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ABSTRACT

Big data analytical systems, such as MapReduce, perform aggressive
materialization of intermediate job results in order to support fault tol-
erance. When jobs correspond to exploratory queries submitted by
data analysts, these materializations yield a large set of materialized
views that we propose to treat as an opportunistic physical design.
We present a semantic model for UDFs that enables effective reuse
of views containing UDFs along with a rewrite algorithm that prov-
ably finds the minimum-cost rewrite under certain assumptions. An
experimental study on real-world datasets using our prototype based
on Hive shows that our approach can result in dramatic performance
improvements.

1. INTRODUCTION

Data analysts have the crucial task of analyzing the ever increasing
volume of data that modern organizations collect in order to produce
actionable insights. As expected, this type of analysis on big data
is highly exploratory in nature and involves an iterative process: the
data analyst starts with an initial query over the data, examines the
results, then reformulates the query and may even bring in additional
data sources, and so on [9]. Typically, these queries involve sophis-
ticated, domain-specific operations that are linked to the type of data
and the purpose of the analysis, e.g., performing sentiment analysis
over tweets or computing network influence. Because a query is often
revised multiple times in this scenario, there can be significant overlap
between queries. There is an opportunity to speed up these explo-
rations by reusing previous query results either from the same analyst
or from different analysts performing a related task.

MapReduce (MR) has become a de-facto tool for this type of anal-
ysis. It offers scalability to large datasets, easy incorporation of new
data sources, the ability to query right away without defining a schema
up front, and extensibility through user-defined functions (UDFs). An-
alyst queries are often written in a declarative query language, e.g.,
HiveQL or PiglLatin, which are automatically translated to a set of
MR jobs. Each MR job involves the materialization of intermediate
results (the output of mappers, the input of reducers and the output of
reducers) for the purpose of failure recovery. A typical Hive or Pig
query will spawn a multi-stage job that will involve several such ma-
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terializations. We refer to these execution artifacts as opportunistic
materialized views.

We propose to treat these views as an opportunistic physical de-
sign and to use them to rewrite queries. The opportunistic nature of
our technique has several nice properties: the materialized views are
generated as a by-product of query execution, i.e., without additional
overhead; the set of views is naturally tailored to the current work-
load; and, given that large-scale analysis systems typically execute a
large number of queries, it follows that there will be an equally large
number of materialized views and hence a good chance of finding a
good rewrite for a new query. Our results indicate the savings in query
execution time can be dramatic: a rewrite can reduce execution time
by up to an order of magnitude.

Rewriting a query using views in the context of MR involves a
unique combination of technical challenges that distinguish it from the
traditional problem of query rewriting. First, the queries and views
almost certainly contain UDFs, thus query rewriting requires some
semantic understanding of UDFs. These MR UDFs for big data anal-
ysis are composed of arbitrary user-code and may involve a sequence
of MR jobs. Second, any query rewriting algorithm that can utilize
UDFs now has to contend with a potentially large number of opera-
tors since any UDF can be included in the rewriting process. Third,
there can be a large search space of views to consider for rewriting due
to the large number of materialized views in the opportunistic physical
design, since they are almost free to retain (storage permitting).

Recent methods to reuse MR computations such as ReStore [6] and
MRShare [21] lack any semantic understanding of execution artifacts
and can only reuse/share cached results when execution plans are syn-
tactically identical. We strongly believe that any truly effective so-
lution will have to a incorporate a deeper semantic understanding of
cached results and “look into” the UDFs as well.

Contributions. In this paper we present a novel query-rewrite algo-
rithm that targets the scenario of opportunistic materialized views in an
MR system with queries that contain UDFs. We propose a UDF model
that has a limited semantic understanding of UDFs, yet enables effec-
tive reuse of previous results. Our rewrite algorithm employs tech-
niques inspired by spatial databases (specifically, nearest-neighbor
searches in metric spaces [12]) in order to provide a cost-based in-
cremental enumeration of the huge space of candidate rewrites, gen-
erating the optimal rewrite in an efficient manner. Specifically, our
contributions can be summarized as follows:

e A gray-box UDF model that is simple but expressive enough to
capture a large class of MR UDFs that includes many common
analysis tasks. The UDF model further provides a quick way to
compute a lower-bound on the cost of a potential rewrite given
just the query and view definitions. We provide the model and the
types of UDFs it admits in Sections 3—4.

e A rewriting algorithm that uses the lower-bound to (a) gradually
explode the space of rewrites as needed, and (b) only attempts a
rewrite for those views with good potential to produce a low-cost
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rewrite. We show that the algorithm produces the optimal rewrite
as well as finds this rewrite in a work-efficient manner, under cer-
tain assumptions. We describe this further in Sections 6-7.

e An experimental evaluation showing that our methods provide ex-
ecution time improvements of up to an order of magnitude using
real-world data and realistic complex queries containing UDFs.
The execution time savings of our method are due to moving much
less data and avoiding the high expense of re-reading data from
raw logs when possible. We describe this further in Section 8.

2. PRELIMINARIES

Here we present the architecture of our system. We first briefly
describe its components and how they interact with one another. We
then provide the notations and problem definition.

2.1 System Architecture

Figure 1 provides a high level overview of our system and its com-
ponents. Our system is built on top of Hive, and queries are written in
HiveQL. Queries are posed directly over log data stored in HDFS. In
Hive, MapReduce UDFs are given by the user as a series of Map or
Reduce jobs containing arbitrary user code expressed in a supported
language such as Java, Perl, Python, etc. To reduce execution cost,
our system automatically rewrites queries based on the existing views.
A query execution plan in Hive consists of a series of MR jobs, and
each MR job materializes its output to HDFS. As Hive lacks a mature
query optimizer and cannot cost UDFs, we implemented an optimizer
based on the cost model from [21] and extended it to cost UDFs, as
described later in Section 4.2.

During query execution, all by-products of query processing (i.e.,
the intermediate materializations) are retained as opportunistic mate-
rialized views. These views are stored in the system (space permitting)
as the opportunistic physical design.

The materialized view metadata store contains information about
the materialized views currently in the system such as the view defini-
tions and standard data statistics used in query optimization. For each
view stored, we collect statistics by running a lightweight Map job that
samples the view’s data. This constitutes a small overhead, but as we
show experimentally in Section 8, this time is a small fraction of query
execution time.

The rewriter, presented in Section 6, uses the materialize view meta-
data store to rewrite queries based on the existing views. To facilitate
this, our optimizer generates plans with two types of annotations on
each plan node: (1) the logical expression of its computation (Sec-
tion 3.2) and (2) the estimated execution cost (Section 4.2).

The rewriter uses the logical expression in the annotation when
searching for rewrites for each node in the plan. The expression con-
sists of relational operators or UDFs. For each rewrite found during
the search, the rewriter utilizes the optimizer to obtain an estimated
cost for the rewritten plan.

2.2 Notations

W denotes a plan generated by the query optimizer, which is rep-
resented as a DAG containing n nodes, ordered topologically. Each
node represents an MR job. We denote the i*" node of W as NODE;,
¢ € [1,n]. The plan has a single sink that computes the result of the

query; under the topological order assumption the sink is NODE,,. W;
is a sub-graph of W containing NODE; and all of its ancestor nodes.
We refer to W; as one of the rewritable targets of plan W. As is stan-
dard in Hive, the output of each job is materialized to disk. Hence, a
property of W; is that it represents a materialization point in W. In
this way, materializations are free except for statistics collection. An
outgoing edge from NODEy to NODE; represents data flow from & to
1. V is the set of all opportunistic materialized views in the system.

We use COST(NODE;) to denote the cost of executing the MR job
at NODE;, as estimated by the query optimizer. Similarly, COST(W;)
denotes the estimated cost of running the sub-plan rooted at W;, which
is computed as COST(W:) = > yNopE, ew, COST(NODER).

We use r; to denote an equivalent rewrite of target W; iff r; uses
only views in V' as input and produces an identical output to W;, for
the same database instance D. A rewrite 7™ represents the minimum
cost rewrite of W (i.e., target W7,).

2.3 Problem Definition

Given these basic definitions, we introduce the problem we solve in
this paper.

Problem Statement. Given a plan W for an input query q, and a
set of materialized views V, find the minimum cost rewrite v of W.

Our rewrite algorithm considers views in V' during the search for
r*. Since some views may contain UDFs, for the rewriter to uti-
lize those views during its search, some understanding of UDFs is
required. Next we will describe our UDF model and then present our
rewrite algorithm that solves this problem.

