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ABSTRACT The results of the first Critical As-
sessment of Fully Automated Structure Prediction
(CAFASP-1) are presented. The objective was to
evaluate the success rates of fully automatic web
servers for fold recognition which are available to
the community. This study was based on the targets
used in the third meeting on the Critical Assessment
of Techniques for Protein Structure Prediction
(CASP-3). However, unlike CASP-3, the study was
not a blind trial, as it was held after the structures of
the targets were known. The aim was to assess the
performance of methods without the user interven-
tion that several groups used in their CASP-3 submis-
sions. Although it is clear that “human plus ma-
chine” predictions are superior to automated ones,
this CAFASP-1 experiment is extremely valuable for
users of our methods; it provides an indication of
the performance of the methods alone, and not of
the “human plus machine” performance assessed in
CASP. This information may aid users in choosing
which programs they wish to use and in evaluating
the reliability of the programs when applied to their
specific prediction targets. In addition, evaluation
of fully automated methods is particularly impor-
tant to assess their applicability at genomic scales.

For each target, groups submitted the top-ranking
folds generated from their servers. In CAFASP-1 we
concentrated on fold-recognition web servers only
and evaluated only recognition of the correct fold,
and not, as in CASP-3, alignment accuracy. Although
some performance differences appeared within each
of the four target categories used here, overall, no
single server has proved markedly superior to the
others. The results showed that current fully auto-
mated fold recognition servers can often identify
remote similarities when pairwise sequence search
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methods fail. Nevertheless, in only a few cases out-
side the family-level targets has the score of the
top-ranking fold been significant enough to allow
for a confident fully automated prediction. Be-
cause the goals, rules, and procedures of CAFASP-1
were different from those used at CASP-3, the re-
sults reported here are not comparable with those
reported in CASP-3. Nevertheless, it is clear that
current automated fold recognition methods can
not yet compete with “human-expert plus machine”
predictions.

Finally, CAFASP-1 has been useful in identifying
the requirements for a future blind trial of auto-
mated served-based protein structure prediction.
Proteins Suppl 1999;3:209-217. © 1999 Wiley-Liss, Inc.
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INTRODUCTION

Fold recognition addresses a subset of the more general
problem of prediction of the three-dimensional structure of
a protein from its amino acid sequence. Fold-recognition
methods search a library of known folds to find the most
compatible protein for a given target sequence of unknown
structure. The predictive power of such methods was
clearly demonstrated in blind tests, such as Critical Assess-
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ment of Techniques for Protein Structure Prediction (CASP-
3), where prediction targets were not known at the time
the predictions were made. Groups developing structure
prediction algorithms have made their methods available
to their potential users: scientists interested in seeking
structural insights for their particular research problems.
Several fold-recognition methods are currently available
to the community via web-servers. Assessing the perfor-
mance of fully automated methods provides users with
essential information about the methods’ capabilities and
limitations. Unfortunately, the CASP experiments have
assessed the performance of “human plus machine” only,
where the human part has usually been the expert devel-
oper of the method.

In this report, we demonstrate the performance of fully
automated fold-recognition methods on a set of sequences,
selected from the prediction targets of the CASP-3 experi-
ment. Most of us took part in this meeting and submitted
predictions, which in some cases are discussed in other
reports in this special issue of Proteins. Therefore, it is
important to stress the differences between results pre-
sented in this manuscript and those available on the
official CASP-3 web site and discussed in other manu-
scripts in this issue.

Results presented here were generated automatically by
web servers from submitted sequence data, with no human-
expert intervention involved. In this respect, predictions
presented here represent raw data that could be available
to any user of a fold prediction server. An expert could
easily improve such predictions, but his or her work often
includes steps that are difficult to describe in a quantita-
tive way and that are not easily reproducible. Such exper-
tise was used extensively for predictions presented at the
CASP-3 meeting. In many cases extensive work by groups
of several people was necessary to prepare a successful
prediction. Thus, it is not possible to measure from CASP-3
whether the success or failure of a group depended on the
program used alone or on the human expertise applied.
Someone lacking the exact specialized expertise in fold
prediction may not be able to reproduce many of the
predictions submitted at the CASP-3 meeting. On the
other hand, results in this study are obtained automati-
cally with no human intervention. Another difference
between the results presented here and those from CASP-3
is that for the latter, all the predictions were blind,
whereas in CAFASP-1 (which was carried out after the
CASP-3 meeting), the experimental structures of all but
four of the targets were already known. Thus, CAFASP-1
is not a blind experiment. In addition, because the goals of
CASP-3 and CAFASP-1 are different, the evaluation proce-
dures used were also different. Consequently, the results
shown here are not comparable with those reported in
CASP-3, nor should this article be regarded as CASP-3
compliant.

