.13,∞)

Table I
THE INTERVALS OF BINS USED FOR THE 10 INPUTS IN THE

NEURAL NETWORK.

The intervals of the bins in Table I are calcu-
lated such that any edge incident to a buried atom
in the training set has an equal probability of being
in any of the bins. To determine these intervals, all
edges incident to buried atoms in the training set
(defined briefly) are collected in a list. This list is
sorted according to the lengths of the edges, and
split in ten lists of equal sizes. The last elements
of the 9 first lists are used as the boundaries of
the bin-intervals.

When training the neural networks to output
the atom packing cost, only buried atoms are
used as training examples. The reason is that the
network might be trained to recognize the size of
the protein instead of the packing quality. Non-
buried atoms have long adjacent edges, and can be
recognized by the number of edges in bin 9. If a
neural network is accidentally trained to recognize



the number of non-buried atoms it will have an
estimate of the surface area and hence the size of
the protein. This is a problem because the average
size of low-resolution structures is larger than for
high-resolution.

When evaluating the packing cost of a structure,
the average atom packing costs of all atoms is re-
turned. Averaging over buried atoms only does not
significantly affect the packing cost, and since it
takes longer to determine which atoms are buried
than to calculate the atom packing cost of all
atoms, the latter is chosen. Averaging atom costs
is justified by inspecting the distribution of atom
packing costs. For most proteins this distribution
roughly follows a normal distribution which is
defined by an average and a standard deviation.

A training set, consisting of 3982 protein
structures, is retrieved from the PISCES
server [13] (pre-compiled data set id:
cullpdb pc40 res3.0 R1.0 d110218). No two
structures within this set have sequence similarity
higher than 40%. Half of the structures in the
training set, the high-resolution structures, have
a resolution less than 1.61Å. The other half,
the low-resolution structures, have a resolution
greater than 2.24Å. All chains that are not
specified by the PISCES server are disregarded
even though they appear in PDB-files necessary
for the test and training sets. Ligands and other
heterogeneous atoms (HETATM records) are
included and atoms with multiple occupancies
are filtered such that only the atom with highest
occupancy is included. Only chains with 50
amino acids or more are included. The training
set is the basis for all the choices made in the
packing cost method and it is used to train the
four neural networks.

A test set, consisting of 1838 protein structures,
is retrieved from the PISCES server such that no
two structures in the training set and the test set
have more than 40% sequence similarity. As in
the training set, half of the structures are high-
resolution and the other half are low-resolution.
The PDB-files are treated in the same way those
in the training set. The test set is used to determine
if the packing cost can successfully discriminate
between high- and low-resolution structures and
is also the basis for the timing experiments in the
Results section.

The CASP9 set, consisting of all 49899 protein
structures submitted to the CASP9 experiment, is
retrieved from predictioncenter.org. These struc-
tures are examples of computationally generated
structures similar to those used as examples of

bad packing in RosettaHoles2. This data set is
used to confirm the hypothesis that computational
structures are poorly-packed and to compare the
packing cost to the RosettaHoles2 cost.

III. RESULTS

The experiments seek to illustrate that the pack-
ing cost discriminates between well-packed and
poorly-packed structures as well as RosettaHoles2,
but does it faster.

The discriminatory power of the packing cost
is illustrated using distributions of packing costs.
Figure 1 shows distributions of packing costs for
high- and low-resolution structures in the test set
and for structures in the CASP9 set. Figure 2
shows similar distributions for the RosettaHoles2
cost.

The neural networks that determine the pack-
ing cost are trained to distinguish high-resolution
structures from low-resolution structures so it may
seem surprising that the corresponding distribu-
tions in Figure 1 are not completely separated.
The differences between high- and low-resolution
structures can be very subtle so sometimes the
packing cost will mis-categorize. As expected,
however, most high-resolution structures have a
lower packing cost than low-resolution structures
and the degree of misclassification is not worse
than that of the RosettaHoles2 cost, shown in
Figure 2.

Both the packing cost and RosettaHoles2
cost can separate high-resolution structures from
CASP9 structures with a high accuracy. This
is noteworthy because, unlike the RosettaHoles2
cost, the packing cost is not trained specifically to
classify computationally generated structures.

Figure 4. Typical example of a structure with very high
RosettaHoles2 cost.