3. UDF MODEL

Since big data queries frequently include UDFs, in order to reuse
previous computation in our system effectively we desire a way to
model MR UDFs semantically. If the system has no semantic under-
standing of the UDFs, then the opportunities for reuse will be limited
— essentially the system will only be able to exploit cached results
when one query applies the exact same UDF to the exact same input as
aprevious query. However, to the extent that we are able to “look into”
the UDFs and understand their semantics, there will be more possibil-
ities for reusing previous results. In this section we propose a UDF
model that allows a deeper semantic understanding of MR UDFs. Our
model is general enough to capture a large class of UDFs that includes
classifiers, NLP operations (e.g., taggers, sentiment), text processors,
social network (e.g., network influence, centrality) and spatial (e.g.,
nearest restaurant) operators. As an example, we performed an em-
pirical analysis of two real-world UDF libraries, Piggybank [22] and
DataFu [5]. Our model captures about 90% of the UDFs examined: 16
out of 16 Piggybank UDFs, and 30 out of 35 DataFu UDFs as detailed
in [17]. Of course, we do not require the developer to restrict herself
to this model; rather, to the extent a query uses UDFs that follow this
model, the opportunities for reuse will be increased.

3.1 Modeling a UDF

UDF
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Figure 2: A UDF composed of local functions (If1, If2, - - -, If«),
showing the end-to-end transformation of input to output.

We propose a model for UDFs that allows the system to capture a
UDF as a composition of local functions as shown in Figure 2, where
each local function represents a map or reduce task. The nature of
the MR framework is that map-reduce functions are stateless and only
operate on subsets of the input, i.e., a single tuple or a single group of
tuples. Hence, we refer to these map-reduce functions as local func-



tions. A local function can only perform a combination of the follow-
ing three types of operations performed by map and reduce tasks.

1. Discard or add attributes, where an added attribute and its values
may be determined by arbitrary user code

2. Discard tuples by applying filters, where the filter predicates may
be performed by arbitrary user code

3. Perform grouping of tuples on a common key, where the grouping
operation may be performed by arbitrary user code

The end-to-end transformation of a UDF is obtained by compos-
ing the operations performed by each local function /f in the UDF.
Our model captures the fine-grain dependencies between the input and
output tuples in the following way.

The UDF input is modeled as (A, F, K) where A is the set of at-
tributes, I is set of filters previously applied to the input, and K
is the current grouping of the input, which captures the keys of the
data. The output is modeled as (A’, F’, K') with the same semantics.
Our model describes a UDF as the transformation from (A, F, K) to
(A’, F', K') as performed by a composition of local functions using
operation types (1) (2) (3) above. Figure 2 shows how to semantically
model a UDF that takes any arbitrary input represented as A, F, K
and applies local functions to produce an output that is represented as
A',F',K'. Additionally, for any new attribute produced by a UDF
(in the output schema A’), its dependencies on the input (in terms
of A, F, K) are recorded as a signature along with the unique UDF-
name. Note that since the model only captures end-to-end transfor-
mations, for a UDF containing multiple internal jobs (e.g., the local
functions in Figure 2), the system only retains the final output but not
the intermediate results of local functions.

The model also captures UDFs that take multiple inputs, which is
similar to the single input case shown in Figure 2. For example, a
UDF that combines 2 inputs on a common key (similar to an equi-
join) can be described in the following way. The inputs { A1, F1, K1}
and { A, F», K>} produce an output { A, F;, K s} such that: A is
the union of A; and A, F; is the conjunction of the filters F, F> and
the join condition, and K ; is K; union K> intersected with the join
attributes. Note that the model only concerns itself with the end-to-end
transformation of the inputs to the outputs, the actual implementation
of an operator is not captured by the model.

// T1 is input table, TR is output table
// user_id, tweet_text are input attributes, threshold is a UDF parameter
// sent_sum is an output attribute whose dependencies are recorded
UDF_FOODIES (T1, TR, user_id, tweet_text, threshold) {
CREATE TABLE T2 (user_id, sent._sum) FROM T1 (a)
MAP user_id, text USING “hdfs://udf-foodies-1f1.pl”
AS user_id, sent_score CLUSTER BY user_id
REDUCE user_id, sent_score, threshold USING “hdfs://udf-foodies-1fR.pl”
AS (user_id, sent_sum)
I]JDF model for UDF_FOODIES: (b)
A={user_id, tweet_text, ...}, F= {f}, K = {k}

A={user_id, sent_sum}, F’ = {f} U{sent_sum > threshold}, K’ = {user_id}
Sig. of new attribute sent_sum = {UDF_FOODIES, user_id, tweet_text,{f},{k}}

Figure 3: UDF_FOODIES a) implementation composed of two lo-
cal functions, b) UDF model showing the end-to-end transforma-
tion of input to output.

As an example, consider UDF_FOODIES that applies a food senti-
ment classifier on tweets to identify users that tweet positively about
food. An abbreviated HiveQL definition of the UDF is given in Fig-
ure 3(a) that invokes the following two local functions If; and Ifz
written in a high-level language (Perl in this example). 1f;: For each
(user_id, tweet_text), apply the food sentiment classifier func-
tion that computes a sentiment value for each tweet about food. 1fs:
For each user_id, compute the sum of the sentiment values to pro-
duce sent_sum, then filter out users with a total score greater than
a threshold. Although the filter in this example is a simple com-

// Extract tweet_id, user_id and tweet_text from twitter log
CREATE TABLE TI
SELECT tweet_id, user_id, tweet_text ( a )
FROM large_twitter_log;

// Create table T2 containing sent_sum for each user_id
UDF_FOODIES(T1I, T2, user_id, tweet_text, 0.5)

// Join T1 and TR to produce Result
CREATE TABLE Result
SELECT TR.user_id, Foo.count, TR.sent_sum FROM T&,
(SELECT user_id, COUNT(*) AS count FROM T1
GROUP BY user_id) AS Foo
WHERE Foo.user_id = TR.user_id AND Foo.count > 100;

large_twitter_log

(b)

A={tweet_id, user_id, tweet_text}
F={}
K={tweet_id}

PROJECT

IGROUPBY—COUNTI I UDF_FOODIES I

A’={user_id, count} A’={user_id, sent_sum}
F={} F’={sent_sum > 0.5}
K”={user_id} K’={user_id}

A={user_id, count, sent_sum}
F’’={sent_sum > 0.5, count > 100}
K’={user_id}

Figure 4: (a) Example query to obtain prolific foodies, and (b)
corresponding annotated query plan.

parison operator, as noted above in (2) the filter expression may be
a function containing arbitrary user code (i.e., a UDF) and may even
contain a nesting of UDFs.

The two local functions correspond to arbitrary user code that per-
form complex text processing tasks such as parsing, word-stemming,
entity tagging, and word sentiment scoring. Yet, the UDF model suc-
cinctly captures the end-to-end transformation of this complex UDF
as shown in Figure 3(b). In the figure, the end-to-end transformation
of UDF_FOODIES is captured by recording the changes made to the
input A, I and K by the UDF functions that produces A’, F’ and K’
using a simple notation. Furthermore, for the new attribute sent_—
sum in A’, its dependencies on the subset of the inputs are recorded.
We provide a more concrete example of the application of the UDF
model in a HIVEQL query in Section 3.2. In this way, the model en-
codes arbitrary user-code representing a sequence of MR jobs, by only
capturing its end-to-end transformations.

Our approach represents a gray-box model for UDFs, giving the
system a limited view of the UDF’s functionality yet allowing the sys-
tem to understand the UDF’s transformations in a useful way. In con-
trast, a white-box approach requires a complete understanding of how
the transformations are performed, imposing significant overhead on
the system. While with a black-box model, there is very little over-
head but no semantic understanding of the transformations, limiting
the opportunity to reuse any previous results.

3.2 Applying the UDF Model and Annotations

Having presented our model for UDFs, we now show how to use
it to annotate a query plan that contains both UDFs and relational op-
erators. In Figure 4(a), we show a query that uses Twitter data to
identify prolific users who talk positively about food (i.e., “foodies”).
The query is expressed in a simplified representation of HiveQL and
applies UDF_FOODIES from Figure 3(a) that computes a food senti-
ment score (sent_sum) per user based on each user’s tweets.

The HiveQL query is converted to an annotated plan as shown in
Figure 4(b) by utilizing the UDF model of UDF_FOODIES as given in
Figure 3(b). In addition to modeling UDFs, the three operations types
(denoted as 1, 2, 3 above) can also be used to characterize standard
relational operators such as select (2), project (1), join (2,3), group-



by (3), and aggregation (3,1). Joins in MR can be performed as a
grouping of multiple relations on a common key (e.g., co-group in
Pig) and applying a filter. Similarly, aggregations are a re-keying of
the input (reflected in K”) producing a new output attribute (reflected
in A"). These A, F, K annotations can be applied to both UDFs and
relational operations, enabling the system to automatically annotate
every edge in the query plan.