Our insistence on full automation of the fold-prediction
process is not meant to belittle or to cast any doubt on the
importance of the specialized expertise in fold predictions.
But for certain purposes, such as the evaluation and
comparison of various prediction algorithms and strate-

gies, it is useful to have fully automated and easily
reproducible methods. CAFASP-1 assesses the perfor-
mance of the methods only and not the performance of
humans using machines. This is what a non-expert user is
most interested in: “Which program(s) should I choose to
use in order to predict the structure of this new sequence,
and how much can I trust it?” And last, but not least, fully
automated methods are necessary to apply fold prediction
to large groups of protein sequences, such as those avail-
able from genome projects. CAFASP-1 attempts to provide
the wider community with an assessment of the capabili-
ties and limitations of current fold-recognition servers.

METHODS
The Automated Methods

Seven groups actively participated in CAFASP-1. Table I
lists for each group, in alphabetical order, the name of the
server evaluated, its url, and the corresponding reference;
Table IT summarizes the main characteristics of the serv-
ers.

The Targets

For CAFASP-1 we have used as benchmark for our
methods the CASP-3 targets. We have classified the tar-
gets into seven categories.

1. Targets with folds at SCOP’s family level

In this category we chose the five targets with lowest
sequence similarity to their corresponding folds from those
classified in CASP-3 as having homologs at the family level
according to SCOPY; the other family-level CASP-3 targets
were excluded from CAFASP-1 because they do not pose
any challenge to fold-recognition methods. The targets of
this category included in CAFASP-1 are T0055, T0057,
T0068, T0070, TO062 (for a full protein description, see the
assessors’ articles in this issue).

2. Targets with folds at SCOP’s superfamily level

These targets are T0074, T0081, T0083, T0063, T0053,
T0044, T0054, T0O085, TO080.

3. Targets with folds at SCOP’s fold level
These targets are T0046, T0071, T0043, T0067, T0059.

4. Multidomain targets

The domain boundaries for these targets were deter-
mined after the structures were known. Predictions for the
single domains were included in CAFASP-1 to evaluate
how performance on single domains changes. The domains
considered are T0083.1, T0063.1, T0063.2, T0071.1,
T0071.2, T0079.1, T0079.2 (the exact domain boundaries
used are available from the CAFASP-1 main web page at
http://www.cs.bgu.ac.il/~dfischer/cafaspl/cafaspl.html).

5. Targets of unknown fold

The structures of these targets have not yet been
determined, and thus they correspond to genuine blind
predictions: T0045, T0051, T0O072, T0078.
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TABLE I. The Groups Participating in CAFASP-1

Programs url Ref. Comments
3D-PSSM and (1D + http://bonsai.lif.icnet.uk/foldfitnew/index.html 19 Two methods, both accessible
3D)-PSSM from the same url
BASIC http:/cape6.scripps.edu/leszek/genome 23  The server is being moved to
the following address:
bioinformatics.burnham-
inst.org
frsvr_SDP, frsvr_SDPM, http://www.doe-mbi.ucla.edu/people/frsvr/submit.html and 8  Three methods run for each
frsvr_SDPMA2 http:/www.cs.bgu.ac.il/~bioinbgu submission
GenTHREADER http:/globin.bio.warwick.ac.uk/ psipred 4
Karplusl, Karplus2, http://www.cse.ucsc.edu/research/compbio/HMM-apps/model-library- 11  Three variants of the
Karplus3 search.html or /T98-query.html or /model-library-search.html 20 SAM-T98 method
pscan http://www.biokemi.su.se/~server/pscan/profscan2_gall.html 21
PSI-BLAST; BORK, http:/dove.embl-heidelberg.de/3D 172 Two servers running suppos-
NCBI http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-psi_blast 6 edly the same program
topits http://www.embl-heidelberg.de/predictprotein 22

aThe 3D server of the Bork group uses PSI-blast with an E-value threshold E = 0.001. It is thus reliable, but also rather conservative in its
predictions; it does not report homologies below the threshold. Thus, its results are not comparable to those of the other servers that always report
the top ranking hits, regardless of their scores. PSI-BLAST at NCBI does report below threshold hits, and like Bork’s server, the only correct hits

found were the five family-level targets plus target T0074.

6. Targets with new folds

These targets are T0052 and T0056. They were included
in CAFASP-1 for additional evaluation purposes (see be-
low).

7. Targets that could not be evaluated in CAFASP-1

We included in this category those CASP-3 targets for
which we found that our evaluation procedure could not be
applied (see below): T0061, T0075, T0077, TO079.

