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ABSTRACT
Multistore systems utilize multiple distinct data stores such as
Hadoop’s HDFS and an RDBMS for query processing by allowing
a query to access data and computation in both stores. Current ap-
proaches to multistore query processing fail to achieve the full po-
tential benefits of utilizing both systems due to the high cost of data
movement and loading between the stores. Tuning the physical de-
sign of a multistore, i.e., deciding what data resides in which store,
can reduce the amount of data movement during query processing,
which is crucial for good multistore performance. In this work, we
provide what we believe to be the first method to tune the physical
design of a multistore system, by focusing on which store to place
data. Our method, called MISO for MultISstore Online tuning, is
adaptive, lightweight, and works in an online fashion utilizing only
the by-products of query processing, which we term as opportunistic
views. We show that MISO significantly improves the performance of
ad-hoc big data query processing by leveraging the specific character-
istics of the individual stores while incurring little additional overhead
on the stores.

1. INTRODUCTION
Parallel relational database management systems (RDBMS) have

long been the “work horse” storage and query processing engine of
choice for data warehousing applications. Recently there has been a
substantial move toward “Big Data” systems for massive data storage
and analysis; HDFS with Hive is perhaps the most common example
of such a system. The arrival of big data stores has set off a flurry of re-
search and development, initially dealing with questions such as which
store is best suited for which purpose; however, the growing consensus
is that both stores have their place, and many organizations simultane-
ously deploy instances of each. Currently these stores have different
roles – the big data store for exploratory queries to find business in-
sights and the RDBMS for business reporting queries, as depicted in
Figure 1(a).

Having both a parallel RDBMS and a big data store inevitably raises
questions about combining the two into a “multistore” system, either
for performance reasons or for analysis of data sets that span both
stores. There have been a number of interesting proposals for this
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Figure 1: Typical setup in today’s organizations showing (a) two
independent stores and (b) multistore system utilizing both stores.

combination [2, 9, 11, 22]. In this paper we explore a simple yet pow-
erful and ubiquitous opportunity: using the parallel RDBMS as an ac-
celerator for big data queries, while preserving the above-mentioned
roles for both stores.

Multistore systems represent a natural evolution for big data ana-
lytics, where query processing may span both stores, transferring data
and computation as depicted in Figure 1(b). One approach to mul-
tistore processing is to transfer and load all of the big data into the
RDBMS (i.e., up-front data loading) in order to take advantage of its
superior query processing performance [17] relative to the big data
store. However, the large size of big data and the high cost of an ETL
process (Extract-Transform-Load) may make this approach impracti-
cal [17, 21]. Another approach is to utilize both stores during query
processing by enabling a query to transfer data on-the-fly (i.e., on-
demand data loading). However, this results in redundant work if the
big data workload has some overlap across queries, as the same data
may be repeatedly transferred between the stores.

A more effective strategy for multistore processing is to make a
tradeoff between up-front and on-demand data loading. This is chal-
lenging since exploratory queries are ad-hoc in nature and the relevant
data is changing over time. A crucial problem for a multistore system
is determining what data to materialize in which store at what time.
We refer to this problem as tuning the physical design of a multistore
system.

In this paper we present the first method to tune the physical design
of a multistore system. While physical design tuning is a well-known
problem for a conventional RDBMS, it acquires a unique flavor in the
context of multistore systems. Specifically, tuning the physical design
of a multistore system has two decision components: what data to ma-
terialize (i.e., which materialized views) and where to materialize the
data (i.e., which store). Our primary focus in this paper is on the
where part since this is critical to good multistore query performance.
Furthermore, since the different stores are coupled together by a multi-
store execution engine, the decision of where to place the data creates
a technically interesting problem that has not been addressed in the
existing literature. Beyond its technical merits, we argue that the prob-
lem actually lies at the core of multistore system design — regardless
of how multistore systems are setup (i.e., tightly versus loosely cou-
pled) or the way they are used (i.e., enabling data analysis spanning



stores versus query acceleration). Without a well-tuned design, a mul-
tistore system will be forced to split query processing between the big
data store and the RDBMS in a way that does not leverage the full
capabilities of each system.

We introduce MISO, a MultIStore Online tuning algorithm, to “soup
up” big data query processing by tuning the set of materialized views
in each store. MISO maximizes the utilization of the existing high-
performance RDBMS resources, employing some of its spare capacity
for processing big data queries. Given that the RDBMS holds business
data that is very important to an organization, DBAs are naturally pro-
tective of RDBMS resources. To be sensitive to this concern, it is im-
portant that our approach achieves this speedup with little impact on
the RDBMS reporting queries. MISO is an adaptive and lightweight
method to tune data placement in a multistore system, and it has the
following unique combination of features:

• It works online. The considered workload is ad-hoc as the analysts
continuously pose and revise their queries. The multistore design
automatically adapts to the dynamically changing workload.

• It uses materialized views as the basic element of physical design.
The benefits of utilizing materialized views are that views encap-
sulate prior computation, and the placement of views across the
stores can obviate the need to do costly data movement on-the-fly
during query processing. Having the right views in the right store
at the right time creates beneficial physical designs for the stores.

• It relies solely on the by-products of query processing. Query pro-
cessing using HDFS (e.g., Hadoop jobs) materializes intermediate
results for fault-tolerance. Similarly, query processing in multi-
store systems moves intermediate results between the stores. In
both cases we treat these intermediate results as opportunistic ma-
terialized views, which can be strategically placed in the underly-
ing stores to optimize the evaluation of subsequent queries. These
views represent the current relevant data and provide a way to tune
the physical design almost for free, without the need to issue sep-
arate costly requests to build materialized views.

Online physical design tuning has been well-studied, but previous
works have not considered the multistore setting. Other previous work
has studied query optimization for multistore systems in the context
of a single query accessing data in different stores. In contrast, our
proposed technique allows the multistore system to tailor its physi-
cal design to the current query workload in a low-overhead, “organic”
fashion, moving data between the stores depending on common pat-
terns in the workload. A key metric for evaluating big data queries is
the time-to-insight (TTI) [13], since this metric represents the total
time to get answers from data — which includes more than query ex-
ecution time. TTI includes data-arrival-to-query time (the time until
new data is queryable), the time to tune the physical design, and the
query execution time. TTI represents a holistic time metric for ad-
hoc workloads over big data, and our approach results in significant
improvements for TTI compared to other multistore approaches.

In the following sections we describe the MISO approach to speed-
ing up big data queries by utilizing the spare capacity available in the
RDBMS, performing lightweight online tuning of the physical design
of the stores. In Section 2 we provide an overview of the related work,
and we describe our multistore system architecture in Section 3. We
describe the problem of multistore design and its unique challenges in
Section 4. In the remainder of the section we present MISO, which
solves the multistore design problem by tuning both stores. Since we
take an online approach, the design adapts to changing workloads.
Furthermore, as the design is opportunistic, MISO imposes little addi-
tional overhead. In Section 5 we provide experimental results showing
the benefits of MISO in improving TTI, up to 3.1×, and further an-
alyze where the improvements come from. Then in Section 5.4, we
show that MISO has very little impact on an RDBMS that is already

executing a workload of reporting queries. Finally, we summarize our
findings in Section 6.

2. RELATED WORK
Multistore query processing. Earlier work from Teradata [25] and

HadoopDB [2] tightly integrates Hadoop and a parallel data ware-
house, allowing a query to access data in both stores by moving (or
storing) data (i.e., the working set of a query) between each store as
needed. These approaches are based on having corresponding data
partitions in each store co-located on the same physical node. The
purpose of co-locating data partitions is to reduce network transfers
and improve locality for data access and loading between the stores.
However, this requires a mechanism whereby each system is aware
of the other system’s partitioning strategy; the partitioning is fixed,
and determined up-front. More recent work [9,22] presents multistore
query optimizers for Hadoop and a parallel RDBMS store. These sys-
tems “split” a query execution plan across multiple stores. Data is
accessed either in its native store, or via an external table declaration.
A single query is executed across both systems by moving the work-
ing set between stores during query processing. These systems repre-
sent “connector approaches” between Hadoop and an RDBMS, using
a data transfer mechanism such as Sqoop [4] (or their own in-house
equivalent).