Figure 4(b) shows the input to the UDF is modeled as
(A={user_id, tweet_id, tweet_text}, F=0, K=tweet_-
id). The output is (A’={user_id, sent_sum}, F'=sent_-
sum > 0.5, K'=user_id). UDF_FOODIES produces the new at-
tribute sent_sum whose dependencies are recorded (i.e., signature)
as: (A={user_id, tweet_text}, F=0, K=tweet_id, udf -
name=UDF_FOODIES). Lastly, as shown in Figure 4(b), the output
of the UDF (A’, F’, K") forms one input to the subsequent join oper-
ator, which in turn transforms its inputs to the final result.

This example shows how a query containing a UDF with arbitrary
user code can be semantically modeled. The A, F, K properties are
straightforward and can be provided as annotations by the UDF cre-
ator with minimal overhead, or alternatively they may be automati-
cally deduced using a static code analysis method such as [13], which
is an emerging area of research.  In this paper, we rely on the UDF
creator to provide annotations, which is a one-time effort. From our
experience evaluating the two UDF libraries [5,22] it took less than 10
minutes per UDF to examine the code and determine the annotations.

As noted earlier, our model is expressive enough to capture a large
class of common UDFs. Two classes of UDFs not captured by our
model, as noted in [17], are: (a) non-deterministic UDFs such as those
that rely on runtime properties (e.g., current time, random, and stateful
UDFs) and (b) UDFs where the output schema itself is dependent upon
the input data values (e.g., pivot UDFs, contextual UDFs).

4. USING THE UDF MODEL TO PERFORM
REWRITES

Our goal is to leverage previously computed results when answering
a new query. The UDF model aids us in achieving this goal in three
ways, as described in the following three sections. First, it provides a
way to check for equivalence between a query and a view. Second, it
aids in the costing of UDFs. Third, it provides a lower-bound on the
cost of a potential rewrite.

4.1 Equivalence Testing

The system searches for rewrites using existing views and can test
for semantic equivalence in terms of our model. We consider a query
and a view to be equivalent if they have identical A, ' and K prop-
erties. If a query and a view are not equivalent, our system considers
applying transformations (sometimes referred to as compensations) to
make the existing view equivalent to the query.

Here we develop the mechanics to test if a query ¢ (i.e., a target in
the annotated plan) can be rewritten using an existing view v. Query
q can be rewritten using view v if v contains q. The containment
problem is know to be computationally hard [2] even for the class of
conjunctive queries, hence we make a first guess that only serves as a
quick conservative approximation of containment. This conservative
guess allows us to focus computational efforts toward checking con-
tainment on the most promising previous results and avoid wasting
computational effort on less promising ones.

We provide a function GUESSCOMPLETE(q, v) that performs this
heuristic check. GUESSCOMPLETE(q,v) takes an optimistic ap-
proach, representing a guess that v can produce a complete rewrite of
q. This guess requires the following necessary conditions as described
in [10] (SPJ) and [7] (SPJGA) that a view must satisfy to participate
in a complete rewrite of q.

(1) v contains all attributes required by g; or contains all necessary
attributes to produce those attributes in g that are not in v

(i1) v contains weaker selection predicates than g
(iii) w is less aggregated than ¢

The function GUESSCOMPLETE(q, v) performs these checks and
returns true if v satisfies the properties i—iii with respect to q. Note
these conditions under-specity the requirements for determining that a
valid rewrite exists, as they are necessary but not sufficient conditions.
Thus the guess may result in a false positive, but will never result in a
false negative. The purpose of GUESSCOMPLETE(g, v) is to provide
a quick way to distinguish between views that can possibly produce a
rewrite from views that cannot. As rewriting is an expensive process,
this helps to avoid examining views that cannot produce valid rewrites.

4.2 Costing a UDF

Given that our goal is to find a low cost rewrite for queries contain-
ing UDFs, we require a method of costing an MR UDF. We define the
cost of a UDF as the sum of the cost of its local functions. Estimating
the cost of a local function that performs any of the three operation
types is complicated by two factors:

(a) Each operation type is performed by arbitrary user code, and thus
can have varying complexity. For instance, although an NLP sen-
tence tagger and a simple word-counter function perform the same
operation type (discard or add attributes), they can have signifi-
cantly different computational costs.

(b) There could be multiple operation types performed in the same
local function, making it unrealistic to develop a cost model for
every possible local function.

Due to these factors, we desire a conservative way to estimate the
cost of a local function of varying complexity that may apply a se-
quence of operation types without knowing specifically how these op-
erations interact with each other inside the local function.

Developing an accurate cost model is a general problem for any
database system. In our framework, the importance of the cost model
is only in guiding the exploration of the space of rewrites. For this
reason, we appeal to an existing cost model from the literature [21],
but slightly modify it to be able to cost UDFs. To this end, we extend
the “data only” cost model in [21] in a limited way so that we are able
to produce cost estimates for UDFs. Although this results in a rough
cost estimate, experimentally we show that our cost model is effective
in producing low cost rewrites (Section 8). The cost model we develop
here is simple but works well in practice; however, an improved cost
model may be plugged-in as it becomes available.

Recall that UDFs are composed of local functions, where each local
function must be performed by a map task or a reduce task. The cost
model in [21] accounts for the “data” costs (read/write/shuffle), and
we augment it in a limited way to account for the “computational”
cost of local functions. Since a UDF can encompass multiple jobs,
we express the cost of each job as the sum of: the cost to read the
data and apply a map task (C'y), the cost of sorting and copying (Cs),
the cost to transfer data (C';), the cost to aggregate data and apply a
reduce task (C'.), and finally the cost to materialize the output (C,,).
Using this as a generic cost model, we first describe our approach
toward solving (a) above by assuming that each local function only
performs one instance of a single operation type. Then we describe
our approach for (b), above.

For (a) we model the cost of the three operation types rather than
each local function, which provides the baseline cost value for each
operation type. Since there may be a high variation in the cost of a
UDF’s local functions, we apply a scalar multiplier to the baseline
cost of Cyy,, Cy. To calibrate Cy,, C, we take an empirical approach
to estimate the scalar values. The first time the UDF is added to the



system, we execute the UDF on a 1% uniform random sample of the
input data to determine the scalar values. Due to data skew and one-
time calibration, this may result in imprecise cost estimates. However,
we do not preclude (a) recalibrating Cy,, C when the UDF is applied
to new data, (b) a better sampling method if more is known about the
data, and (c) periodically updating C.,, C, after executing the UDF
on the full dataset.

For (b), since a local function performs an arbitrary sequence of
operations of any type, it is difficult to estimate its cost. This would
require knowing how the different operations actually interact with
one another, which requires a white-box approach. For this reason
we desire a conservative way to estimate the cost of a local function,
which we do by appealing to the following property of any cost model
performing a set S of operations.

DEFINITION 1. Non-subsumable cost property: Let COST(S, D)
be defined as the total cost of performing all operations in S on a
database instance D. The cost of performing S on D is at least as
much as performing the cheapest operation in S on D.

Cost1(S, D) > min(Cost(z, D),Vz € 5)

The gray-box model of the UDFs only captures enough information
about the local functions to provide a cost corresponding to the least
expensive operation performed on the input. We cannot use the most
expensive operation in S (i.e., max(COST(z, D),V € S)), since this
requires COST(S’, D) < CosT(S, D), where S" C S. The “max”
requirement is difficult to meet in practice, which we can show using
a simple example. Suppose S contains a filter with high selectivity,
and a group-by with higher cost than the filter when considering these
operations independently on database D. Let S’ contain only group-
by. Suppose that applying the filter before group-by results in few
or no tuples streamed to group-by. Then applying group-by can have
nearly zero cost and it is plausible that CosT(S’, D) > CosT(S, D).

The cost model utilizes the non-subsumable cost property in the fol-
lowing way. A local function that performs multiple operation types
t is given an initial cost corresponding to the generic cost of applying
the cheapest operation type in ¢ on its input data. This initial value
can then be scaled-up as described previously in our solution for (a).

4.3 Lower-bound on Cost of a Potential Rewrite

Now that we have a quick way to determine if a view v can poten-
tially produce a rewrite for query ¢, and a method for costing UDFs,
we would like to compute a quick lower bound on the cost of any po-
tential rewrite — without having to actually find a valid rewrite, which
is computationally hard. To do this, we will utilize our UDF model and
the non-subsumable cost property when computing the lower-bound.
The ability to quickly compute a lower-bound is a key feature of our
approach.

A={a,b,c} A={p,c,d}
F={} ——| f(ab)=>d; d<10; groupby(c) —> F={d<10}
k={} V|, 9 k={o)

Figure 5: Synthesized UDF to perform the fix between a view v
and a query q.