The Evaluation Method

In CAFASP-1 we were interested not only in fully
automated predictions, but also in fully automated evalua-
tion methods. We could not apply the exact evaluation
procedures used in CASP-3 because 1) CASP-3 evaluation
was not fully automated and 2) although many of the
programs used for CASP-3 evaluation are extremely valu-
able, we could not apply them on time for CAFASP-1
results. Given these limitations and strict time con-
straints, we adopted the following (more limited) evalua-
tion scheme. We expect that future CAFASP evaluations
will more closely resemble those used in CASP.

In CAFASP-1, we used an evaluation scheme that tested
only fold recognition, and not alignment quality. Each
server produced a list of top-scoring folds, and if the first
correct fold appeared at rank i, then 1/i points were
awarded. (This scoring scheme is similar to that used for
CASP-1 and other benchmarks.2) The rationale of this
scoring system is as follows: Suppose a program always
has the correct answer within the top i ranks; if only a
single answer is desired, then, on average, the correct fold
will be predicted with probability 1/i.

For structure prediction, evaluating the quality of the
sequence-structure alignments is critical, since fold-
recognition methods can in some cases produce poor
sequence-structure alignments. Unfortunately, for
CAFASP-1 evaluating alignments was not possible given

the time constraints. Thus, our evaluation procedure may
award points to predictions that in CASP-3 were consid-
ered incorrect. As progress in evaluation has been ob-
served from CASP-1 to CASP-2 and CASP-3, we hope that
for CAFASP similar progress will be observed and align-
ment quality will be properly assessed in CAFASP-2.

Another difficulty with this evaluation method is to
identify what is the list of “correct” hits for each target. For
the targets in category 1 (family-level) and 2 (superfamily-
level) there was almost no difficulty. Any PDB? chain with
the same fold type in SCOP as the target was considered a
correct hit; anything outside the fold type of the target was
considered to be wrong. The only exception was T0085,
which belongs to a “fold” in SCOP, which, according to
SCOP, is not a real fold, but only a collection of different
folds. Thus, for TO085 we only accepted as correct hits
those entries in T0085’s superfamily.

Because we used SCOP to determine what folds were to
be treated as correct, any reported hits that did not have a
SCOP classification were excluded from the ranking before
scoring.

In addition, we had to decide how to evaluate multido-
main targets (T0063, T0081, T0083, and T0079), each of
which has two domains. For the full-sequence tests, hits
belonging to the fold type of either domain were considered
correct. The separate domains of these targets were evalu-
ated in the domain-level category (see below).

Unfortunately, we had to exclude T0079 from the full-
sequence tests and include it only in the domain tests. As a
whole, it was not easy to select a single fold type as correct
for T0079; several fold types can be considered as good
hits, but only for the individual domains.

For the targets in category 3 (fold-level) we applied the
same criteria (accept as correct hits those entries classified
in SCOP as the same fold type). However, there were three
targets (T0077, T0061, and T0075) for which we could not
determine what single fold type should be considered as a