Recent work on Invisible Loading [1] addresses the high up-front
cost of loading raw files (Hadoop data) into a DBMS (column-store).
In the spirit of database cracking [12], data is incrementally loaded
and reorganized in the DBMS by leveraging the parsing and tuple ex-
traction done by MR jobs, and a small fraction of the extracted data is
silently loaded by each MapReduce query. The data loaded represents
horizontal and vertical sub-partitions of the Hadoop base data. This
approach also represents opportunistic design tuning, but the views
belong to a very specific class, i.e., horizontal and vertical fragments
of base data. Furthermore, this approach requires the corresponding
processing nodes of each store to be co-located on the same physical
node (similar to the Teradata work). In this approach, the query accel-
eration obtained is primarily due to the improved data access times for
HadoopDB since data is stored as structured relations in an RDBMS
rather than flat files in HDFS. In contrast, our approach supports a
more general class of materialized views, which essentially allows us
to share computation across queries instead of only improving access
to base data. Moreover, we allow the big data system and the RDBMS
to remain separate without modifying either system or requiring them
to be tightly integrated.

Finally, multistore systems share some similarities with federated
databases in that both use multiple databases working together to an-
swer a single query. However, with a federated system there is typ-
ically a strong sense of data and system ownership, and queries are
sent to the location that owns the data to answer the query. With our
multistore scenario, the roles of the stores are different — queries are
posed on the base data in HDFS, while the RDBMS is only used as a
query accelerator.

Reusing MapReduce computations. Previous work has shown
that intermediate results materialized during query processing in
Hadoop can be cached and reused to improve query performance [10,
15]. The work in [10] reuses these results at the syntactic level. This
means that a new query’s execution plan must have an identical sub-
plan (operations and data files) to a previous query in order to reuse the
previous results. Some recent work [15] utilizes Hadoop intermediate
results as opportunistic materialized views at the semantic level and
reuses them by a query rewriting method. These methods all focus on
a single system and it is not straightforward to extend these approaches
to a multistore setup. In MISO we treat both the intermediate material-
izations in Hadoop and the working sets transferred during multistore
query processing as opportunistic materialized views, and we reuse
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Figure 2: Multistore System Architecture

them at a semantic level. We then use these views to tune the physical
design of both stores together.

Physical design tuning. Much previous work [5, 18, 19] has been
done on online physical design tuning for centralized RDBMS sys-
tems. The objective of online tuning is to minimize the execution cost
of a dynamically changing workload, including the cost to tune (recon-
figure) the physical design. New designs may be materialized in par-
allel with query execution or during a reconfiguration phase. A recon-
figuration phase may be time-constrained. For example, a new design
may be materialized during a period of low system activity. Each of
these prior works considers a single database system and uses indexes
as the elements of the design. Our work considers a multistore system
and utilizes opportunistic materialized views as the design elements.
Tuning a multistore system adds interesting dimensions to the online
tuning problem, particularly since data is being transferred between
stores (similar to reconfiguration) during query processing. Obtaining
good performance hinges upon a well-tuned design that leverages the
unique characteristics of the two systems.

Other recent work on tuning has addressed physical design for repli-
cated databases [8] where each RDBMS is identical and the workload
is provided offline. In contrast, our work addresses online workloads
and the data management systems in a multistore scenario are not iden-
tical. Moreover, with multistore processing the systems are not stand-
alone replicas but rather data (i.e., views) and computation may move
fluidly between the stores during query processing.

Recent work [16] has shown how to apply multi-query optimiza-
tion (MQO) methods to identify common sub-expressions in order to
produce a beneficial scheduling policy for a batch of concurrently ex-
ecuting queries. Due to the materialization behavior of MapReduce,
these approaches can be thought of as a form of view selection, since
the common sub-expressions identified are effectively beneficial views
for a set of in-flight queries. However, MQO approaches require that
the queries are provided up-front as a batch, which is very different
from our online case with ad-hoc big data queries; hence, MQO ap-
proaches are not directly applicable to our scenario.

To summarize, all previous work has focused on either multistore
processing for a single query or tuning a single type of data store.
By dynamically tuning the multistore physical design, our approach
utilizes the combination of these two stores to speed up a big data
query workload.

3. SYSTEM ARCHITECTURE AND MULTI-
STORE TUNING

In a multistore scenario there are two data stores, the big data store
and the RDBMS. In our system, the big data store is Hive (HV) and the
RDBMS is a commercial parallel data warehouse (DW) as depicted in
Figure 2. HV contains the big data log files, and DW contains ana-
lytical business data. While some multistore systems enable a single
query to access data that spans both stores, MISO accelerates big data
exploratory queries in HV by utilizing some limited spare capacity in
DW and tuning the physical design of the stores for a workload of
queries. In this way, MISO makes use of existing resources to benefit

big data queries. With this approach, DW acts as an accelerator in
order to improve the performance of queries in HV; later we show that
MISO achieves this speedup with very little impact on DW.

Figure 2 depicts our system architecture, containing the MISO
Tuner, the Query Optimizer, the Execution Layer, and the two stores
HV and DW. In our system, each store resides on an independent clus-
ter. HV contains log data while DW contains analytical data, but in
this work our focus is on accelerating big data queries posed only on
the log data. As indicated in the figure, each store has a set of mate-
rialized views of the base data (i.e., logs) stored in HV, and together
these views comprise the multistore physical design.

For fault-tolerance, Hadoop-based systems (e.g., HV) materialize
intermediate results during query execution, and we retain these by-
products as opportunistic materialized views. On the other hand, DW
products generally do not provide access to their intermediate materi-
alized results. However, if those results become available, then they
can also be used for tuning. In our system, we consider the class of op-
portunistic materialized views when tuning the physical design. It is
MISO Tuner’s job to determine the placement of these views across
the stores to improve workload performance. When placing these
views, each store has a view storage budget as indicated in the fig-
ure, and there is also a transfer budget when moving views across the
stores. These budgets limit the total size of views that can be stored
and transferred.

3.1 System Components

Data sets. The primary data source in our system is large log files.
Here we expect social media data drawn from sites such as Twitter,
Foursquare, Instagram, Yelp, etc. This type of data is largely text-
based with little structure. Logs are stored as flat HDFS files in HV in
a text-based format such as JSON or XML.

Queries. The input to the system is a stream of queries q1, q2, · · ·
as indicated in Figure 2. The query language is HiveQL, which repre-
sents a subset of SQL implemented by Hive (HV). Queries are declar-
ative and posed directly over the log data, such that the log schema
of interest is specified within the query itself and is extracted dur-
ing query execution. In HV, extracting flat data from text files is
accomplished by a SerDe (serialize/deserialize) function that under-
stands how to extract data fields from a particular flat file format (e.g.,
JSON). A query q may contain both relational operations and arbitrary
code denoting user-defined functions (UDFs). UDFs are arbitrary user
code, which may be provided in several languages (e.g., Perl, Python);
the UDFs are executed as Hadoop jobs in HV. Queries directly refer-
ence the logs and are written in HiveQL, the system automatically
translates query sub-expressions to a DW-compliant query when exe-
cuting query sub-expressions in DW. The processing location (DW or
HV) is hidden from the end user, who has the impression of querying
a single store.

Execution Layer. This component is responsible for forwarding
each component of the execution plan generated by the Query Op-
timizer to the appropriate store. A multistore execution plan may
contain “split points”, denoting a cut in the plan graph whereby
data and computation is migrated from one store to the other.

DW 

HV 

DW 

HV HV 
Since DW is used as a accelerator for
HV queries, the splits in a plan move
data and computation in one direction:
from HV to DW. It is the multistore
query optimizer’s job (described next)
to select the split points for the plan.
As an example, the figure alongside has
three panels, showing an execution plan
(represented as a DAG) and then two



possible split points indicated by the cuts. At each split point, the
execution layer migrates the intermediate data (i.e., the working set
corresponding to the output of the operators above the cut) and re-
sumes executing the plan on the new store. Note that in the second
panel, one intermediate data set needs to be migrated by the execu-
tion layer, while in the third panel two intermediate data sets need to
be migrated. When intermediate data sets are migrated during query
execution, they are stored in temporary DW table space (i.e., not cata-
logued) and discarded at the end of the query. The execution layer is
also responsible for orchestrating the view movements when changes
to the physical design are requested by the tuner. When views are mi-
grated during tuning, they are stored in permanent DW table space and
become part of the physical design until the next tuning phase.