Figure 5 provides an example showing a view v and a query ¢ anno-
tated as per the model, and a hypothetical local function /f1, which we
can use to compute a lower-bound as described next. View v is given
by attributes {a, b, ¢} with no applied filters or grouping keys. Query ¢
is given by {b, ¢, d}, has a filter d < 10, and has key ¢, where attribute
d is computed using a and b. It is clear that v is guessed to be complete
with respect to g because v has all of the required attributes to produce
those in ¢, and v has weaker filters and grouping keys (i.e., is less ag-
gregated) than g. Note that even though v is guessed to be complete,
grouping on ¢ may remove a and b, which may render the creation of
d not possible; hence, it only a guess. However, since it does pass the

GUESSCOMPLETE(g, v) test, we can then compute what we term as
the fix for v with respect to ¢q. To determine the fix, we take the set
difference between the attributes, filters, and keys (A, F, K) of g and
v, which is straightforward and simple to compute. In Figure 5, the fix
for v with respect to ¢ is given by: a new attribute d; a filter d < 10;
and re-keying on c, as indicated in If.

To produce a valid rewrite we need to find a sequence of local func-
tions that “perform” the fix; these are the operations that when applied
to v will produce g. As this a known hard problem, we synthesize a
hypothetical UDF comprised of a single local function that applies all
operations in the fix (e.g., [f1 in Figure 5). The cost of this synthe-
sized UDF, which serves as an initial stand-in for a potential rewrite
should one exist, is obtained using our UDF cost model. This cost
corresponds to a lower-bound for any valid rewrite . By the non-
subsumable cost property, the computational cost of this single local
function is the cost of the cheapest operation in the fix. The benefit of
the lower-bound is that it lets us cost views by their potential ability
to produce a low-cost rewrite, without having to expend the compu-
tational effort to actually find one. Later we show how this allows
us to consider views that are “more promising” to produce a low-cost
rewrite before the “less promising” views are considered.

We define an optimistic cost function OPTCOST(g, v) that com-
putes this lower-bound on any rewrite  of query g using view v only
if GUESSCOMPLETE(q, v) is true. Otherwise v is given OPTCOST of
o0, since in this case it cannot produce a complete rewrite, and hence
the COST is also co. The properties of OPTCOST(gq, v) are that it is
very quick to compute and

OpTCOST(q,v) < COST(r).

When searching for the optimal rewrite r* of W, we use OPTCOST
to enumerate the space of the candidate views based on their cost po-
tential, as we describe in the next section. This is inspired by near-
est neighbor finding problems in metric spaces where computing dis-
tances between objects can be computationally expensive, thus pre-
ferring an alternate distance function (e.g., OPTCOST) that is easy to
compute with the desirable property that it is always less than or equal
to the actual distance.

S. PROBLEM OVERVIEW FOR REWRIT-
ING QUERIES CONTAINING UDFS

Our UDF model enables reuse of views to improve query per-
formance even when queries contain complex functions. However,
reusing an existing view when rewriting a query with any arbitrary
UDF requires the rewrite process to consider all UDFs in the system.
The rewrite problem is known to be hard even when both the queries
and the views are expressed in a language that only includes conjunc-
tive queries [10, 19].

In our scenario, users are likely to include many UDFs in their
queries. If the rewrite process were to consider every UDF as an op-
erator in the rewrite language, searching for the optimal rewrite would
quickly become impractical for any realistic workload and number of
views. This is because the search space for finding a rewrite is expo-
nential in both 1) the number of views in V' and 2) the number of op-
erators (e.g., Relational and UDFs) considered by the rewrite process,
which may include multiple applications of the same operator. For
our rewrite algorithm, the worst case complexity is O(n- J!VI. EIErl)
where n is the number of nodes in the plan W, J is the maximum
number of views that can participate in a rewrite, |V'| represents the
number of views in the system, &k is maximum number of times that
a particular operator can appear in a rewrite, and |Lg| is the number
of operators considered by the rewrite algorithm. For the experimen-
tal evaluation of our rewrite algorithm presented in Section 8§, we set
J =4 and k = 2 for practical reasons.



In our system, both the queries and the views can contain any arbi-
trary UDF, creating a potentially large number of UDFs in the system.
Due to the complexity of the rewrite search process, in practice it is a
good idea to limit the rewrite process to consider only a small subset
of all UDFs in the system. For this reason, in our system the rewriter
considers relational operators — select, project, join, group-by, aggre-
gations (SPJGA), and a few of the most frequently used UDFs, which
increases the possibility of reusing previous results. Selecting the right
subset of UDFs to include in the rewrite process is an interesting open
problem that must consider the tradeoff between the added expres-
siveness of the rewrite process versus the additional exponential cost
incurred to search for rewrites.

A naive solution is to search for the optimal rewrite only for tar-
get W,,. However, (a) even if a rewrite is found for W,,, there may
be a cheaper rewrite of W using a rewrite found for a different tar-
get W;, and (b) if one cannot find a rewrite for W,,, one may be able
to find a rewrite at a different target W;. The source of this prob-
lem is that W,, may contain a UDF that is not included in the set of
rewrite operators, and hence search process cannot be restricted only
to W, . For example, a rewrite for W, can be expressed by composing
a rewrite 7; for a target W; with the remaining nodes in W indicated
by NODE;41 - - - NODE,. The composition of this rewrite could be
cheaper than the rewrite found at W,,, thus the search process for the
optimal rewrite must happen at all n targets in W.

A better solution is to independently search for the best rewrite at
each of the n targets of W, and then use a dynamic programming so-
Iution to choose a subset among these to obtain the optimal rewrite
r*. One drawback of this approach is that there is no way of early
terminating the search at a particular target since each search is inde-
pendent. Hence, the search at one target does not inform the search
at another. For instance, the algorithm may have searched for a long
time at a target IW; only to find an expensive rewrite, when it could
have found a better (lower-cost) rewrite at an upstream target W;_1
more quickly had it known to look there first.

The approach we take in this paper, called BFREWRITE, remedies
these two shortcomings of the dynamic programming approach by (1)
using the lower bound function OPTCOST introduced in Section 4.3
to guide the search process at each target, and (2) using results from
the search process at one target to guide the search at the other targets.
First, after finding a rewrite r with cost c at a target W, there is no
need to continue searching for rewrites at W; if the OPTCOST of the
the remaining unexplored space at W; is greater than c. Second, r
and c can be used to prune the search space at other targets in W by
composing a rewrite of W,, using r and the remaining nodes (e.g.,
NODE;+1 - - - NODEy,) in W.

@ @ FINDNEXTMINTARGET()
target
BESTPLAN, BESTPLAN, g
BESTPLANCOST, BESTPLANCOST,
BestPLAN, BFREWRITE
BESTPLANCOST,
1
v INIT(), PEEK(),
@ BESTPLAN,, REFINE()
VF BESTPLANCOST,

Figure 6: High level overview of the BFREWRITE algorithm.

Figure 6 provides a high-level overview of our BFREWRITE algo-
rithm with plan W represented as a DAG. Each node is associated with
an instance of the VIEWFINDER module (VF), which is represented as
a black box alongside described below. Additionally, each node stores
its best rewrite found so far along with its cost. BFREWRITE interacts
with this DAG using a function that identifies the next target to con-
tinue the rewrite search. On the right side of the figure, the interface
to the black box VIEWFINDER is shown, which implements 3 simple

primitives. Using this setup, the BFREWRITE algorithm performs a
search for the globally optimal rewrite of W. There are 3 main compo-
nents to the BFREWRITE algorithm.

1. VIEWFINDER at each target implements three operations — INIT
sets up the initial search space of candidate views, ordering the
available views by their OPTCOST; PEEK provides the OPTCOST
of the next potential rewrite at the target; and REFINE which in-
crementally grows the space and attempts to find a rewrite of the
target. This constitutes the local search at each target.

2. BFREWRITE’s FINDNEXTMINTARGET interface queries the
DAG to identify the next target to explore. This constitutes the
global search among the targets in W.

3. When a low-cost rewrite is found at a target, it is propagated to
the remaining targets in W by updating their best plan and its cost
(BESTPLAN and BESTPLANCOST). This constitutes the update
mechanism that coordinates the search of all targets in V.

These three components represent the global logic of BFREWRITE
that explores the rewrite search space, at each step deciding the next
target to explore. For each local search, the termination condition is
that the remaining views to be examined (PEEK) have a lower bound
cost that is greater than the best rewrite found so far. For the global
search, the termination condition is that none of the targets has a poten-
tial of producing a lower cost rewrite of IW,, than the best one found so
far. Note that due to the propagation, a node’s best plan and cost do not
necessarily correspond to the best rewrite found by the VIEWFINDER
at that particular node, but could be a composition of rewrites found at
other nodes.

In the next two sections, we provide the details of these components
and the process outlined above. We first describe BFREWRITE in Sec-
tion 6.1, which is the main driver of the rewrite search process, and
is shown in Algorithm 1 and Algorithm 2. The mechanism to prop-
agate the best rewrite is given in Algorithm 3. Then in Section 7 we
describe the details of the VIEWFINDER component that is utilized as
black box in the figure above.