TABLE II. Summary of the Servers’ Characteristics

Input: single

sequence (SA) Uses predicted Algorithm Fold library (updatable
or multiple secondary Sequence-Structure to rank folds automatically (A) or with Other
alignment (MA) structure Y/N compatibility function and to align Gap regime human intervention (H)) Conf. threshold characteristics
3D-PSSM SA YES DSC (indirect =~ Match to multiple sequence PSSM  global regular open/ex- H nonredundant 40% <0.4is <5%errors  Born in 1998, pre-
use of multiple generated from 3D super- tend, end gaps from SCOP per query liminary version
alignments) position of superfamily mem- penalized used at CASP3
bers + secondary structure
(1D + 3D)-PSSM  SA As 3D-PSSM (i) 3D-PSSM results pooled with As 3D-PSSM as 3D-PSSM as 3D-PSSM as 3D-PSSM as 3D-PSSM
(ii) match to multiple sequence
PSSM generated from
sequences + secondary struc-
ture
BASIC SAexpanded to MA NO Profile to profile alignment (no Local alignment asin standard local ~H. Subset of PDB with Experimental: Experimental ver-
structural information) alignment 50% seq. id. E-value <1.0 and sion. Last server
Z-score above 7.0 update April
1998.
Gen THREADER SA NO THREADER2 distance dependent ~ Global Open + Ext (noend H, based on CATH Conf.: above n.a.
pair potentials and solvation penalties) 0.8 = 1% error
terms + neural net
frsvr_SDP SA YES, PHD (indirect Weighted predicted secondary Global—local for Regular open/ex- H. Nonredundant at 50% >7.00 very reliable, Born in 1996;
use of multiple structure combined with Gonnet ranking, local for tend seq. id. with multi- >5.00 interesting results of CASP3
alignments) table aligning top domains cut also into to look at based on frsvr.
ranks single domains
(>2,000 entries)
frsvr_ SDPMA MA, compiled by YES, as SDP Weighted predicted secondary as SDP as SDP H, as SDP Not yet assessed, As SDP
high hits with structure (as SDP) combined but >7.00 is reli-
single BLAST with the average scores from the able, and as SDP
search on multiply aligned sequences
SWISSPROT
frsvr_SDPMA2 MA, as SDPMA YES, as SDP As SDPMA As SDP As SDP plus special H, as SDP As SDPMA Born in 1998;
gaps for predicted experimental ver-
or observed loops sion
Karplus1 SA NO HMM made from template Local alignment Column-dependent Manually updated, based n.a. Uses only sequence
sequence using SAM-T98 sum-all-paths for affine gaps on FSSP, PDBselect, info
ranking, global and some hand-chosen
Viterbi for align- others
ments
Karplus2 Generates multiple  As Karplusl HMM made from target sequence  As Karplusl As Karplusl All of PDB, updated n.a As Karplusl
alignment using using SAM-T98 weekly
SAM-T98 method
Karplus3 Combines Karplusl As Karplusl Adds scores from Karplus1 and One of Karpluslor  As Karplusl Combines Karplusl and ~ See errorvs. score  As Karplusl
and Karplus2 Karplus2 Karplus2 Karplus2 in ref. 12
pscan SA N A combined seq-str compatibility Local Regular open/ex- Fold Library from 1996 Not tested Born in 1996; not
function using distance poten- tend (346 entries) updated since
tials as well as environment
terms
TOPITS SA YES (indirect use of Predicted 1D structure (secondary ~YES Regular open/ex- H zscore >4.5 => Results FULLY
alignment) structure, accessibility) com- tend 90% zscore >3.0 automatic;
bined with sequence informa- =>60% correct unchanged since
tion (McLachlan) first hits 1996; on WWW

since 1995
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TABLE III. Summary of the Results of CAFASP-1

Family (5.00) Superfamily (9.00) Fold (5.00) Subtotal (19.00) Domains (7.00) Total (26.00)

3D-PSSM 4.50/90% 2.25/25% 1.25/25% 8.00/42% 2.00/29% 10.00/38%
(1D + 3D)-PSSM 5.00/100% 2.50/28% 1.33/27% 8.83/46% 3.81/54% 12.64/49%
BASIC 5.00/100% 3.12/35% 1.58/32% 9.70/51% 3.50/50% 13.20/51%
frsvr_SDP 5.00/100% 2.60/32% 0.67/13% 8.27/44% 2.83/57% 11.10/43%
frsvr_SDPMA 5.00/100% 3.48/39% 1.00/20% 9.48/50% 4.78/68% 14.26/55%
frsvr_SDPMA2 5.00/100% 4.43/49% 0.79/16% 10.22/54% 4.60/66% 14.82/57%
GenThreader 5.00/100% 5.00/56% 1.11/22% 11.11/58% 2.79/40% 13.90/53%
Karplusl 5.00/100% 2.72/30% 2.06/41% 9.78/51% 2.44/35% 12.22/47%
Karplus2 5.00/100% 3.24/36% 1.10/22% 9.34/49% 3.10/44% 12.44/48%
Karplus3 5.00/100% 3.52/39% 1.62/32% 10.14/53% 3.30/47% 13.44/52%
pscan 4.00/80% 1.67/19% 1.00/20% 6.67/35% 2.08/30% 8.75/34%
PSI-BLAST-NCI 5.00/100% 1.00/11% 0.00/0% 6.00/32% —a —

PSI-BLAST-BORK 5.00/100% 1.00/11% 0.00/0% 6.00/32% — —

TOPITS 3.50/70% 2.00/22% 1.33/27% 6.83/36% — —

a— Domain results were not submitted for these servers.

"The numbers shown in parentheses represent the maximum attainable score in each column. The percentages shown after the “/” represent the
percentage of the maximum score. A detailed table including the normalized scores can be seen on our summary results web page at

http://www.cs.bgu.ac.il/~dfischer/cafaspl/results.html.

correct hit. In addition, the similarities of these targets to
known folds are weaker and do not cover the full se-
quences. Thus, we decided not to evaluate these targets
and place them together with T0079 into the category of
non-evaluated targets (category number 7; the results of
the automated methods on these targets are included in
the CAFASP-1 web page). The targets in category 7 can be
considered as not suitable for our simple evaluation method.