Multistore Query Optimizer. This component takes a query q as
input, and computes a multistore execution plan for query q. The plan
may span multiple stores, moving data and computation as needed,
and utilizes the physical design of each store. Multistore query opti-
mizers are presented in [9, 22], and our implementation is similar to
that in [22]. As noted in [22,23], the design of an optimizer that spans
multiple stores must be based on common cost units (expected exe-
cution time) between stores, thus some unit normalization is required
for each specific store. Our multistore cost function considers three
components: the cost in HV, the cost to transfer the working set across
the stores, and the cost in DW, expressed in normalized units. For HV
we use the cost model given in [16] and for DW we use its own cost
optimizer units obtained from its “what-if” interface. We performed
experiments to calibrate each system’s cost units to query execution
time, similar to the empirical method used in [22]. As it turns out,
when the necessary data for q was present in DW, it was always faster
to execute q in DW by a very wide margin. Because the stores have
very asymmetric performance, the HV units completely dominate the
DW units, making a rough calibration/normalization of units sufficient
for our purposes.

Because the choice of a split point affects query execution time, it is
important to choose the right split points. The multistore query opti-
mizer chooses the split points based on the logical execution plan and
then delegates the resulting sub-plans to the store-specific optimizers.
The store in which query sub-expressions are executed depends on the
materialized views present in each store. Furthermore when determin-
ing split points the optimizer must also consider valid operations for
each store, such as a UDF that can only be executed in HV. Moving
a query sub-expression from one store to another is immediately ben-
eficial only when the cost to transfer and load data from one store to
another plus the cost of executing the sub-expression in the other store
is less than continuing execution in the current store. Furthermore,
due to the asymmetric performance between the stores we observed
that when the data (views) required by the sub-expression was already
present in DW, the execution cost of the sub-expression was always
lower in DW. The primary challenge for the multistore query opti-
mizer is determining the point in an execution plan at which the data
size of a query’s working set is “small enough” to transfer and load it
into DW rather than continue executing in HV.

In our implementation, we have added a “what-if” mode to the op-
timizer, which can evaluate the cost of a multistore plan given a hypo-
thetical physical design for each store. The optimizer uses the rewrit-
ing algorithm from [15] in order to evaluate hypothetical physical de-
signs being considered by the MISO Tuner.

MISO Tuner. This componentis invoked periodically to reorganize
the materialized views in each store based on the “latest traits” of the
workload. The tuner examines several candidate designs and analyzes
their benefit on a sliding window of recent queries (History in Fig-
ure 2) using the what-if optimizer. The selected design is then for-
warded to the execution layer, which then moves views from HV to

Figure 3: Execution time profile of all multistore plans for a single
query. Plans are ordered by increasing execution time.

DW and from DW to HV (indicated in Figure 2) as per the newly
computed design. The invocation of the MISO tuner, which we term a
reorganization phase, can be time-based (e.g., every 1h), query-based
(e.g., every n queries), activity-based (e.g., when the system is idle),
or a combination of the above. In our system, reorganizations are
query-based.

The View Transfer Budget is indicated in Figure 2 by the arrow be-
tween the stores. This represents the total size of views in GB trans-
ferred between the stores during a reorganization phase and is pro-
vided as a constraint to the tuner. The HV View Storage Budget and
the DW View Storage Budget are also indicated in the figure and sim-
ilarly provided as constraints to the tuner. These represent the total
storage allotted in GB for the views in each store. While DW rep-
resents a tightly-managed store, HV deployments are typically less
tightly-managed and may have more spare capacity than DW. For
these reasons, new opportunistic views created in HV between recon-
figurations are retained until the next time the MISO tuner is invoked,
while the set of views in DW is not altered except during reorgani-
zation phases. In any Hadoop configuration, there must be enough
temporary storage space to retain these materializations during nor-
mal operation, we only propose to keep them a little while longer –
until the next reorganization phase. Since the HV view storage budget
is only enforced at tuning time, a few simple policies can be consid-
ered if the system has limited temporary space: Reorganizations could
be done more frequently, a simple LRU policy could be applied to the
temporary space, or a small percentage of the HV view storage budget
could be reserved as additional temporary space.

3.2 Overview of Multistore Tuning
Tuning the physical design of a multistore system is important to

obtaining good query performance. In a multistore system, the query
optimizer can choose many different split points at which to migrate
computation from one store to the other during query evaluation. The
overall execution time of a query is dependent on the existing phys-
ical design of each store, and varies depending on which portion of
the query is evaluated in which store. A well-tuned physical design
enables query execution plans to migrate to the DW sooner rather than
later, thus making more extensive use of the DW’s superior query-
processing capabilities. In contrast, without a good physical design,
the high cost of data movement will cause a query to spend more time
in the slower HV store, which in turn provides limited opportunities
for optimization. We demonstrate this point with the following simple
experiment.

Figure 3 provides the execution time profiles (ordered from lowest
to highest) for all possible plans of a single query, where each plan rep-
resents a unique split. The query is a complex query from [14] (query
A1v1), that accesses social media data (e.g., Twitter, Foursquare),
has multiple joins, computes several aggregates, and contains UDFs.
These queries relate to marketing scenarios for a new product, and they
try to identify potential customers based on their interests as identified
in social media data. While the figure only shows one query, the trends
observed were typical of all queries that we tested. Each plan begins
execution in HV, and for each split point, the intermediate data is mi-



grated to DW where the remainder of the plan is executed. For each
plan, the stacked bar indicates the time spent executing in HV (red),
the time spent to DUMP (green) and then TRANSFER/LOAD (yel-
low) the intermediate data over the network into DW, and finally the
time spent executing in DW (blue).

The plan with the lowest execution time is on the far left of the
figure, marked B. This plan is only 10% faster than the HV-only exe-
cution plan marked H. The worst plan in the figure is on the far right,
at 28,000 seconds, and the bar is truncated here for display purposes.
This plan represents the earliest possible split point, using HV only as
an ETL engine to load all data into DW and then execute the query.
From these observations it is clear that multistore execution offers lit-
tle benefit for a single query (10% in the best case), and many multi-
store plans (those marked S) are far more expensive than the HV-only
plan. This is due to the very high cost to transfer and load data from
HV to DW, as can be seen in the yellow and green portions of the plans
marked S. Additionally, there is a clear delineation between “good”
plans (those to the left of S) and “bad” plans (those marked S).

We have found that the good plans all dump, transfer and then load
much smaller data sets into DW than the bad plans, as shown in Fig-
ure 3. Good plans represent splits where the size of the intermediate
data is small enough to offset the transfer and load costs. Unfortu-
nately, we typically observed that the working set size does not shrink
significantly until near the end of the query. This effect was also
observed in Bing MapReduce workflows [3] (i.e., “little data” case).
Another recent paper [22] examines a related experimental setup with
two stores, and their optimizer considers ping-ponging a query (multi-
ple sync/merges) back and forth across both stores. An examination of
their experimental results reveals that the queries with the best perfor-
mance are those that remain in Hadoop until the working set is small
before spilling their remaining computation to the DW; effectively de-
generating into the single-split multistore plans that we consider here.
Hence, a query is only able to utilize DW for a small amount of pro-
cessing, not benefiting much from DW’s superior performance.
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Tuning the physical design of HV and DW can
facilitate earlier split points for multistore query
plans. Better still, when the right views are present
a query can bypass HV and execute directly in
DW, thus taking advantage of DW’s superior perfor-
mance. The role of the tuner is to move the “right
views” into the “right store”. Again, we illustrate
this point with another experiment on the same mul-
tistore system. In the figure alongside, we consider
a workload of two exploratory queries, q1 and q2,
that correspond to A1v2 and A1v3 from the work-
load in [14]. These are subsequent queries issued by
the same data analyst, and thus have some overlap.
Query q1 is executed first, followed by q2, and each
query produces some opportunistic views when ex-
ecuted in HV.

The figure reports the total execution time for q1 followed by q2
using three different system variants. HV-ONLY represents an HV
system that executes both queries in their entirety and does not utilize
DW at all. MS-BASIC represents a basic multistore system without
tuning, and is the same as the setting in Figure 3. This system does not
make use of opportunistic views to speed up query processing. MS-
MISO represents our multistore system using the MISO Tuner. To
produce the MS-MISO result in the figure, we triggered a reorgani-
zation phase after q1 but before q2 executed. During reorganization,
the Tuner transfers views between the stores in order to create benefi-
cial designs for q2. In the figure, MS-BASIC is only about 8% faster
than HV-ONLY; while MS-MISO is about 2× faster than both HV-
ONLY and MS-BASIC. While this result is for 2 related queries, for a
larger workload MS-MISO results in up to 3.1× improvement later in
Section 5. MS-MISO’s improvement over MS-BASIC is because the

tuner created a new multistore physical design after q1, which enabled
q2 to take advantage of DW performance since the “right” views were
present in DW.