6. BEST-FIRST REWRITE

The BFREWRITE algorithm produces a rewrite of I/ that can be
composed of rewrites found at multiple targets in W. The computed
rewrite 7™ has provably the minimum cost among all possible rewrites
in the same class. Moreover, the algorithm is work-efficient: even
though CosT(r™) is not known a-priori, it will never examine any can-
didate view with OPTCOST higher than the optimal cost COST(7™).
To be work efficient, the algorithm must choose wisely the next can-
didate view to examine. As we will show below, the OPTCOST func-
tionality plays an essential role in choosing the next target to refine.
Intuitively, the algorithm explores only the part of the search space
that is needed to provably find the optimal rewrite. We prove that
BFREWRITE finds r* while being work-efficient in Section 6.2.

6.1 The BFREWRITE Algorithm

Algorithm 1 presents the main BFREWRITE function. In lines 2—
6, BFREWRITE initializes a VIEWFINDER at each target W; and
sets BESTPLAN; and BESTPLANCOST; to be the original plan and
its cost. In lines 7-10, it repeats the following procedure: Invoke
FINDNEXTMINTARGET (described in Algorithm 2) to choose the
next best target to continue the search, which returns (W;, d), indi-
cating that target WW; can potentially produce a rewrite with a lower
bound cost of d. Next, invoke REFINETARGET (described in Algo-
rithm 2) which asks the VIEWFINDER to search for the next rewrite at
target W;. This continues until there is no target that can possibly im-
prove BESTPLAN,,, at which point BESTPLAN,, (i.e., r*) is returned.

FINDNEXTMINTARGET in Algorithm 2 identifies the next best tar-
get W; to be refined in W, as well as the minimum cost (OPTCOST)



Algorithm 1 Optimal rewrite of W using VIEWFINDER

Algorithm 3 Update Mechanism

1: function BFREWRITE(W, V)

2:  for each W; € W do > Init Step per target

3: VIEWFINDER.INIT(W;, V)

4: BESTPLAN; <W; > original plan to produce W;
5: BESTPLANCOST; +—COST(W;) > plan cost
6:  end for

7:  repeat

8: (W;,d) < FINDNEXTMINTARGET(W;,)

9: REFINETARGET(W;) if W; # NULL

10:  until W; = NULL >i.e., d > BESTPLANCOSTy,
11:  Return BESTPLAN,, as the best rewrite of W
12: end function

Algorithm 2 Identify next best target to refine

1: function FINDNEXTMINTARGET(W;)

2 d/(—O;W]u]N%NULL;d]uIN(fOO
3 for each incoming vertex NODE; of NODE; do
4 (W, d) <~ FINDNEXTMINTARGET(W)
5 d < d +d

6 if dpyrn > dand Wy, # NULL then
7 Wain < Wi

8 dMIN —d

9 end if

10:  end for

11:  d' «+d’ + COST(NODE;)
12:  d; + VIEWFINDER.PEEK()
13

14

15

16

17

18

19

if min(d’, d;) > BESTPLANCOST; then
return (NULL, BESTPLANCOST;)

else if d’ < d; then
return (W, rn,d’)

else
return (W;, d;)

end if

20: end function

: function REFINETARGET(W;)

2 r; < VIEWFINDER.REFINE(W;)

3 if r; # NULL and COST(r;) < BESTPLANCOST; then
4 BESTPLAN; <71;

5 BESTPLANCOST; <—COST(7;)

6: for each edge (NODE;, NODE) do
7.

8

9

—_

PROPBESTREWRITE(NODEY)
end for
end if
10: end function

of a potential rewrite for W;. There can be three outcomes of a search
at a target W;. Case 1: W, and all its ancestors cannot provide a better
rewrite. Case 2: An ancestor target of W; can provide a better rewrite.
Case 3: W; can provide a better rewrite. By recursively making the
above determination at each target W; in W, the algorithm identifies
the best target to refine next.

For a target W, the cost d’ of the cheapest potential rewrite that can
be produced by the ancestors of NODE; is obtained by summing the
VIEWFINDER.PEEK values at NODE;’s ancestors nodes and the cost
of NODE; (lines 3—11). Note that we also record the target W1 v rep-
resenting the ancestor target with the minimum OPTCOST candidate
view (lines 6-9). Then d; is assigned to the next candidate view at W;
using VIEWFINDER.PEEK (line 12).

Next the algorithm deals with the three cases outlined above. If
both d’ and d; are greater than or equal to BESTPLANCOST; (case
1), there is no need to search any further at W; (line 13). If d’ is less
than d; (line 15), then W1 is the next target to refine (case 2). Else
(line 18), W; is the next target to refine (case 3).

Finally, REFINETARGET in Algorithm 2 describes the process of
refining a target W;. Refinement is a two-step process. In the first step
it obtains a rewrite 7; of W; from VIEWFINDER if one exists (line 2).
The cost of the rewrite 7; obtained by REFINETARGET is compared

1: function PROPBESTREWRITE(NODE;)

2:  r; <plan initialized to NODE;

3:  for each edge (NODE;, NODE;) do

4. Add BESTPLAN; to 7;

5:  end for

6:  if CosT(7;) < BESTPLANCOST; then
7: BESTPLANCOST; <—COST(7;)

8: BESTPLAN; +7;

9: for each edge (NODE;, NODEy) do
10: PROPBESTREWRITE(NODE},)
11: end for

12:  endif

13: end function

against the best rewrite found so far at W;. If r; is found to be cheaper,
the algorithm suitably updates BESTPLAN; and BESTPLANCOST;
(lines 3-9). In the second step (line 7), the algorithm tries to compose
a new rewrite of W, using r;, through the recursive function given by
PROPBESTREWRITE in Algorithm 3. After this two-step refinement
process, BESTPLAN,, contains the best rewrite of W found so far.

PROPBESTREWRITE in Algorithm 3 describes the recursive update
mechanism that pushes the new BESTPLAN; downward along the out-
going nodes and towards NODE,,. At each step it composes a rewrite
r; using the immediate ancestor nodes of NODE; (lines 2-5). It com-
pares r; with BESTPLAN; and updates BESTPLAN; if r; is found to
be cheaper (lines 6-12).

6.2 Proof of Correctness and Work-Efficiency

The following theorem provides the proof of correctness and the
work-efficiency property of our BFREWRITE algorithm.

THEOREM 1. BFREWRITE finds the optimal rewrite v* of W and
is work-efficient.

PROOF. To ensure correctness, finding the optimal rewrite requires
that the algorithm must not terminate before finding r*. To ensure
work-efficiency (defined earlier) requires that the algorithm should not
examine any candidate views that cannot be possibly included in r*.

A proof sketch by contradiction for a single target case (i.e.,n = 1)
is as follows. Assume two cases: First, suppose that the algorithm
found a candidate view v resulting in a rewrite , while the candi-
date view v™, which produces the optimal rewrite r*, is not consid-
ered before terminating even though CosT(r) > COST(r™). Second,
the algorithm examined a candidate view v’ with OPTCOST(v") >
cost(r™). We can then show both these cases are not possible, proving
that BFREWRITE finds 7* in a work-efficient manner. The full proof
for this single target case, which is then extended to the multi-target
case, is provided in the extended version [17]. [

7. VIEWFINDER

The key feature of VIEWFINDER is its OPTCOST functionality that
enables it to incrementally explore the the space of rewrites using the
views in V. As noted earlier in Section 4.1, rewriting queries us-
ing views is known to be a hard problem. Traditionally, methods for
rewriting queries using views for SPJG queries use a two stage ap-
proach [1, 10]. The pruning stage determines which views are rele-
vant to the query, and among the relevant views, those that contain all
the required join predicates are termed as complete otherwise they are
called partial solutions. This is typically followed by a merge stage
that joins the partial solutions using all possible equijoin methods to
form additional relevant views. The algorithm repeats until only those
views that are useful for answering the query remain.

We take a similar approach in that we identify partial and complete
solutions, then follow with a merge phase. The VIEWFINDER con-
siders candidate views C' when searching for rewrite of a target. C'
includes views in V' as well as views formed by “merging” views in



V using a MERGE function, which is an implementation of a standard
view-merging procedure (e.g., [1, 10]). Traditional approaches begin
merging partial solutions to create complete solutions, until no partial
solutions remain. This “explodes” the space of candidate views ex-
ponentially up-front. In contrast, our approach gradually explodes the
space, resulting in far fewer candidates views from being considered.

Additionally, with no early termination condition, existing ap-
proaches would need to explore the space exhaustively at all targets.
The VIEWFINDER incrementally grows and explores only as much of
the space as needed, frequently stopping and resuming the search as
requested by BFREWRITE.

7.1 The VIEWFINDER Algorithm

The VIEWFINDER is presented in Algorithm 4. An instance of
VIEWFINDER instantiated at each target, which is stateful; enabling
it to start, stop, and resume the incremental searches at each target.
The VIEWFINDER maintains state using a priority queue (PQ) of can-
didate views, ordered by OPTCOST. VIEWFINDER implements the
INIT, PEEK, and REFINE functions.

