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ABSTRACT
Motivation: It is currently believed that the human genome
contains about twice as much non-coding functional regions
as it does protein-coding genes, yet our understanding of these
regions is very limited.
Results: We examine the intersection between syntenically
conserved sequences in the human, mouse and rat genomes,
and sequence similarities within the human genome itself, in
search of families of non protein coding elements. For this pur-
pose we develop a graph theoretic clustering algorithm, akin
to the highly successful methods used in elucidating protein
sequence family relationships.

The algorithm is applied to a highly filtered set of about
700 000 human-rodent evolutionarily conserved regions, not
resembling any known coding sequence, which encompasses
3.7% of the human genome. From these, we obtain roughly
12 000 non-singleton clusters, dense in significant sequence
similarities. Further analysis of genomic location, evidence of
transcription, and RNA secondary structure reveals many clu-
sters to be significantly homogeneous in one or more characte-
ristics. This subset of the highly conserved non protein-coding
elements in the human genome thus contains rich family-like
structures, which merit in-depth analysis.
Availability: Supplementary material to this work is available
at http://www.soe.ucsc.edu/∼jill/dark.html
Contact: jill@soe.ucsc.edu

1 INTRODUCTION
It has been estimated that at least 5% of the human genome
is under purifying selection and thus likely to be functio-
nal [21, 23, 5]. By far the best studied functional features
of the genome are protein-coding genes, but their coding
exons account for only about 1.5% of the genome (2 % if
UTRs are included) [13]. The remaining 3-3.5%, the dark
matter of the human genome, is likely to contain mainly gene
regulatory regions (both transcriptional and splicing), RNA
genes and micro-RNAs, matrix attachment sites, origins of
replication (all of which are reviewed by Mattick [19]), and

perhaps some altogether novel functional elements (remem-
ber that micro-RNAs were unknown just a few years ago!).
Efforts are underway to provide a functional annotation for
non-coding elements but databases of experimentally verified
loci like Transfac [20] for regulatory regions or RFAM [10]
for RNA genes, contain information about only a tiny fraction
of the regions under discussion.

Comparative genomics has proven to be a powerful
approach for locating functional loci by identifying regions
of the genome that show a significant degree of conservation
in other species. Many published analyses focus on human-
mouse comparisons (e.g., [6, 7] and references therein) but
more recent works utilize newly available sequences, mostly
from multiple mammals ([4, 18, 24] and others). Unfortuna-
tely, measuring conservation levels is of little help by itself
for assigning a putative function to these phylogenetically
conserved regions. Computational functional annotation of
non-coding conserved elements is thus an acute bioinformatic
challenge with extremely important applications.

The majority of the genes in the human genome has been
initially annotated by sequence homology to genes, in human
or other organisms, about which more was known at the time.
Tools like psi-Blast [1] have been developed to detect remote
homologs for a given protein sequence, and have resulted in a
significant improvement of our understanding of gene functi-
ons. Based on these tools, various clustering algorithms have
been developed for grouping together proteins with similar
domains (e.g., [15, 17, 8]). This hierarchy of found rela-
tionships between the known proteins is curated in various
database, such as InterPro [22].

Annotation by homology has only recently been applied,
at a small scale, to putative non-coding functional elements.
In an analysis of the CFTR region [18], it was found that
most of the regions of interest appeared to be unique in the
human genome (based on Blast similarity searches), and thus
homology searches within the genome added new information
only in a few cases. This may be because the homology search
tools used are not capturing properly the type of sequence
similarity most relevant for non-coding regions. It may also

© Oxford University Press 2004. 1



Gill Bejerano a, David Haussler a b, Mathieu Blanchette c

Human-mouse-rat
sequence conservation
Top ~5% 5.11% 1055823
Extend/merge 5.835%   969857
Remove repeats 5.393%   959820
Remove coding exons 4.541% 1074181
Remove cds-like 4.239% 1084945
Remove non-syntenic 4.086% 1072148
Remove seg. dups. 4.006% 1043450
Remove pseudogenes 4.001% 1042608

Remove <50bp           3.727% 699647

Filters

Final set of conserved regions used for clustering
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Fig. 1. Definition of the conserved non-coding regions to be clustered. Starting from the 5% most conserved sequences with respect to mouse
and rat, the number of regions and their coverage of the human genome is given after each masking operation.

be because the function of some of these regions is genuinely
unique in the genome. Still, this general approach has allowed
the classification of some RNA genes and regulatory elements
(e.g., [10], [28]).