4. MISO TUNER
In this section we describe the details of the MISO Tuner compo-

nent shown in Figure 2. Because we address the online case where
new multistore designs will be computed periodically, we desire a so-
lution that is lightweight with low-overhead. This is achieved in the
following ways. Since we utilize opportunistic views, the elements
of our design are almost free, thus the tuner does not incur an initial
materialization cost for a view. The reorganization time is controlled
by the view transfer budget and view storage budgets for HV and DW.
The values for these constraints can be kept small, in order to restrict
the total tuning time. At the beginning of each reorganization phase,
the tuner considers migrating views between the stores based on the
recent workload history (indicated in Figure 2) and computes the new
physical designs for HV and DW, subject to the view storage budget
constraints and the view transfer budget.

Multistore systems notwithstanding, solving even a single physi-
cal design problem is computationally hard [6] because the elements
of the design can interact with one another. Commercial tools (e.g.,
IBM DB2 Design Advisor [24]) take a heuristic approach to the phys-
ical design problem for a single store by treating it as a variant of
the knapsack problem with a storage budget constraint. We similarly
treat the multistore design problem as a variant of a knapsack prob-
lem. Our scenario is different in that we have two physical designs
to solve, where each is dependent on the other, and each design has
multiple dimensions — a view storage budget constraint and a view
transfer budget constraint — that are consumed at different rates de-
pending on the current design of each store. Due to the hardness of
the problem, an optimal solution is impractical thus we take a heuris-
tic approach. In order to keep our approach lightweight, we develop
an efficient dynamic programming based knapsack solution.

4.1 Basic Definitions and Problem Statement
The elements of our design are materialized views and the universe

of views is denoted as V . The physical design of each store is de-
noted as Vh for HV, and Vd for DW, where Vh, Vd ⊆ V . The values
Bh, Bd denote the view storage budget constraints for HV and DW
respectively, and the view transfer budget for a reorganization phase
is denoted as Bt. As mentioned previously, reorganization phases oc-
cur periodically (e.g., after j queries are observed by the system), at
which point views may be transferred between the stores. The con-
straints Bh, Bd, and Bt are specified in GB.

LetM = 〈Vh, Vd〉 be a multistore design. M is a pair where the
first component represents the views in HV, and the second component
represents the views in DW. In this work we restrict the definition to
include only two stores, but the definition may be extended to include
addition stores in the more general case.

We denote the most recent n queries of the input stream as workload
W . A query qi represents the ith query in W . The cost of a query q
given multistore designM, denoted by cost(q,M), is the sum of the
cost in HV, the cost to transfer the working set of q to DW and the cost
in DW under a hypothetical designM. The evaluation metric we
use for a multistore designM is the total workload cost, defined as:

TotalCost(W,M) =

n∑
i=1

cost(qi,M). (1)

Intuitively, this metric represents the sum of the total time to process
all queries in the workload. This is a reasonable metric, although oth-
ers are possible. Note that the metric does not include the reorganiza-
tion constraint Bt since it is provided as an input to the problem.



Vh, Vd Design of HV and DW before reorg
Vcands Candidate views for M-KNAPSACK packing
V new
h , V new

d Design of HV and DW after reorg
V −d Views evicted from DW (= Vd − V new

d )
Bh, Bd, Bt View storage and transfer budgets
Brem

t Transfer budget remaining after DW design
sz(v), bn(v) Size and benefit of view v ∈ Vcands

Table 1: MISO Tuner variables.

The benefit of a view v ∈ V for a q query is loosely defined as
the change in cost of q evaluated with and without view v present in
the multistore design. Formally, benefit(q, v) = cost(q,M∪ v) −
cost(q,M), whereM∪ v means that v is added to both stores inM.

For a query q, a pair of views (a, b) may interact with one another
with respect to their benefit for q. The interaction occurs when the
benefit of a for q changes when b is present. We employ the degree
of interaction (doi) as defined in [20], which is a measure of the mag-
nitude of the benefit change. Furthermore, the type of interaction for
a view a with respect to b may be positive or negative. A positive
interaction occurs when the benefit of a increases when b is present.
Specifically, a and b are said to interact positively when the benefit
of using both is higher than the sum of their individual benefits. In
this case, we want to pack both a and b in the knapsack. A negative
interaction occurs when the benefit of a decreases when b is present.
As an example, suppose that either a or b can be used to answer q.
Hence both are individually beneficial for q, but suppose that a offers
slightly greater benefit. When both views are present, the optimizer
will always prefer a and thus never use b, in which case the benefit
of b becomes zero. In this case packing both a and b in the knap-
sack results in an inefficient use of the view storage budget. We will
utilize both the doi and the type of interaction between views when
formulating our solution later.

Given our definitions of multistore design, the constraints, cost met-
ric, and workload, we can define the multistore design problem.

Multistore Design Problem. Given an observed query stream,
a multistore design M = 〈Vh, Vd〉, and a set of design con-
straints Bh, Bd, Bt, compute a new multistore design Mnew =
〈V new

h , V new
d 〉, where V new

h , V new
d ⊆ Vh∪Vd, that satisfies the con-

straints and minimizes future workload cost.

4.2 MISO Tuner Algorithm
Because we desire a practical solution to the multistore design prob-

lem, we adopt a heuristic approach in the way we handle view inter-
actions and solve the physical design of both stores. In this section we
motivate and develop our heuristics and then later in the experimen-
tal section we show that our approach results in significant benefits
compared to simpler tuning approaches.

The workload we address is online in nature, hence reorganization
is done periodically in order to tune the design to reflect the recent
workload. Our approach is to obtain a good multistore design by peri-
odically solving a static optimization problem where the workload is
given. At each reorganization phase, the tuner computes a new multi-
store designMnew = 〈V new

h , V new
d 〉 that minimizes total workload

cost, as computed by our cost metric TotalCost(W,Mnew). Note
that minimizing the total workload cost here is equivalent to maxi-
mizing the benefit ofMnew for the representative workload W . The
MISO Tuner algorithm is given in Algorithm 1, and its variables are
defined in Table 1. We next give a high-level overview of the algo-
rithm’s steps and then provide the details in the following sections.

The first two steps given in lines 3 and 4 handle interactions between
views as a pre-processing step before computing the new designs. The
tuner algorithm begins by grouping all views in the current designs Vh

and Vd into interacting sets (line 3). The goal of this step is to iden-
tify views that have strong positive or negative interactions with other
views in V . At the end of this step, there are multiple sets of views,

Algorithm 1 MISO Tuner algorithm
1: function MISO_TUNE(〈Vh, Vd〉, W , Bh, Bd, Bt)
2: V ← Vh ∪ Vd

3: P ← COMPUTEINTERACTINGSETS(V )
4: Vcands ← SPARSIFYSETS(P )
5: V new

d ← M-KNAPSACK(Vcands, Bd, Bt)
6: Brem

t ← Bt −
∑

v∈Vh∩V new
d

sz(v)

7: V new
h ← M-KNAPSACK(Vcands − V new

d , Bh, B
rem
t )

8: Mnew ← 〈V new
h , V new

d 〉
9: returnMnew

10: end function

where views within a set strongly interact with each other, and views
belonging to different sets do not. We sparsify each set by retaining
some of the views and discarding the others (line 4). To sparsify a
set, we consider if the nature of the interacting views within a set is
positive or negative. If the nature of the interacting views is strongly
positive, then as a heuristic, those views should always be consid-
ered together since they provide additional benefit when they are all
present. Among those views, we treat them all as a single candidate.
If the nature of the interacting views is strongly negative, those views
should not be considered together forMnew since there is little addi-
tional benefit when all of them are present. Among those views, we
choose a representative view as a candidate and discard the rest. We
describe these steps in detail in Section 4.3.

After the pre-processing step is complete, the resulting set of can-
didate views Vcands contains views that may be considered indepen-
dently when computing the new multistore design, which is done by
solving two multidimensional knapsack problems in sequence (lines 5
and 7). The dimensions of each knapsack are the storage budget and
the transfer budget constraints. First on line 5, we solve an instance
of a knapsack for DW, using view storage budget Bd and view trans-
fer budget Bt. The output of this step is the new DW design, V new

d .
Then on line 7, we solve an instance of a knapsack for HV, using view
storage budget Bh and any view transfer budget remaining (Brem

t )
after solving the DW design. The output of this step is the new HV
design, V new

h . The reason we solve the DW design first is because
it can offer superior execution performance when the right views are
present. With a good DW design, query processing can migrate to
DW sooner thus taking advantage of its query processing power. For
this reason, we focus on DW design as the primary goal and solve this
in the first phase. After the DW design is chosen, the HV design is
solved in the second phase. In this two-phase approach, the design of
HV and DW can be viewed as complimentary, yet formulated to give
DW greater importance than HV as a heuristic. We describe the two
knapsack packings in detail in Section 4.4.