The INIT function instantiates a VIEWFINDER with a query q repre-
senting a target W;, and all views in V' are added to PQ, which orders
them by increasing OPTCOST. The PEEK function returns the head
item in PQ. The REFINE function is invoked when BFREWRITE asks
the VIEWFINDER to examine the next candidate view.

REFINE pops the head item v out of PQ and generates a set of new
candidate views M by merging v with those views previously popped
from PQ which were stored in Seen. Note that Seen only contains
candidate views that have an OPTCOST less than or equal to that of
v. Critically, this results in an “on-demand” incremental growth of
the candidate space as required by BFREWRITE, rather than perform-
ing a pre-explosion of the entire search space. A property of the new
candidate views in M, which is required for the correctness of the al-
gorithm, is that they have an OPTCOST greater than v, hence none
of these views could have been examined before v. This property is
provided as a theorem in the extended version [17]. All newly created
views in M are inserted into PQ and v is then added to Seen.

The REFINE function next attempts to find a rewrite using view v by
invoking REWRITEENUM, described next. Given the computational
complexity of finding valid rewrites, VIEWFINDER limits the invo-
cation of the REWRITEENUM algorithm using two strategies. First,
the expensive REWRITEENUM operation is only applied to the view
at the head of PQ when requested by BFREWRITE. Second, it avoids
applying REWRITEENUM on every candidate view unless it passes the
GUESSCOMPLETE test as described in Section 4.3.

7.2 Rewrite Enumeration

The REWRITEENUM function searches for a valid rewrite of query
q using view v that has passed the GUESSCOMPLETE test. Since
GUESSCOMPLETE can result in false positives, there is no guarantee
that v will produce a valid rewrite for q. However, if a rewrite exists,
REWRITEENUM returns the rewrite and its cost as computed by the
CosT function.

In searching for a rewrite, recall from Section 5 that the rewrite pro-
cess considers relational operators SPJGA and a subset of the UDFs
in the system. These are the only rewrite operators considered by
REWRITEENUM. The rewrite process searches for equivalent rewrites
of g by applying compensations [29] to v and then testing for equiva-
lence against q. In our implementation of REWRITEENUM this is done
by generating all permutations of the rewrite operators and testing for
equivalence, amounting to a brute force enumeration of all possible
rewrites that can be produced with compensations. This makes the
case for the system to keep the set of rewrite operators small since this
search process is exponential in the size of this set. However, when
the rewrite operators are restricted to a fixed known set, it may suf-
fice to examine a polynomial number of rewrite attempts as in [8] for

Algorithm 4 VIEWFINDER

1: function INIT(query, V)
Priority Queue PQ «0; Seen +0; Query g
q <—query
for eachv € V do
PQ.add(v, OPTCOST(q, v))
end for
: end function

: function PEEK
if PQ is not empty return PQ.peek().OPTCOST else co
. end function

: function REFINE

if not PQ.empty() then
v < PQ.pop()
M <MERGE(v, Seen)
for each v’ € M do

PQ.add(v’, OPTCOST(q, v'))

end for
Seen.add(v)

: if GUESSCOMPLETE(q, v) then

10: return REWRITEENUM(q, v)

11: end if

12:  endif

13: return NULL

14: end function

> Discard from M those in Seen N M

VRN ERNZ| W Nk RR

the specific case of simple aggregations involving group-bys. Such ap-
proaches are not applicable to our case as the system has the flexibility
to add any UDF to the set of rewrite operators.

8. EXPERIMENTAL EVALUATION

In this section, we present an experimental study showing the ef-
fectiveness of BFREWRITE in finding low-cost rewrites of complex
queries. First, we evaluate our methods in two scenarios. The query
evolution scenario (Section 8.3.1) represents a user iteratively refining
a query within a single session. This scenario evaluates the benefit
that each new query version can receive from the opportunistic views
created by previous versions of the query. The user evolution scenario
(Section 8.3.2) represents a new user entering the system presenting a
new query. This scenario evaluates the benefit a new query can receive
from the opportunistic views previously created by queries of other
“similar” users. Next, we evaluate the scalability (Section 8.3.3) of
our rewrite algorithm in comparison to a competing approach. Lastly,
we compare our method to cache-based methods (Section 8.3.4) that
can only reuse previous results when they are identical.

8.1 Query Workload

We first provide some insights into the characteristics of exploratory
processing on big data and then describe the workload from [16] that
we adopted for use in this paper. Recent work [3,4,24] examines MR
queries “in the wild” on production and research clusters that were
utilized by data scientists or other advanced users for up to a year.
Additional work [11, 14,27,28] provides further insights into big data
analytical queries. A key finding of [4] is that there is a need for better
benchmarks to capture the use cases for MR queries that perform in-
teractive analysis on big data. Below we summarize the main findings
from our literature review.

1. Users spend time revising and improving exploratory queries [14,
24], and thus queries near the end of an exploratory session tend
to represent higher-quality and more complex versions of earlier
queries [14].

2. Many studies note that complex analysis on big data frequently
include UDFs [11,27,28].

3. Queries frequently incorporate multiple datasets [24] with a ma-
jority of queries (65% in [24]) accessing three or more.



5 10000
3 A —
()
E 1000
i
c
o
5 100
o
5}
ai
10
6‘#
‘7 \7 \7 \7 7 7 7 \7

(a)

—_
o
o

80
§ 60
[
Q.
g 40
R 20
0
‘y/// Z”L 7?& ‘y// 4# 'yk 'V)L %L
2 2 2 ? 2, 2, 2
k4 k4 4 hd k4

(b)

Figure 7: Query Evolution comparisons for (a) execution time (log-scale), and (b) execution time improvement.
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Figure 8: User Evolution comparisons for (a) execution time (log-scale), (b) data moved, and (c) execution time improvement.

Both [24] and [3] note that users frequently re-access their data and
there can be significant benefits from caching. A majority of jobs
involve data re-accesses with many occurring within 1 hour (50% [3]
and up to 90% [24]). These frequent re-access patterns make a strong
case for a method such as BFREWRITE.

The experimental workload from [16] contains 32 queries on three
datasets that simulate 8 analysts A1—As who write complex ex-
ploratory analytical queries for business marketing scenarios. Each
query uses at least one of 10 unique UDFs. The workload uses
three real-world datasets: A Twitter log (TWTR) of user tweets, a
Foursquare log (4SQ) of user check-ins, and a Landmarks log (LAND)
containing locations of interest. Many queries begin by accessing only
one or two datasets, but subsequent revisions use all three datasets.
Each of the 8 analysts poses 4 versions of a query, representing the
initial query followed by three subsequent revisions made during data
exploration and hypothesis testing. Hence, there is some overlap ex-
pected between subsequent versions of a query. The queries are long-
running with many operations, and executing the queries with Hive
created 17 opportunistic materialized views per query on average.

Since each query in the workload has multiple versions, we use
A;vj to denote Analyst ¢ executing version j of her query. Since
there are 4 versions of each query, A;v;j41 represents a revision of
A;vj. Below is a high-level description of query Ajv; and Ajva,
taken from [16].

EXAMPLE 1. Analystl (A1) wants to identify a number of “wine
lovers” to send them a coupon for a new wine being introduced in a
local region.

Query Aivi: (a) From TWIR, apply UDF-CLASSIFY-WINE-
SCORE on each user’s tweets and group-by user to produce a wine-
sentiment-score for each user and then threshold on wine-sentiment-
score. (b) From TWTR, compute all pairs (u1,us2) of users that com-
municate with each other, assigning each pair a friendship-strength-
score based on the number of times they communicate and then thresh-
old on the friendship-strength-score. (c) From TWIR, apply UDAF-
CLASSIFY-AFFLUENT on users and their tweets. Join results from
(a), (b), (c) on user_id.

Query Aqva: Revise the previous version by reducing the wine-
sentiment-score threshold, adding new data sources (4SQ and LAND)
to find the check-in counts for users that check-in to places of type
wine-bar, then threshold on count, joining this result with the users
found in the previous version. Queries Ai1vs and Ayva are similarly
revised by changing the threshold parameters and requiring that a
user’s friends also have a high check-in count to wine-bars.

The performance of any method that reuses results from previous
queries will obviously depend on the degree of “similarity” between

queries. However, choosing a meaningful metric to compute the simi-
larity between queries in the workload from [16] was not clear. While
methods such as [14] characterize query similarity in terms of query
text (FROM clause, WHERE clause, etc.), we found this did not di-
rectly correspond with result reusability. We observed this effect in a
microbenchmark we performed based on revising queries, and report
those results in the extended version of the paper [17].