In category 4 we placed the domain predictions. Al-
though determining the exact boundaries of a domain
requires knowledge of the structure, we wanted to evalu-
ate our methods also on single domains. In many cases,
rough domain boundaries are also known from the se-
quence alone, as has been demonstrated in several cases in
the CASP-3 predictions. The evaluation criteria used here
was the same as for the above categories.

No evaluation was possible for category 5, as the struc-
tures of these targets are still unknown. Thus, our predic-
tions for these targets are truly blind predictions. When
the structures are released we will be able to evaluate
them.

Finally, the two targets considered to be novel folds were
placed in category 6. An ideal fold-recognition method
should be able to identify also new folds, or at least give a
very low score for the top-ranking fold. We filed predictions
for targets in this category to observe how high our
top-ranking fold scored for novel folds. This can be helpful
in setting confidence thresholds for the methods when
applied at larger scales (see below).

The lists of folds considered to be correct hits for each
target are included in the CAFASP-1 web page.

Normalized scores

To identify some of the remarkable predictions, that is,
good predictions for targets that few predictors did well on,
we applied the following normalization. Let S;; be the
score received by program i on target j (computed as one
divided by the rank of the first correct hit). Let T} be the

sum of scores for target j. We define the normalized score
as S; j #S; ;/T;. The larger the normalized score, the more
remarkable the prediction of program i for target  is.

The normalized scores did not change the overall rank-
ings of the programs by much, and so are not shown,
although the information is available on the main web
page and the summary results web page accessible from it.

The grading system

To allow for a detailed comparison of performance we
computed for each category and program a partial total of
the inverse-rank scores. For each category we observed
which programs obtained the highest total and subse-
quently added all the scores into an overall grade.

Reproducibility and Validity of the
Automated Results

We verified that the results reported here accurately
correspond to those that are obtained by the automated
programs. Most results were checked by at least one other
person (besides the developer of the program). Thus, a
reader can submit the sequence of any of the targets and
expect to obtain essentially the same results (excluding
the differences that will appear due to possibly updated
databases; as time passes, larger differences are likely to
appear; because of the addition of new structures and/or
intermediate sequences, some of the targets will become
easier to predict). All the programs included in CAFASP-1
are available freely through the internet.

RESULTS

Table III is a summary of the results by program and by
category. The individual inverse-rank scores by target and
program are available in the corresponding tables from
our main web page.
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Category 1: Family-Level Targets

Almost all methods did well on the five close homology
targets, although three methods had some trouble with
target T0O068 (see Table III and the results web page). To
really distinguish between the performance of the methods
in this category, evaluation of the alignments and scores is
needed (see Discussion).

Category 2: Superfamily-Level Targets

In this category, the two best-scoring programs (Gen-
Threader and SDPMA2) received 5.00 and 4.43 points,
respectively (column “SUPERFAMILY” in the table), out of
a possible maximum of 9.

GenThreader’s performance is remarkable in that its
5.00 points were obtained from correct predictions at
rank 1 in five targets (and zeroes in the other four);
fsrvr_SDPMAZ2 had correct hits in the top ten ranks for
eight of the nine targets, but only scored the correct hit
first for three of the targets.

GenThreader? uses a combination of traditional profile-
based sequence alignment, a set of threading potentials,®
and a neural network to evaluate the quality of the implied
structural model (see Table II). The profiles used here are
generated using PSI-BLAST.® For each sequence-struc-
ture alignment, the threading potentials are summed for
the implied model, and the energy sums and sequence
alignment score are presented to a neural network. The
neural network detects favorable combinations of energy
sums and alignment scores and has been trained on known
structural similarities found in the CATH structure classi-
fication database.” In the CASP-3 predictions made by the
Jones group, GenThreader was only used as a pre-filter to
detect superfamily matches. Apart from targets T0074,
T0083, and T0085, the GenThreader results were not
considered significant, and so most of the results were
arrived at using a full threading method.

frsvr_SDPMAZ2 is a variation of the SDP method previ-
ously described,® which takes as input a multiple align-
ment of sequences homologous to the target and the
predicted secondary structure given by PHD? (see Table
II). The sequence-to-structure compatibility function com-
bines 1) the sequence similarity between the multiple
alignment and the sequence of a protein of known struc-
ture with 2) the extent of agreement between the predicted
and the observed secondary structures. After CASP-3,
folds of newer (or C, only) PDB entries corresponding to
the best matches of some targets were added to the fold
library. For filing predictions for CASP-3, the Fischer
group used human intervention, and in some cases, the
fold obtained at rank 1 by frsvr was chosen.!? In other
cases, because the score of the rank 1 result was below a
confidence threshold, a different fold was chosen.