The packing cost and RosettaHoles2 cost both
separate high-resolution structures from computer-
generated ones, but they may characterize different



Figure 1. Distributions of packing costs for proteins in the test set and the CASP9 set.

Figure 2. Distributions of RosettaHoles2 costs for proteins in the test set and the CASP9 set.

properties. Figure 3 shows a scatter-plot of Roset-
taHoles2 costs plotted against packing costs. The
main cluster of structures has RosettaHoles2 costs
between 1 and 3. Within this cluster there is a clear
linear correspondence between the packing cost
and the RosettaHoles2 cost (Pearson’s squared r
of 0.65). There are roughly 100 structures with a
RosettaHoles2 cost of more than 3.0. The majority
of these are non-globular chains, often with an
extended and exposed piece as shown in Figure 4.
It is not clear if such structures should be con-
sidered well-packed since they are not complete,
so it is chosen to disregard these. There are also
15 structures with RosettaHoles2 costs less than
1. It seems that ligands or residues marked as
’unknown’ are responsible for most of these, since
removing them causes the RosettaHoles2 cost to
increase above 1. These are disregarded as well.
It is noted that the packing cost is very robust
and never returns very extreme values. It is also
observed that for the majority of proteins, there

is a correlation between the packing cost and the
RosettaHoles2 cost.

To demonstrate the improved speed of our
method, the system time of the packing cost calcu-
lation is measured and displayed as a function of
the number of atoms in each structure (Figure 5).
The same is done for RosettaHoles2. Both pro-
grams are run on a MacBook 2GHz computer and
the timing is performed in the source code with
getrusage. Only the system time of the scoring
itself, and not, for example, the time to read the
PDB-file, is measured.

For the smallest proteins with less than 500
atoms, the packing cost is calculated between 3
and 4 times faster than the RosettaHoles2 cost.
For the larger proteins with roughly 6000 atoms,
the packing cost is calculated more than 5 times
faster. The computation that dominates out method
is finding the Delaunay complex. As mentioned
in the Methods section the insertion algorithm
uses the chain-structure of the protein to generate



Figure 3. Correlation between packing cost and RosettaHoles2 cost for proteins in the test set.

Figure 5. Timing of the packing cost and the RosettaHoles2 cost for proteins in the test set.

the Delaunay complex in expected linear time.
This fact is clearly reflected in the timing plot
on Figure 5. RosettaHoles2 uses the DAlphaBall
program [14], [15] to get the volumes of Voronoi
cells. As an intermediate step DAlphaBall finds
the Delaunay complex using an insertion and
flipping algorithm similar to ours, but it contains
a data structure for point-location which gives an
expected running time of O(n lg n) and does not
utilize the chain-structure of proteins.

The ultimate goal of having a fast characteriza-
tion of the packing cost is to include it as a term
in an energy function and improve the packing
quality of a protein structure computationally. For
a typical protein of ≈ 2000 atoms, the packing
cost is calculated in ≈ 200ms which, in theory,
is fast enough to do structure refinement on a
massively parallelized system. Furthermore there

are a number of ways to improve the speed of the
packing cost. Lui and Snoeyink [16], e.g., reports
a running time of the tess3 triangulation program
that is at least 3 times faster than our insertion
algorithm. Guibas and Russel [17] describes how
updating the Delaunay complex, after a subset of
the points have moved, can be performed faster
than recalculating the entire Delaunay complex.

A problem with the packing cost is that many
energy functions (Rosetta’s, for instance) require
their energy terms to be differentiable in order
to do fast updates of the energy. In its current
form the packing cost is not differentiable. One
of the main findings of this paper, however, is
that edge-lengths in the Delaunay complex char-
acterize packing just as well as the volume of
the Voronoi cells. Since the edge-lengths can
easily be differentiated with respect to vertex-



coordinates one can create a differentiable packing
cost measure by using a differentiable machine
learning method such as support vector machines
on distributions of edge-lengths.

IV. CONCLUSION

An estimate of the packing quality is useful
for computational refinement of protein structures.
A packing cost was developed and shown to
characterize the packing quality of proteins. It
was concluded that using edges of the Delaunay
complex for characterizing packing is just as ef-
ficient as using the Voronoi cells. The observed
improvements in speed over previous methods
makes it well suited for integration into an energy
function.
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