8.2 Experimental Methodology

Our experimental system consists of 20 machines running Hive
version 0.7.1 and Hadoop version 0.20.2. Each node has the same
hardware: 2 Xeon 2.4GHz CPUs (8 cores), 16 GB of RAM, and exclu-
sive access to its own disk (2TB SATA 2012 model). We use HiveQL
as the declarative query language, and Oozie as a job coordinator. The
MR UDFs are implemented in Java, Perl, and Python and executed
using the HiveCLI. UDFs implemented in our system include a log
parser/extractor, text sentiment classifier, sentence tokenizer, lat/lon
extractor, word count, restaurant menu similarity, and geographical
tiling, among others. All UDFs are annotated using the model as per
the example annotations given in Section 3.2. For each UDF in the
workload we calibrate its cost model using the procedure described in
Section 4.2. We provide an additional experiment in the extended ver-
sion [17] to show that although we calibrate our cost model only the
first time the UDF is added, it is able to discriminate between good
plans and really bad plans for the purpose of query rewriting.

Our experiments use over 1TB of data that includes 800GB of
TWTR tweets, 250GB of 4SQ check-ins, and 7GB of LAND con-
taining 5 million landmarks. The identity of a user (user_id) is
common across the TWTR and 4SQ logs, while the identity of a land-
mark (location_id) is common across 4SQ and LAND.

We report the following metrics for all experiments. Experiments
on query execution time report both the original execution time of the
query in Hive, labelled as ORIG, and the execution time of the rewrit-
ten query, labelled as REWR. The reported time for REWR includes
the time to run the BFREWRITE algorithm, the time to execute the
rewritten query, and any time spent on statistics collection. Experi-
ments on the runtime of rewrite algorithms report the total time used
by the algorithm to find a rewrite of the original query using the views
in the system. For these experiments, BFR denotes our BFREWRITE
rewriting algorithm, and DP represents a competing approach based
on dynamic programming. DP does not use OPTCOST, and searches
exhaustively for rewrites at every target. DP then rewrites a query by
applying a dynamic programming solution to choose the best subset
of rewrites found at each target. We note that both algorithms produce
identical rewrites (i.e., r*). The primary comparison metric for BFR
and DP is algorithm runtime. In addition, we report results for two sec-



el

[

5 100000 T BFR e 10000 3100
(7] I | DP 2 =

S H f £ 1000 2

G 10000 oo 5 E 10
13 I I | =

z . | I 100 Dg:

2 i I | o

> . | £

> 1000 I | I I s 10 E 1
et - | K3 £

he} 111 1 S

2 100 LU R e e S R L e 201
o A A A Ay @ As  Ag A7 Ag Al A Ay A © As As A7 Ag

Figure 9: Algorithm comparisons for (a) candidate views considered, (b) rewrite attempts, and (c) Algorithm runtime (log-scale).

ondary metrics: the number of candidate views examined during the
search for rewrites, and the number of valid rewrites attempted and
produced during the search process. These correspond to the candi-
date space explored and rewrites attempted before identifying r*.

8.3 Experimental Results

8.3.1 Query Evolution

In this experiment, for each analyst A;, query A;v; is executed fol-
lowed by query A;vz, A;vs, and A;vs, applying BFREWRITE each
time to rewrite the new query using the opportunistic views generated
by the previous query versions. Before each Analyst A; begins, all
views are dropped from the system. This experiment creates a sce-
nario where an analyst may benefit by reusing results from previous
versions of their own query. Figure 7(a) shows the execution time of
the original query (ORIG) and the rewritten query (REWR), while Fig-
ure 7(b) reports the corresponding percent improvement in execution
time of REWR over ORIG for each query (v; is not shown since the
percent improvement is always zero). Figure 7(b) shows that REWR
provides an overall improvement of 10% to 90%; with an average im-
provement of 61% and up to an order of magnitude. As a concrete data
point, Asv4 requires 54 minutes to execute ORIG, but only 55 seconds
to execute the rewritten query (REWR). REWR has much lower execu-
tion time because it is able to take advantage of the overlapping nature
of the queries, e.g., version 2 has some overlap with version 1. REWR
is able to reuse previous results, providing significant savings in both
query execution time and data movement (read/write/shuffle) costs.

8.3.2 User Evolution

In this experiment, each analyst (except one, a holdout analyst) exe-
cutes the first version of their query. Then, we execute the first version
of the holdout analyst’s query (e.g., A;v1) after applying BFREWRITE
to rewrite the holdout query using the opportunistic views generated
by the previous queries. We then drop all views from the system and
repeat using a different holdout analyst each time. This experiment
creates a scenario where an analyst may benefit by reusing results
from previous versions of other analysts’ queries. Figure 8(a) shows
the execution time for REWR and ORIG for each different holdout ana-
lyst along the x-axis, while Figure 8(b) shows the corresponding data
manipulated (read/write/shuffle) in GB. These data statistics are au-
tomatically collected and reported by Hadoop and include the amount
of data read from HDFS, moved across the network, and written to
HDFS. These results demonstrate that the execution time of REWR
is always lower than ORIG, and the data manipulated shows similar
trends. The percentage improvement in execution time is given in Fig-
ure 8(c) which shows REWR results in an overall improvement of about
50%-90%. Of course, these results are workload dependent but they
show that even when several analysts query the same data sets while
testing different hypothesis, our approach is able to find some overlap
and hence benefit from previous results.

Table 1: Improvement in execution time of Asvs as more analysts
become present in the system.

Analysts added 1 2 3 4 5 6 7
Improvement 0% | 73%| 713%| 75%| 89%| 89%| 89%

As an additional experiment for user evolution, we first execute a
single analyst’s query (Asv3) with no opportunistic views in the sys-
tem, to create a baseline execution time. Then we “add” another ana-
lyst by executing all four versions of that analyst’s query, which cre-
ates new opportunistic views. Then we re-execute Asv3 and report the
execution time improvement over the baseline, and repeat this process
for the other remaining analysts. We chose Asvs as it is a complex
query that uses all three logs. Table 1 reports the execution time im-
provement after each analyst is added, showing that the improvement
increases when more opportunistic views are present in the system.

8.3.3 Algorithm Comparisons

We first compare BFR to DP in terms of the number of candi-
date views considered, the number of times the algorithm attempts
a rewrite, and the algorithm runtime in seconds. We use the user
evolution scenario from the previous experiment, where there were
approximately 100 views in the system when each holdout analyst’s
query was executed. Figure 9(a) shows that even though both algo-
rithms find identical rewrites, BFR searches much less of the space
than DP since it considers far fewer candidate views when search-
ing for rewrites. Similarly, Figure 9(b) shows that BFR attempts far
fewer rewrites compared to DP. This improvement can be attributed
to GUESSCOMPLETE identifying the promising candidate views, and
OPTCOST enabling BFR to incrementally explore the candidate views,
thus applying REWRITEENUM far fewer times. Together, these con-
tribute to BFR doing far less work than DP, which is reflected in the
algorithm runtime shown in Figure 9(c). By growing the candidate
views incrementally as needed (Figure 9(a)) and by controlling the
number of times a rewrite is attempted (Figure 9(b)), BFREWRITE re-
sults in runtime significant savings since the both of these operations
increase the search space exponentially.

We next test the scalability of BFR and DP by scaling up the number
of views in the system from 1-1000 and report the algorithm run-
time for both algorithms as they search for rewrites for one query
(Asv1). During the course of design and development of our system,
we created and retained about 9,600 views; from these we discarded
duplicate views as well as those views that are an exact match to the
query (simply to prevent the algorithms from terminating trivially).
In Figure 10, the x-axis reports the the number of views (views are
randomly drawn from among these candidates), while the y-axis re-
ports the algorithm run time (log-scale). DP becomes prohibitively
expensive even when 250 views are present in the system, due to the
exponential search space. BFR on the other hand scales much better
than DP and has a runtime under 1000 seconds even when the system
has 1000 views relevant to the given query. This is due to the ability
of BFR to control the exponential space explosion and incrementally
search the rewrite space in a principled manner.

While this runtime is not trivial, we note that these are complex
queries involving UDFs that run for thousands of seconds. The amount
of time spent to rewrite a query plus the execution time of the rewritten
query is far less than the execution time of the original query. For
instance, Figure 8(a) reports a query execution time of 451 seconds
for As optimized versus 2134 seconds for unoptimized. Even if the
rewrite time for As were 1000 seconds (it is actually 3.1 seconds here
as seen in Figure 9(c)), the total execution time would still be 32%
faster than the original query.
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Figure 11: Execution time analysis of the quality of BFR’s rewrite
solutions found during its search for the optimal rewrite.