4.3 Handling View Interactions
Here we describe our heuristic solution to consider view interac-

tions since they can affect knapsack packing. For example if a view
va is already packed, and a view vb is added, then if an interaction
exists between va and vb, the benefit of va will change when vb is
added. Our heuristic approach only considers the strongest interac-
tions among views in V , producing a set of candidate views whereby
we can treat each view’s benefit as independent when solving the
knapsack problems. This is because a dynamic programming formula-
tion requires that the benefit of items already present in the knapsack
does not change when a new item is added. We use a two-step ap-
proach to produce the candidate views Vcands that will be used during
knapsack packing, described below.

Before computing the interacting sets, we first compute the ex-
pected benefit of each view by utilizing the predicted future benefit
function from [18]. The benefit function divides W into a series of
non-overlapping epochs, each a fraction of the total length of W . This
represents the recent query history. In this method, the predicted future
benefit of each view is computed by applying a decay on the view’s



benefit per epoch — for each q ∈W , the benefit of a view v for query
q is weighted less as q appears farther in the past. The outcome of the
computation is a smoothed averaging of v’s benefit over multiple win-
dows of the past. In this way, the benefit computation captures a longer
workload history but prefers the recent history as more representative
of the benefit for the immediate future workload.

Compute Interacting Sets. To find the interacting sets, we
use the method from [19] to produce a stable partition P =
{P1, P2, . . . , Pm} of the candidate views V , meaning views within
a part Pi do not interact with views in another part Pj . In this method,
the magnitude of the interaction (i.e., change in benefit) between views
within each part Pi is captured by doi [20]. When computing doi,
we slightly modify the computation to retain the sign of the benefit
change, where the sign indicates if the interaction is positive or neg-
ative. For a pair of views that have both positive and negative inter-
actions, the magnitude is the sum of the interactions, and the sign of
the sum indicates if it is a net positive or negative interaction. The
partitioning procedure preserves only the most significant view in-
teractions, those with magnitude above some chosen threshold. The
threshold has the effect of ignoring weak interactions. The value of
the threshold is system and workload dependent, but should be suffi-
ciently large enough to result in parts with a small number (e.g., 4 in
our case) of views thus only retaining the strongest interactions.

Since the parts are non-overlapping (i.e., views do not interact
across parts), each part may be considered independently when pack-
ing M-KNAPSACK. This is because the benefit of a view in part Pi is
not affected by the benefit of any view in part Pj , where Pi 6= Pj . At
this point however, some parts may have a cardinality greater than one,
so we next describe a method to choose a representative view among
views within the same part.

Sparsify Sets. To sparsify the parts, we first take account of posi-
tively interacting views, then negatively interacting views. We exploit
positive interactions by applying a heuristic to ensure that views that
have a large positive interaction are packed together in the knapsack.
Within each part, view pairs with positive interactions are “merged”
into a single knapsack item, since they offer significant additional ben-
efit when used together. The new item has a weight equal to the sum
of the size of both views, and the benefit is the total benefit when both
views are used together. This merge procedure is applied recursively
to all positively interacting pairs within each part, in decreasing order
of edge weight. Merging continues until there are no more positively
interacting pairs of views within the part.

After applying the merge procedure, all parts with cardinality
greater than 1 contain only strongly negative interacting views. Our
next heuristic is to not pack these views together in the knapsack, but
select one of them as a representative of the part. This is because pack-
ing these views together is an inefficient use of knapsack capacity. To
choose the representative, we order items in the part by decreasing
benefit per unit of weight and only retain the top item as a representa-
tive of the part. This greedy heuristic is commonly used for knapsack
approaches to physical design [7, 24] and we use it here for choosing
among those views with strong negative interactions within a part. The
procedure is applied to each part until all parts have a single represen-
tative view. After these steps, the resultant partition P contains only
singleton parts. These parts form Vcands and are treated as indepen-
dent by M-KNAPSACK.

4.4 MISO Knapsack Packing
During each reorganization window, the MISO Tuner solves two in-

stances of a 0-1 multidimensional knapsack problem (M-KNAPSACK
henceforward); the first instance for DW and the second instance for
HV. Each instance is solved using a dynamic programming formula-
tion. At the beginning of each reorganization window, note that Vh

includes all views added to the HV design by the MISO tuner during
the previous reorganization window as well as any new opportunistic
views in HV created since the last reorganization. During reorganiza-
tion, the MISO tuner computes the new designs V new

h and V new
d for

HV and DW respectively. Since the DW has better query performance,
as a first heuristic MISO solves the DW instance first resulting in the
best views being added to the DW design. Furthermore, we ensure
Vh ∩ Vd = ∅ to prevent duplicating views across the stores. Although
this is also a heuristic, our rationale is it potentially results in a more
“diverse” set of materialized views and hence better utilization of the
limited storage budgets in preparation for an unknown future work-
load. If desired, this property could be relaxed by including all views
in Vcands when packing both HV and DW.

As an additional heuristic we do not limit the fraction of Bt that
can be consumed when solving the DW design in the first phase. Any
remaining transfer budget Brem

t can then be used to transfer views
evicted from DW to HV. This means that all of the transfer budget
could potentially be consumed during the first phase when transfer-
ring views to DW. Alternatively, we could reserve a fraction of Bt for
transfers in each direction, although this too would be a heuristic.

4.4.1 Packing DW M-Knapsack
In this phase, the target design is V new

d , and the M-KNAPSACK di-
mensions are Bd and Bt. There are two cases to consider when pack-
ing DW. Views in HV (Vh) will consume the transfer budget Bt (Case
1), while views in DW (Vd) will not (Case 2). The candidate views are
Vcands = Vh ∪ Vd. The variable k denotes the kth element in Vcands

(i.e.,view vk), the order of elements is irrelevant. The recurrence rela-
tion C is given by the following two cases.

Case 1: vk ∈ Vh applies when view vk is present in HV.

C(k,Bd, Bt) =



C(k − 1, Bd, Bt) ; sz(vk) > Bt

max

{
C(k − 1, Bd, Bt),

C(k − 1, Bd − sz(vk), Bt − sz(vk)) + bn(vk)

; sz(vk) 6 Bt, sz(vk) 6 Bd

In this case, either element k does not fit in Bt (since sz(vk) > Bt),
and if so, skip element k and continue. Otherwise, k does fit in Bt

and Bd (since sz(vk) 6 Bt, and sz(vk) 6 Bd), and if so take the max
value of either (a) skip element k and continue, or (b) add element
k to M-KNAPSACK, subtract its size from Bt and Bd, accumulate its
benefit (bn(vk)), and continue.

Case 2: vk /∈ Vh applies when view vk is not in HV.

C(k,Bd, Bt) =



C(k − 1, Bd, Bt) ; sz(vk) > Bd

max

{
C(k − 1, Bd, Bt),

C(k − 1, Bd − sz(vk), Bt) + bn(vk)

; sz(vk) 6 Bd

In this case, either element k does not fit in Bd (since sz(vk) > Bd),
and if so, skip element k and continue. Otherwise, k does fit in Bd

(since sz(vk) 6 Bd), and if so take the max value of either (a) skip el-
ement k and continue, or (b) add element k to M-KNAPSACK, subtract
its size from Bd, accumulate its benefit (bn(vk)), and continue. At the
end of this first phase the design of DW, V new

d , is complete.

4.4.2 Packing HV M-Knapsack
In this phase, the target design is V new

h , and the M-KNAPSACK di-
mensions are Bd and Brem

t , and V −d represents the views evicted from
the DW which are now available for transfer back to HV. The solution
is symmetric to Phase 1, with modified inputs. The value Bt is ini-
tialized to Brem

t . The candidate views are those remaining in Vh and
those evicted from DW (V −d ); therefore Vcands = (Vh∪Vd)−V new

d .
We similarly have 2 cases, defined in Phase 2 as:



• Case 1: vk ∈ V −d applies when view vk was evicted from DW.

• Case 2: vk /∈ V −d applies when view vk was not evicted from DW.

As before, these cases indicate whether a view needs to be moved
or not. The recurrence relations from Phase 1 can now be used with
these modified cases.