The highest normalized scores in this category were also
obtained by GenThreader and SDPMA2 for their correct
prediction at rank 1 of target T0085 (shown in the
CAFASP-1 web page). The second highest normalized
score was obtained by three programs (BASIC, Karplus2,
and Karplus3) in their correct identification at rank 1 for
target T0044.

Category 3: Fold-Level Targets

The results for category 3 are shown in column “FOLD”
of Table III. The best-performing methods were Karplusl
and Karplus3 with 2.06 and 1.62 points, respectively, out
of a possible maximum of 5. Clearly, the performance of our
methods in the “fold-level” targets is not as good as that in
the “superfamily” targets. The most outstanding result
when observing the normalized scores was obtained by
Karplusl on target T0043; it was the only program identi-
fying the correct fold at rank 1.

The Karplusl and Karplus3 methods are both SAM
methods.!! In SAM-T98 a hidden Markov model (HMM) is
constructed from a single sequence and homologs that are
found in a non-redundant protein database. The method
alternates between searching the database for homologs
using an HMM and realigning the homologs using Baum-
Welch!! training on the HMM. Only sequence information
is used, not structure information. All scoring with HMMs
was done with local scoring summing over all alignments.
For Karplus1, an HMM was built for each fold in the fold
library, and the target sequence scored against all the
HMMs. For Karplus3, the HMM scores for the template
and target methods were added. For CASP-3, hand-
selection among the top few hits and hand-realignment
was done, but subsequent analysis indicates that the fully
automatic method does about as well overall as modifica-
tion by hand.

It is interesting to notice that the best performers in this
category were methods based on sequence-information
alone. We have no explanation for this phenomenon, but,
for example, previous tests of the SAM-T98 method indi-
cated that it found the correct fold only when it found the
correct superfamily. One possible partial explanation is
that the SAM-T98 method relies on local alignment, so one
does not need to match the entire fold to find a match.
However, it is not possible to arrive at far-reaching conclu-
sions from a sample of only five test cases.

When computing the subtotal from categories 1-3 the
best performers are GenThreader, SDPMA2, and Karplus3
with 11.11, 10.22, and 10.14 points, respectively (column
SUBTOTAL in Table IIT). These are the same top three as
for the superfamily category alone, which contributes most
of the variation between inverse-rank scores.

Category 4: Domain Targets

This category does not strictly belong to a fully auto-
mated context because determination of the domain bound-
aries required previous knowledge. Nevertheless, because
in an actual prediction experiment it is often suspected
what the boundaries are, we also tested our programs
using the exact domain definitions. In this category the
best performers were SDPMA and SDPMAZ2 with 4.78 and
4.60 points, respectively, out of a maximum of 7.00. The
SDPMA methods identified the correct fold in rank 1 for
four targets and in rank 2 for one target. The next best
performer in this category was 1- and 3-dimensional
position specific substitution matrix [(1D + 3D)-PSSM]
with 3.81 points.
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Fold recognition by 3D-PSSMs uses the SCOP database
to identify remote homologues that are superposed in
three-dimensions to obtain sequence alignments that could
not be obtained from sequence alone. In addition, sequence-
based profiles are generated to form 1D-PSSMs. The fold
library consists of representative protein <40% identity
from the SCOP. The search algorithm is a global dynamic
programming algorithm with predicted secondary struc-
ture for the probe being matched with experimental second-
ary structure of the template. In 1D-3D-PSSMs, searches
are made with the 1D- and the 3D-PSSMs, and the results
are pooled and sorted by expectation E-value. The algo-
rithms have been extensively developed since they were
used at CASP-3.

The most remarkable normalized score achieved in this
category was obtained by BASIC on target T0071.2. BASIC
identified the correct fold at rank 2, whereas only two
other methods had the correct fold at ranks 8 or higher.
The next most remarkable normalized result was obtained
by SDPMA and SDPMAZ2 for identifying the correct fold of
target T0063.1 in rank 2, whereas only one other method
had the correct fold at rank 9.

Clearly, knowing the exact domain boundaries of a
target sequence contributes significantly to the perfor-
mance of most methods. For example, for T0083, four
methods did better when given the correct domain; for
T0063, six methods did better and one worse on the
domains; and for T0071, nine methods did better on the
domains.

Total Scores Over all Categories

When summing up all scores from all four categories, the
top programs are SDPMA2, SDPMA, GenThreader, and
Karplus3 with 14.82, 14.26, 13.90, and 13.44 points,
respectively. There is no evaluation for targets in catego-
ries 5-7, but the automated predictions submitted can be
seen on our main web page.