Finally, we show the effectiveness of OPTCOST in pruning the
search space for BFR. Figure 11 shows the runtime behavior of
BFREWRITE as it explores the space of rewrites in its search to iden-
tify the optimal rewrite. In this experiment, query Ajv; is first ex-
ecuted, producing a number of views. For each subsequent query
(Aive, Aqvs, Ajvs), BFREWRITE searches for a rewrite given the
views produced by the previous queries. The x-axis reports the
BFREWRITE’s elapsed run time, and the y-axis reports the percent
error relative to the optimal rewrite, in terms of cost. For each query
the error begins at 100% (i.e., no rewrite has been found yet) and as
BFREWRITE finds rewrites, the error is reduced until it reaches zero
percent. At this point BFREWRITE has identified the optimal rewrite
and can terminate the search (note that this is the same rewrite identi-
fied by the exhaustive DP algorithm). During the initial “flat” period
for each query, BFREWRITE is growing the space of candidate views
by examining views with the lowest OPTCOST. Since they failed to
produce a rewrite, BFREWRITE begins merging them with views that
have the next lowest OPTCOST. This phase represents BFREWRITE
incrementally growing the space of candidate views, which is in con-
trast to an exhaustive approach (DP) that first grows the entire space
of all possible candidate views before beginning to search for rewrites.
The execution time for BFREWRITE increases slightly for the subse-
quent queries Aqvs and Ajvs since the execution of each subsequent
query adds more views to the system.

In Figure 11, BFREWRITE finds the first and second valid rewrites
for query Aiv4 at about 0.9 seconds (indicated by the numbers 1 and
3) which reduces the error to 96% and 90% respectively. At shortly
after 1 second, BFREWRITE finds valid rewrite number 46 which is
the optimal rewrite and hence reduces the relative error to 0% and
terminates. Two notable take-aways from Figure 11 are: (a) once
BFREWRITE finds the first rewrite, it quickly converges to the op-
timal rewrite, and (b) when BFREWRITE finds the optimal rewrite
and terminates for Ajvy, it only had to find 46 rewrites before ter-
minating, while the DP algorithm (not shown in figure) found 4656
rewrites. Similarly, BFREWRITE only had find 16 and 25 rewrites for
Ajve and A;vs respectively, whereas DP found 66 and 323. This re-
sult illustrates a case when BFREWRITE can terminate early without
examining all possible rewrites. These observations suggest that the
OPTCOST is effective at pruning the search space for BFREWRITE.

8.3.4 Comparison with Caching-based methods

Next we provide a brief comparison of our approach with caching-
based methods (such as [6]) that perform only syntactic matching
when reusing previous results. With this class of solutions, results can

only be reused to answer a new query when their respective execution
plans are identical, i.e., the new query’s plan and the plan that pro-
duced the previous results must be syntactically identical. This means
that if the respective plans differ in any way (e.g., different join orders
or predicate push-downs), then reuse is not possible. For instance,
with syntactic matching, a query that applies two filters in sequence
a, b will not match a view (i.e., a previous result) that has applied the
same two filters in a different sequence b, a. In contrast, our BFR ap-
proach performs semantic matching and query rewriting. In this case,
not only will BFR match a, b with b, a, but it would also match the
query to a view that only has filter b, by applying an additional filter a
during the rewrite process.
To represent the class of syntactic caching methods, we present
a conservative variant of our approach that performs a rewrite only
if a view and a query have identical A, F, K properties as well as
have identical plans. We term this variant BFR-SYNTACTIC. Fig-
ure 12 highlights the limitations of caching-based methods by repeat-
ing the query evolution experiment for Analyst 1 (Ajv1—Aivs). We
first execute query Ajvi to produce opportunistic views, and then
we apply both BFR and BFR-SYNTACTIC to queries Aiv2, Ajvs and
Ajvs and report the results in terms of query execution time im-
provement of the solutions produced by BFR and BFR-SYNTACTIC.
Figure 12 shows that both BFR

100 roem and BFR-SYNTACTIC result in
g0 | BFR-SYNTACTIC the same execution time im-
provement for Ajvs. This

is because both methods were
able to reuse some of the (syn-
tactically identical) views from
the previous query. How-
ever, BFR-SYNTACTIC performs
worse than BFR for query Aivs
and Ajvs. This is because BFR-
SYNTACTIC was unable to find
many views that were exact syntactic matches, whereas BFR was able
to exploit additional views due to BFR’s ability to reuse and re-purpose
previous results through semantic query rewriting. Although this re-
sult is workload dependent, this example highlights the fact that while
reusing identical results is clearly beneficial, our approach completely
subsumes those that only reuse syntactically identical results: even
when there are no identical views our method may still find a low-
cost rewrite. To further illustrate this, we next perform an additional
experiment after removing all identical views from the system before
applying our BFREWRITE algorithm.

% Improvement

Ayvy Aqvgy Ay

Figure 12: Execution time
improvement over ORIG.

Table 2: Execution time improvement without identical views.

Ar | As | A3 | As | As | A6 | A7 | As

BFR 57% | 64%| 83%| 85% | 51%| 96%| 88% | 84%

BFR-SYNTACTIC 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%

Here we repeat the user evolution experiment after discarding from
the system all views that are identical to a target in each of the hold-
out queries (A;_gv1). Without these views, syntactic caching-based
methods will not be able to find any rewrites, resulting in 0% improve-
ment. Table 2 reports the percentage improvement for each analyst
A;1—Ag after discarding all identical views. This shows BFR contin-
ues to reduce query execution time dramatically even when there are
no views in the system that are an exact match to the new queries.
The performance improvements are comparable to the result in Fig-
ure 8(c) which represents the same experiment without discarding the
identical views. Notably there is a drop for A5 compared to the re-
sults reported in Figure 8(c) for As. This is because previously in
Figure 8(c), As had benefited from an identical view corresponding
to a restaurant-similarity computation that it now has to recompute.
The identical views discarded constituted only 7% of the view storage
space in this experiment, indicating there are many other useful views.



Given that analysts pose different but related queries, any method that
relies solely on identical matching may have limited benefit.

9. RELATED WORK

Query Rewriting Using Views. There is a rich body of previous
work on rewriting queries using views, but these only consider a re-
stricted class of queries. Representative work includes the popular
algorithm MiniCon [23], recent work [15] showing how rewriting can
be scaled to a large number of views, and rewriting methods imple-
mented in commercial databases [7,29]. However, in these works both
the queries and views are restricted to the class of conjunctive queries
(SPJ) or additionally include groupby and aggregation (SPJGA).

Our work differs in the following two ways: (a) We show how
UDFs can be included in the rewrite process using our UDF model,
which results in a unique variant of the rewrite problem when there
is a divergence between the expressivity of the queries and that of
the rewrite process; (b) Our rewrite search process is cost-based—
OPTCOST enables the enumeration of candidate views based on their
ability to produce a low-cost rewrite. In contrast, traditional ap-
proaches (e.g., [7,23]) typically determine containment first (i.e., if
a view can answer a query) and then apply cost-based pruning in a
heuristic way. This unique combination of features has not been ad-
dressed in the literature for the rewrite problem.

Online Physical Design Tuning. Methods such as [25] adapt the
physical configuration to benefit a dynamically changing workload
by actively creating or dropping indexes/views. Our work is oppor-
tunistic, and simply relies on the by-products of query execution that
are almost free. However, view selection methods could be applica-
ble during storage reclamation to retain only those views that provide
maximum benefit.

Reusing Computations in MapReduce. Other methods for optimiz-
ing MapReduce jobs have been introduced such as those that support
incremental computations [20], sharing computation or scans [21],
and re-using previous results [6]. As shown in Section 8.3.4, our ap-
proach completely subsumes these methods.

Multi-query optimization (MQQO). The goal of MQO [26] (and sim-
ilar approaches [21]) is to maximize resource sharing, in particular
common intermediate data, by producing a scheduling strategy for a
set of in-flight queries. Our work produces a low-cost rewrite rather
than a schedule for concurrent query plans.

10. DISCUSSION AND CONCLUSION

Big data analysis frequently includes exploratory queries that con-
tain UDFs. Hence, to exploit previous results, a semantic understand-
ing of UDF computation is required. In this work, we presented a
gray-box UDF model that is simple but expressive enough to capture
a large class of big data UDFs, enabling our system to effectively ex-
ploit prior computation. We also presented a rewrite algorithm that
efficiently explores the large space of views.

Retaining opportunistic views within a limited storage space budget
requires navigating the tradeoff between storage cost and query perfor-
mance, which is equivalent to the view selection problem. During our
experiments, accumulating all views for every query resulted in an ad-
ditional storage space of only 2.0x the base data size (=2TB). The
relatively small total size of all the views with respect to the log base
data is due to several reasons. First, the logs are very wide, as they
record a large number of attributes. However, a typical query only
consumes a small fraction of these log attributes, which is consistent
with observations in big data systems. Second, it is not uncommon for
the log attributes to have missing values, since the data may be dirty or
incomplete. For instance, in the Twitter log, a tweet may have missing
location values, which a query may discard.

Developing a good view selection policy in this space is an inter-
esting area of future work. One could consider access-based policies

such as LRU and LFU, or cost-benefit based policies commonly used
for physical design tuning. In the extended version [17] we show that
the rewriter performs well even with a trivial storage reclamation pol-
icy, while in [18] we address a variant of this problem that considers
several policies.
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