The complexity of our knapsack approach is O(|V | · Bt
d
· Bd

d
+ |V | ·

Bt
d
· Bh

d
), where d represents the discretization factor (e.g., 1 GB).

By discretizing the storage and transfer budgets, this approach can be
made efficient in practice and suitable for our scenario that requires
periodically recomputing new designs.

5. EXPERIMENTAL STUDY
In this section we present an experimental evaluation of the effec-

tiveness of MISO for speeding up multistore queries. First we evaluate
MISO in a multistore system in the absence of any other workload on
DW in order to better understand the performance of our tuning tech-
niques. Later we perform a more realistic evaluation of MISO by using
a DW with limited spare capacity by running a background workload
on DW. We then measure the impact of the multistore queries on the
DW background workload and vice-versa. In Section 5.1 we describe
the experimental methodology. In Section 5.2 we compare MS-MISO
to several other system variants to highlight its benefit for multistore
query processing. Then in Section 5.3 we compare the behavior MS-
MISO to several possible multistore tuning algorithms. Lastly in Sec-
tion 5.4, to evaluate MS-MISO in a realistic scenario we model a DW
with an existing business workload and show the impact of executing
multistore queries on the DW.

5.1 Methodology

Data sets and workloads. Our evaluation utilizes three data sets:
a 1 TB Twitter data stream of user “tweets”, a 1 TB Foursquare data
stream of user “check-ins”, and a 12 GB Landmarks data set repre-
sent static data containing geographical information about locations
of popular interest. The identity of the user is common across Twit-
ter and Foursquare logs, while the checkin location is common across
the Foursquare and Landmarks logs. The data sets are stored in their
native JSON format as logs in HDFS.

Our workload consists of 32 complex analytical queries given
in [14] that access social media data and static historical data, for
restaurant marketing scenarios. The queries model eight data analysts,
each posing and iteratively refining a query multiple times during their
data exploration. Each analyst (referred to as Ai for Analyst i) evolves
a query through four versions denoted as Aiv1, Aiv2, Aiv3, Aiv4. An
evolved query version Aiv2 represents a mutation of the previous ver-
sion Aiv1, as described in [14], thus there is some overlap between
queries. The queries contain relational operators as well as UDFs, and
the queries are written in HiveQL with UDFs included via the Hive-
CLI.

Stores. We utilize two distinct data stores: a Hive store (HV) and
a parallel data warehouse (DW). Each store is a cluster of nodes, and
the clusters are independent. The clusters are connected via 1GbE net-
work and reside on adjacent racks. Each node has the same hardware:
2 Xeon 2.4GHz CPUs (8 cores), 16 GB of RAM, and exclusive access
to its own disk (2TB SATA 2012 model). Additionally, the head nodes
each have another directly attached 2 TB disk for data staging (used for
data transfers and loading between the stores). HV runs Hive version
0.7.1 and Hadoop version 0.20.2, while DW runs the latest version of
a widely-used, mature commercial parallel database (row-store) with
horizontal data partitioning across all nodes. The HV cluster has 15
machines and the DW cluster has 9 machines. The HV cluster is 1.5×
the size of the DW cluster since HV is less expensive than DW and
thus in a realistic setting would typically be larger.
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Figure 4: Performance results for 5 system variants.

Experimental parameters. For some experiments we vary the
view storage budgets Bh, Bd and the view transfer budget Bt. Bh, Bd

are varied as a fraction of the base data size in each store. Because the
log data is stored in HV, we consider its base data size to be 2TB cor-
responding to the size of the logs. Because there is no log data stored
in DW, we consider its “base data” size to be 200 GB corresponding to
the relevant portion of the log data accessed by the queries. For exam-
ple, Bh = 2× is 4TB, whereas Bd = 2× is 400GB. Bt is expressed
in GB representing the size of the data transferred between the stores
during each reorganization phase.

System variants. We evaluate the workload on several system vari-
ants described below. Note that all base data (logs) is stored in HV.

• HV-ONLY is the Hive store. Queries complete their entire execu-
tion in the 15 node HV store only.

• DW-ONLY is the data warehouse store. Queries complete their
entire execution in the 9 node DW store only. Prior to query exe-
cution, we ETL the subset of the log data accessed by the queries
using HV as an ETL engine. Note that using Hive or Pig for ETL
is becoming a common industry practice (e.g., Netflix, Yahoo, In-
tel). 1 Any UDFs that do not execute in DW are applied as part of
the ETL process in HV, before loading into DW.

• HV-OP is an HV store that retains opportunistic views and rewrites
queries using these views, with the method from [15]. When views
exceed the view storage budget, they are evicted using an LRU
replacement policy. Queries complete their entire execution in the
15 node HV store only.

• MS-BASIC is a basic multistore system, that does not make use
of opportunistic views. Queries may execute in part on both the
15 node HV store and the 9 node DW store as determined by the
optimizer.

• MS-MISO is our multistore system that uses the MISO Tuner,
which determines the placement of views in each store. Queries
may execute in part on both the 15 node HV store and 9 node DW
store, as determined by the optimizer which takes into account the
current placement of views in each store. Reorganization phases
(R) occur every 1/10 of the full workload, which in this case is
after every 3 queries. When computing the expected future benefit
(Section 4.3), we use a query history length of 6 and epoch length
of 3 queries. During reorganizations, no queries are executed and
MISO completes all view movements, after which time query ex-
ecution begins again.

1http://techblog.netflix.com/2013/01/
hadoop-platform-as-service-in-cloud.html,
http://developer.yahoo.com/blogs/hadoop/
pig-hive-yahoo-464.html, http://hadoop.intel.com/
pdfs/ETL-Using-Hadoop-on-Intel-Arch.pdf
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Figure 5: CDF plots as a function of percent workload complete for (a) TTI and (b) query execution time distribution.

Metrics. Our primary metric is TTI , representing the total elapsed
time from workload submission to workload completion. TTI is de-
fined as the cumulative time of loading data, transferring data during
query execution, tuning the systems, and executing the queries. Wher-
ever relevant, we break down TTI into the following components.
1. HV-EXE is the cumulative time spent executing queries in HV.

2. DW-EXE is the cumulative time spent executing queries in DW.

3. TRANSFER is the cumulative time for transferring (and loading)
data between the stores during multistore query execution.

4. TUNE is the cumulative time spent computing new designs by a
tuning algorithm, moving views between stores, and creating any
recommended indexes for the views in DW.

5. ETL is the time spent loading the relevant data into DW using HV
as an ETL engine before executing the workload. ETL time is only
applicable to the DW-ONLY system variant.

5.2 Main Results
We first summarize the main results showing how MS-MISO out-

performs other system variants. Figure 4 compares MS-MISO with
the 4 other system variants – HV-ONLY, DW-ONLY, MS-BASIC, and
HV-OP. In this experiment, HV-OP has a view storage budget of 2×
on HV, and views are retained in HV within the storage budget using
a simple LRU caching policy. MS-MISO has storage budgets Bh and
Bd of 2× and Bt of 10GB. The systems variants are shown along the
x-axis, and the y-axis reports TTI in seconds. For MS-MISO, TTI
also includes time to compute new designs as well as the time spent
moving views during reorganization phases. HV-ONLY represents the
native system for our Hive queries, thus we use it as the baseline for
comparing the other system variants.

Figure 4 shows MS-MISO has the best performance in terms of
TTI, and DW-ONLY has the worst performance. DW-ONLY is actu-
ally 3% slower than HV-ONLY. This is because the vast majority of
TTI for DW-ONLY is spent in the ETL phase, while the query exe-
cution time (DW-EXE) only constitutes a small fraction of the TTI .
Although ETL is very expensive, it is a one-time process in our sys-
tem and the cost is amortized by the benefit DW provides for all the
queries in the workload. Clearly DW-ONLY would provide greater
benefit for a longer workload. However, making this high up-front
time investment to ETL all of the data is difficult to justify due to the
exploratory nature of the queries. MS-BASIC offers limited perfor-
mance improvement over HV-ONLY, only 19%, or a 1.2× speedup.
This is due to the high cost of repeatedly transferring data between
the stores for each query. Since the data transferred and loaded is not
retained after a query completes, subsequent queries do not benefit
from this effort. HV-OP shows a 59% improvement over HV-ONLY,
representing a 2.4× speedup. This improvement is attributable to op-
portunistic views retained during query processing in HV. MS-MISO
has a 77% improvement over HV-ONLY, representing a speedup of
4.3×. MS-MISO also results in a 68% improvement over MS-BASIC

(3.1×), and a 44% improvement over HV-OP (1.8×). These results
show that MS-MISO is able to utilize both the opportunistic views and
DW effectively to speed up query processing.