Selectivity of the Methods

In addition to the sensitivity of the methods (i.e., the
number of correct predictions), we have analyzed their
selectivities. For a given threshold score s, we define
selectivity here as the number of true-positives at rank 1
with scores better than s (in other words, the number of
predictions in which the fold at rank 1 was the correct fold,
and its score was better than s). To this end, for each
method we compiled its rank 1 predictions, including the
two targets with new folds (category 6). Then we set three
threshold scores, Thl, Th2, and Th3 (different for each
method), corresponding to the scores of the first, second,
and third rank 1 wrong predictions (i.e., false-positives),
respectively. Finally, we counted the number of rank 1
true-positives with scores above Th1, Th2, and Th3, (shown
in Table IV). We excluded from the true-positives count the
five family-level targets (category 1; the number of rank 1
correct predictions above Th1 within category 1 is shown
separately in the last column of the table). The magnitude
of the scores of each method vary depending on the scoring
system used. For some methods a large positive score is a

TABLE IV. Selectivity of the Methods"

Family-level

Thl/ Th2/ Th3/ trues

trues trues trues above Thl
Karplus1 —-18.9/0 —13.70 —12.6/0 4
Karplus2 —-11.9/2 —8.1/3 —17.8/3 5
Karplus3 —29.9/2 —12.6/3 —9.2/7 4
frsvr_SDP 5.81/0 5.28/0 5.24/0 5
frsvr_SDPMA 7.77/0 5.83/0 5.65/0 4
frsvr_SDPMA2 5.88/0 5.03/1 4.70/2 5
GenTHREADER 0.76/3 0.69/5 0.58/5 5
3D-PSSM 0.54/1 0.61/1 0.61/1 2
(1D + 3D)-PSSM 0.43/1 0.68/2 0.71/3 3
BASIC 34.8/0 25.6/0 6.11/7 5
Topits 4.71/0 4.67/0 4.25/0 2
pscan 10.2/0 8.07/1 6.52/2 4

In CAFASP-1, a perfect selectivity would be 21 “trues” above Th1 (as
well as above Th2 and Th3) plus five family-level “trues.” An illustra-
tion on how to read the table is given for GenTHREADER: Of the 28
rank-1 predictions evaluated (26 targets with known folds + 2 targets
with novel folds), GenTHREADER’s first and second false-positives
had scores of 0.76 and 0.69, respectively; excluding the five family-
level targets, three of its rank1 predictions had scores above 0.76 (and
all three were correct), and six of its rankl predictions had scores
above 0.69 (of which five were correct).

good result, and for the others, a large negative number is
a good result. Increasing or decreasing values of Th1, Th2,
and Th3 give an indication as to what is considered a
better score for each method. Confidence thresholds help
the user of an automated method to determine the reliabil-
ity of a prediction. Table IV shows that for the CASP-3
targets, the selectivities of the methods were not high and
that no method is able to predict much beyond the family-
level targets. The implications of this to automated fold
recognition are further discussed below.

DISCUSSION

At the very outset it is important to emphasize the
difficulty in comparing the servers’ results shown here in
CAFASP-1 with those from fold recognition in CASP-3.
First and foremost, CASP-3 was a blind trial, and any
work carried out in retrospect is not. CAFASP-1 must be
considered as an exercise in benchmarking rather than
verifiable blind prediction. Second, in the CASP-3 experi-
ment, although up to five predictions could be submitted,
only the first model was actually assessed. Third, for
multidomain targets results were submitted also for the
individual domains according to the boundaries apparent
from the observed 3D structure. Finally, in CASP-3 the
evaluation considered alignment accuracy in addition to
fold assignment. Without consideration of alignment accu-
racy it is quite possible that some of the predictions
assumed to be correct in CAFASP-1 may produce very poor
models, even to the extent that the correct domain match
may be missed entirely. In such cases it may be assumed
that the correct fold has been found mostly by chance.

Not every aspect of CASP-3 is ideal, however. Submis-
sions in CASP-3 often included manual input based on
structural or functional interpretation of the results of
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algorithms. For example, given that a particular target
was known to bind DNA, groups were quite free to ignore
any highly ranked fold which was not also known to bind
DNA. In CASP-2, the best fold-recognition results were
entered by a group that did not use a fold-recognition
algorithm, but instead relied entirely on evolutionary
inferences based on the known function of the target
proteins.’2 In CAFASP-1, however, the fold assignments
have been made exclusively by automatic servers, without
any human interpretation of the results.