The improvement of MS-MISO over HV-OP and MS-BASIC can
be attributed to the following two reasons. First, it is able to load the
right views into the right store during its reorganization phases. The
reorganization phases allow MS-MISO to tune both stores periodically
as the workload changes dynamically. This is especially important for
exploratory queries on big data, since the queries and the data they
access are not known up-front. Second, by performing lightweight pe-
riodic reorganization, MS-MISO is able to benefit from DW’s superior
query processing power. Furthermore, these two factors are relevant
even with small storage budgets. For example, when we repeat this
experiment using Bh and Bd equal to 0.125×, MS-MISO still results
in 59% improvement over HV-ONLY (2.4× speedup). Next we pro-
vide a breakdown of the performance of MS-MISO to offer insights
into how the combination of these two factors results in better perfor-
mance.

5.2.1 Breakdown of TTI
To further breakdown the previous results from Figure 4, Figure 5

reports the cumulative distribution plots (CDF) for (a) TTI , and (b)
query execution time for the five system variants. Figure 5(a) shows
TTI along the y-axis, and the number of queries completed on the
x-axis. A point (x, y) in this figure indicates that x queries had a total
TTI of no more than y seconds. DW-ONLY has the worst TTI due
to its significant delay before any query can begin execution – the first
query can only start after the ETL completes at 348,000 seconds. In
contrast, HV-ONLY, HV-OP, MS-BASIC, and MS-MISO allow users
to start querying right away, although with varying performance. MS-
BASIC and HV-ONLY have similar performance, again indicating that
MS-BASIC is not able to make effective use of DW because it only
considers a single query at a time and does not perform any tuning.
HV-OP has the second best TTI due to its effective use of opportunis-
tic views. MS-MISO has the fastest TTI among all system variants
while still offering the benefits of immediate querying.

Figure 5(b) shows the percent of queries with execution time less
than 10, 100, 1,000, 2,000 and so on until 45,000 seconds. To gain
insight on how the queries perform, we report query execution time
only, which does not include any ETL time or tuning time. Clearly
DW-ONLY has the best query performance (top-most curve) with 84%
of queries completing in less than 100 seconds and all the queries
finishing within 1,000 seconds. Furthermore, the DW-ONLY curve
shows that nearly 65% of queries complete within 10 seconds, and
90% within 100 seconds. In contrast, HV-ONLY performs worst
(bottom-most curve) with less than 3% of queries completing within
1,000 seconds. The systems near the bottom of the graph, HV-ONLY,
MS-BASIC, and HV-OP, have no queries that execute in less than
100 seconds. The systems near the top of the graph, DW-ONLY and
MS-MISO, complete at least 30% of their queries in less than 100
seconds. While it is not surprising that DW-ONLY outperforms MS-
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Figure 6: Breakdown of execution time into DW-EXE, HV-EXE and Transfer time components for queries from Figure 5(b); (a) MS-
BASIC, (b) MS-MISO for 0.125× storage budget, and (c) MS-MISO for 2× storage budget.

MISO in terms of its post-ETL query performance, DW-ONLY is no
longer competitive when ETL time is included. This shows that the
lightweight adaptive tuning approach of MS-MISO is able to utilize
the query processing power of DW without incurring the high up front
cost of the ETL process.

5.2.2 Breakdown of Store Utilization
Next we highlight why MS-MISO performs better than MS-BASIC

by examining the amount of time queries spend in each store. For each
system in Figure 6, the y-axis indicates the fraction of time each query
spends in HV, DW, or transferring data. For each system we rank the
32 queries by their DW utilization percent, and assign query rank 1 to
the query that has the highest DW utilization, and rank 2 to the query
with the next highest DW utilization; the x-axis indicates the query
rank. Because the utilization trends stabilize after 15–20 queries, we
truncate the x-axis in each figure.

Figure 6 shows this breakdown for three system variants – MS-
BASIC in (a), MS-MISO with 0.125× view storage budget in (b), and
MS-MISO with 2× view storage budget in (c). For MS-BASIC, only
2 queries spend the majority of their execution time in DW. In con-
trast, 9 of the queries in MS-MISO with the 0.125× storage budget
spend the majority of their total execution time in DW. This increases
to 14 queries when the MS-MISO storage budget is increased to 2×.

Another way of quantifying DW utilization for each system is to
consider the total execution time spent in HV versus DW for the first
fastest queries in the workload, i.e., query ranks 1–16 in each fig-
ure. For queries ranked beyond 16, the HV-EXE component domi-
nates most of a query’s execution time, which does not illuminate DW
utilization at all. With MS-BASIC in Figure 6(a), for every second
spent in DW the queries spend 55 seconds in HV. With MS-MISO in
Figure 6(b), for every 1 second spent in DW the queries only spend
1.6 seconds in HV. With MS-MISO in Figure 6(c), for every 1 second
spent in DW the queries only spend 0.12 seconds in HV. This break-
down shows that MS-MISO is able to utilize DW more effectively than
MS-BASIC, and increasing the storage budget for MS-MISO further
increases DW utilization.

Finally, a different way to to examine store utilization is by report-
ing the ratio of plan operators executed by each store for each of the
32 queries. For MS-BASIC the best splits for all 32 queries were typi-
cally about 2/3 of the operators in HV and 1/3 in DW. For MS-MISO,
an overview of the 32 splits is roughly as follows. For the fastest
9 queries, the split was 0/3 HV and 3/3 DW. For the next-fastest 20
queries, the average split was 1/3 HV and 2/3 DW. For the remaining
3 queries the average split was around 2/3 HV and 1/3 DW. Note that
splits do not correlate exactly with plan execution times in Figure 6(b)
due to the asymmetric performance of the stores.

5.3 Tuning Algorithm Comparisons
In this section we evaluate MS-MISO against four other possible

tuning techniques for multistore physical design.

• MS-BASIC: Performs no tuning (i.e., does not use views).
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Figure 7: TTI Comparison of multistore tuning techniques.
• MS-OFF: Performs offline tuning, where it is given the entire

workload up-front and tunes the stores one time by choosing the
most useful set of views for the workload. This approach repre-
sents what is possible with current design tools and is provided
only as a point of reference to show the performance trends.

• MS-LRU: Performs “passive” tuning by retaining working sets
transferred between the stores during query execution as “views.”
LRU and its many variants are access-based approaches and pro-
vide a simple way of deciding which views to retain within a lim-
ited storage budget.

• MS-MISO: Performs online tuning using our MISO Tuner.

• MS-ORA: Performs online tuning using our MISO Tuner also, but
the actual future workload is provided rather than predicted. This
technique (“oracle”) is just provided as a point of reference as the
best performance possible for the MISO Tuner.

Tuning parameters for MS-OFF, MS-LRU, MS-MISO, and MS-
ORA are set to Bh = 0.125×, Bd = 0.125×, and Bt = 10 GB
since these budgets represent a more constrained environment.

Figure 7 compares the performance of the tuning techniques de-
scribed above. Among all techniques, MS-BASIC performs the worst.
This shows that multistore query processing without tuning does not
perform as well as any of the other tuning techniques. Among the
techniques that perform tuning, MS-OFF has the worst performance
because the small storage budgets are insufficient to store all bene-
ficial views for the entire workload. MS-MISO provides a 60% im-
provement over MS-OFF since it is able to adapt the physical design
to the changing workload. Furthermore, MS-MISO results in a 56%
improvement over MS-LRU because MS-LRU does not explicitly con-
sider view benefits or interactions. This is because MS-LRU is an
access-based approach whereas MS-MISO is a cost-benefit based ap-
proach that considers view benefits and interactions. Notice there is a
large transfer time for MS-LRU, indicating that this method does not
do a good job of retaining beneficial views. Finally, MS-MISO is 32%
worse than MS-ORA, since the actual future workload is unknown to
MS-MISO.

5.3.1 Varying the Tuning Parameters
Next, we analyze the performance of MS-MISO, MS-OFF, and MS-

LRU under varying tuning constraints. Figure 8 shows the perfor-
mance of MS-OFF, MS-LRU, and MS-MISO as we vary the storage
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Figure 8: Varying the view storage budgets Bh and Bd, while
transfer budget Bt is held constant at 10GB.
budget parameters Bh and Bd from 0.125× to 4.0×. Bt was kept
fixed at 10 GB. The y-axis reports TTI , and the x-axis shows the
storage budgets on each store.