Accepting the fact that CAFASP-1 was not a blind test,
entrants in CAFASP-1 were permitted to augment their
template libraries with an entry from a recently deposited
set of protein coordinate entry if that was required to
ensure there was a correct hit in their library (although
not all the participants took the opportunity to augment
their libraries). The evaluation process excluded newer
entries that are not included in the latest release of the
SCOP database, which roughly corresponds to the struc-
tures available at the time CASP-3 predictions were filed.
The object of CAFASP-1 was to evaluate the algorithms
and not how recently each group had updated their fold
libraries. Of course, in real applications, the ease of
updating the library is an important aspect of the utility of
each method. Clearly a server which is frequently updated
will have a significant advantage over a server using an
out-of-date template library. Furthermore, entrants have
been able to further develop their methods over the 6
months since the last CASP-3 prediction deadline.

One of the conclusions from this study is that no single
approach is markedly superior to the others evaluated
when considered across the entire range of targets. Some
methods performed better at the superfamily level, others
at the domain level. As in CASP-3, all methods in
CAFASP-1 performed poorly at the fold-level category; the
differences between the methods in this category may not
be statistically significant. However, the relatively small
number of targets does not allow to draw more general
conclusions.

It is important to stress that this work does not attempt
to show that automated predictions are better than “hu-
man-expert plus machine” predictions. We believe that a
knowledgeable human will—for the foreseeable future—do
better (when using his expertise and time to interpret the
automated method’s results) than the automated method’s
results alone. Assessing the performance of automated
methods is of utmost importance to evaluate their applica-
bility at genomic scales (see below). CAFASP-1 results do
show that automated fold recognition methods perform
better than automated pairwise sequence alignment, but
for many of the harder cases, the scores may not be
significant enough to allow a user to distinguish true- from
false-positives.

One limitation with the variety of methods tested in
CAFASP-1 is that no results have been included from pair
potential-based threading methods (e.g., refs. 13, 14). Most
of such threading methods are not available as servers, but
are distributed as stand-alone software packages which
must be installed on the user’s own machine. In the

assessment of fold-recognition results in CASP-3, three of
the six groups selected to present their results made use of
this type of fold recognition (see their corresponding
reports in this issue). Unlike the classic potential-based
threading methods, all of the methods in CAFASP-1
explicitly make use of the sequence information in one
form or another. Several of the methods in CAFASP-1,
including the top performers, also incorporate some struc-
tural information from the available coordinates. To what
extent their superior performance stems from their use of
structural information or from other factors (such as better
alignment algorithms or better statistical scoring mea-
sures) remains to be determined.

One area in which the CAFASP-1 results are of particu-
lar interest is that of structural genomics. Automated
approaches for fold recognition are essential if the wealth
of data in genomes is to be exploited (e.g., refs. 15—-17 and
18 for a recent review). One important aspect of genomic
fold assignment, however, is that folds must be assigned
with a high degree of confidence. Even if a method
frequently ranks correct folds in top place, if the scores for
these matches are not significant then the results will be of
little use for genome annotation. To assess this aspect of
fold assignment it is necessary to evaluate how well a
method discriminates correct match scores from incorrect
ones. Table IV shows that automatic fold-recognition meth-
ods are just beginning to discriminate correct from incor-
rect matches. Although a number of true-positives were
identified above the first false-positive threshold (Thl),
their scores do not necessarily lie above the methods’
recommended confidence thresholds (see last column of
Table II). A major conclusion from CAFASP-1 is that
improvements in this aspect are required to allow a much
wider applicability of automated fold-recognition methods
at a genomic scale.

Beyond genome analysis, automated fold recognition
servers enable the wider community ready access to the
software. It is therefore essential that the accuracy of
automatic methods of fold recognition are evaluated to
allow users to decide which methods are most reliable. As a
byproduct of CAFASP-1, we are planning to make avail-
able a “CAFASP meta-server,” which will allow users to
submit a sequence and automatically receive the results
from the servers evaluated in CAFASP. The CASP experi-
ment has already highlighted the value of blind trials; of
course this must be extended to CAFASP. Although the
results discussed here are not from a blind trial, we
consider that one important aspect of this study is to
explore what kind of strategy is required for comparative
blind trials of automated structure prediction. Although
CAFASP-1 concentrated on a limited evaluation of fold-
recognition methods, we intend for CAFASP-2 to perform a
more comprehensive evaluation and to include automatic
assessment of the two other major categories of protein
prediction, namely homology modeling and ab-initio meth-
ods. This will provide the community with valuable in-
sights into the abilities and limitations of automated
protein structure prediction.
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