MS-MISO performs the best for all storage budgets, including the
larger storage budgets. Among the smaller budgets of 0.125× and
0.5×, both MS-OFF and MS-LRU perform significantly worse than
MS-MISO. However, the performance of MS-OFF and MS-LRU im-
proves with increasing storage budgets. For example, at 1× budget,
MS-MISO is 50% better than MS-LRU but only 7% better than MS-
OFF, while with larger budgets the performance of all three methods
begins to converge. The tuning techniques begin to have similar per-
formance with larger storage budgets (2–4×) since there is plenty of
available storage space to retain many views in support of the recent
workload.

5.4 Utilizing DW with Limited Spare Capacity
Now that we have shown the basic performance tradeoffs with MS-

MISO, we evaluate MS-MISO in a realistic scenario with a DW that
has limited spare capacity – that is, a DW that is executing a work-
load of reporting queries. As DW is a tightly-controlled resource, it is
important to understand how our method affects the DW. To do this,
we measure the impact of the multistore query workload on the DW
reporting queries as well as the impact of the DW queries on the mul-
tistore query workload. These experiments are important because they
model a realistic deployment scenario for a multistore System where
an organization has two classes of stores and may want to utilize their
existing DW resources to speed up the big data queries in HV.

To model a running DW, we consider varying amounts of spare IO
and CPU capacity by executing a reporting query workload in DW. We
examine four cases: A DW with 20% spare IO capacity, 20% spare
CPU capacity, 40% spare IO capacity, and 40% spare CPU capacity.
The spare capacities are measured as the amount of unused resources
as reported by Linux IOstat; for example, 60% CPU consumption in-
dicates a 40% spare CPU capacity. We measure these values for each
of the 9 machines in the DW cluster every 10 seconds, and report the
average value. In this scenario, we execute a background DW work-
load on the DW cluster that consumes a fixed proportion of IO or CPU
resources. Below, we present the results for one case: a DW with
40% spare IO capacity. The remaining three cases showed very simi-
lar trends and hence are omitted. However, Table 2 below summarizes
all of the results.

The multistore query workload is then executed as a single stream of
32 queries. As the multistore query workload is executed, we measure
its impact on the background DW queries by the amount of slowdown
of the background queries, representing the impact that the multistore
workload has on the reporting queries running in DW. Conversely, we
also measure the impact of the DW queries on the multistore workload.

To create a DW environment with limited IO or CPU resources, we
use a single TPC-DS query and run multiple parameterized versions
of the query in parallel in order to consume a fixed amount of each re-
source. The queries are used to control the amount of spare IO or CPU
capacity. To do this, we first load a 1TB scale TPC-DS dataset into
DW. We then selected 2 queries, query templates q3 and q83, since
query q3 is IO intensive and query q83 is CPU intensive. To obtain

40% spare IO capacity in DW, we continuously execute one instance
of q3 (which consumes 60% of the IO resources). To obtain 20% spare
IO capacity, we continuously execute three instances of q3. Similarly,
to obtain 40% spare CPU capacity in DW, we continuously execute
two instances of q83 (which consumes 60% of the CPU resources).
To obtain 20% spare CPU capacity, we continuously execute three
instances of q83. All views transferred during multistore query execu-
tion are kept in a temporary table space, whereas views transferred by
MS-MISO during reorganization are stored in permanent table space.

Figure 9(a) reports the CPU and IO load for the DW cluster with
40% spare IO capacity. The x-axis corresponds to time steps during
experiment, and the y-axis indicates CPU and IO resource consump-
tion. Initially, the IO is stable at 60% and the CPU consumption is
at about 20%, then the multistore queries begin executing. Multistore
queries may spend a lot of their execution time in HV, during which
time DW continues executing only its background workload.

The peaks in Figure 9(a) (e.g., marked R, T) correspond to peri-
ods of either view transfers during reorganization (R) by MS-MISO
or working set transfers during query processing (T), while the flat-
ter areas (e.g., marked Q) correspond to periods of multistore query
execution. For both R and T cases, the data transfers put heavy de-
mands on the IO resources, in some instances consuming 100% of the
IO resources. In Figure 9(a), view transfers during (R) and (T) phases
consume a lot of the available spare capacity of DW, while multistore
query execution (Q) has little impact on the spare capacity. This re-
sults in brief instances of high resource impact, but long time periods
with low impact. Next, we show how the resource consumption by the
multistore queries impacts the execution of the running DW queries.

Figure 9(b) shows the average execution time of the DW back-
ground queries as Multistore queries are executed for the same exper-
iment. The x-axis again reports the timesteps during the experiment
and the y-axis reports the average execution time of q3 during the en-
tire experiment. The average execution time of q3 when no Multistore
queries are executing is 1.06 seconds. Over the course of the entire
experiment, the average execution time of q3 increased to 1.09 sec-
onds, representing an overall slowdown of 2.5% for q3. The peaks in
this figure correspond similarly to working set transfers during query
execution (T), or view transfers during reorganization (R). This figure
shows that these events briefly impacting the average execution time
of q3, which increases to over 5 seconds several times. The regions
Q again correspond to Multistore query execution in DW. This figure
shows that the impact on the average execution time of DW back-
ground queries is very small in spite of brief periods of high impact.

Table 2: Impact of multistore workload on DW queries and vice-
versa.

DW Spare Percent Slowdown of
Capacity DW Queries Multistore Workload

IO 40% 1.1% 2.5%
20% 1.7% 4.0%

CPU 40% 0.3% 4.2%
20% 0.8% 5.0%

In order to quantify the impact of an active DW versus an empty
DW, Table 2 reports the impact of the multistore workload and the DW
queries on each other. For the DW queries, we report the slowdown in
their average execution time with versus without the multistore queries
running. For the multistore queries, we report the slowdown in the
TTI with and without the DW queries executing. The slowdown of the
DW queries due to the Multistore queries less than 2%. Similarly, the
slowdown of the multistore workload is no more than 5% versus an
empty DW. This shows that the impact of the workloads on each other
is actually quite minimal, indicating MS-MISO is indeed beneficial
when there is limited spare capacity in DW.



Figure 9: Impact of multistore workload on DW with 40% spare IO capacity showing (a) IO/CPU resources consumed and (b) average
query execution time of the DW queries.

6. DISCUSSION AND CONCLUSION
The previous work on multistore systems has considered optimiz-

ing queries over data sets that span multiple stores. In this work we
showed how a DW can be used as an accelerator for big data queries.
Our main insight was that tuning the multistore system’s physical de-
sign is key to achieving good performance. For a multistore system
to be effective, it should use both stores toward their strengths: HV
is best used for sifting through massive volumes of big data and ex-
tracting a small yet relevant subset of the data; DW is best used for
processing this small subset of data efficiently since it can be loaded
quickly with a short-term impact on the DW queries. In this paper, we
argued that identifying this changing subset and determining where
to store it is at the core of the concept of multistore systems. Our
lightweight adaptive tuning method realizes the benefits of multistore
processing by leveraging the strengths of each store to ensure that the
current relevant subset of data (i.e., opportunistic views) is present in
the “best” store based on the observed workload which is changing
dynamically.

In this paper, we kept the transfer budget, Bt, small since a larger
value has several undesirable consequences: a larger impact to DW
during reorganization phases (slowing down DW queries), tuning con-
sumes a large portion of TTI, and each reorganization moves more
data across the network. However, there is a trade-off between how
frequently one reorganizes the system versus the size of Bt. For in-
stance, a small transfer budget value would allow more frequent reor-
ganizations, each with a short-term impact on DW. An appropriate set-
ting for Bt is dependent upon the nature of the workload and choosing
a balance between the desired speed up for exploratory queries with
the tolerable impact on DW reporting queries.

Our multistore approach combines the scalability of HV with the
query performance of DW to leverage their unique strengths. There
are several emerging big data systems such as Impala, Spark, Asterix,
Stinger, and Hadoop 2.0 that make interesting design trade-offs to de-
liver good performance. An interesting area of future work is to ex-
plore ways of combining these emerging systems into multistores in a
way that leverages their different strengths.

Although we do not address updates in this work, for future work
there are several interesting considerations for maintaining oppor-
tunistic views; primarily due to the nature of the query domain (i.e.,
exploratory analysis), the way views are created (i.e., opportunisti-
cally), and the append-only nature of the updates in HDFS.
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