Here, a first step is proposed to provide genome-wide
classification of conserved non-coding regions of the human
genome by homology. We start by comparing the human
genome to the mouse and rat genomes, using stringent filters to
remove many annotated regions (such as genes, pseudo-genes,
repeats, etc.) to identify roughly 700000 regions of high con-
servation, dissimilar to any known coding sequences, covering
approximately 3.75% of the human genome. It is then shown
that even using a simple sequence similarity measure (the
standard affine-gap local sequence alignment method), it is
possible to cluster regions with similar sequences, and thus
possibly similar function. The many clusters identified have
a number of interesting properties that hint at a variety of
possible functions: some contain a hundred or more highly
similar regions, others are located near genes of a particu-
lar family; are located predominantly in introns; or contain
known or predicted structural RNA genes, etc. It is our belief
that this approach is a first step in establishing a genome-
wide annotation pipeline focusing on non-coding functional
regions.

2 METHODS
We start by identifying a set of putative functional non-coding
regions by detecting portions of the human genome that share
significant similarity with their syntenic homologs in mouse
and rat. To cluster these regions, we define a similarity graph
G = (V,E) whose verticesV are this set of human conserved
regions and whose edgesE are the pairs of regions that share
significant sequence similarity within human. We then define
a new algorithm for detecting dense clusters in this type of
graph and apply it to obtain clusters of highly similar, phylo-
genetically conserved regions of the human genome. Finally,
the clusters identified are evaluated for enrichment for an array
of attributes pointing to interesting putative functions.

2.1 Defining Conserved Elements
The process of defining the non-coding conserved regions
to be analyzed in this study is summarized in Figure 1. To
detect regions of the human genome that are likely to be func-
tional, we identify portions that are highly conserved with
respect to their mouse and rat orthologs. A three-way multi-
ple alignment between the genomes (NCBI human Build 34,
NCBI mouse Build 32, and Baylor rat assembly version 3.1),
produced by the HUMOR program (W. Miller, available at
http://bio.cse.psu.edu/) was obtained from the UCSC genome
browser (http://genome.ucsc.edu/), to establish orthology bet-
ween the three genomes. Some 40% of the human genome is
thus aligned to regions in mouse and/or rat.

The alignment was scanned with a 50bp sliding window
and the conservation of each window was evaluated using a
method that calculates ap-value for the degree of conserva-
tion observed, under a null model of neutral evolution, taking
into consideration the phylogenetic relationships among the
species considered [18]. A conservation threshold was chosen
so that 5% of the whole human genome, the current estimate
for functional sequences in the genome, was marked as con-
served, which resulted in a set of 1055823 regions of average
size 140bp. About 74% of all bases in coding exons of known
genes (as defined in the knownGene annotation in [14])) are
within these regions, although they account for less than 13%
of the combined length of these regions (17% if UTRs are
included).

In order to avoid fragmenting functional units into several
conserved regions, we extended each region by 10bp on each
side. We then applied a set of filters to ensure that the con-
served regions retained are syntenic in mouse and rat (and
thus more likely to be from alignments of orthologous DNA)
and highly likely to be non-coding. The regions masked out of
further consideration included various known types of repeats
[27, 3], as well as coding exons from several sources, conso-
lidated in the UCSC human genome browser [14]. From the
remaining set we removed all unannotated bases with detec-
ted similarity to the known coding exons, using the sensitive

2



Clustering Non-Coding DNA

Human chr1: 12345-12375     AGCA-CGACTAC--GCATCGCATCGCAG-CGCATACAGCAGTACGAT
                                  || |||  ||| | |||| ||| ||| || ||||| |||
Human chrX: 654321-654381   TAAATAGAATACCCGCA-CCCATC-CAGCCGC-TATAGCAGAACGGC

Conserved region A

Conserved region B
Blastz human-human 
local alignment

Region of the alignment
used to compute w(A,B)

Fig. 2. Scoring the similarity between two conserved regions using a Blastz human-human local alignment. The scorew(A, B) of the
alignment is based only on the shadowed area.

Blastz search tool[26]. Finally, to ensure that the regions used
for the clustering were not the result of a primate-specific
duplication, we eliminated all regions outside of a high qua-
lity synteny net to mouse [16], as well as those contained
in putative pseudogenes [29, 30] and in regions suspected of
being recent human specific segmental duplications [2].

As each masking phase fragments the regions of interest,
filtered regions less than 50bp long were also discarded. The
resulting 699647 regions, which form the vertices of our simi-
larity graph, are not known to belong to any of the above
classes, or even resemble coding sequences, and yet they
exhibit high syntenic conservation between the three mam-
mals. The average conserved region obtained is 153bp long,
while the longest is 3079 bp.

2.2 Measuring intra-human similarity
To identify which pairs of human conserved regions are
similar (that is, to place edges in the similarity graph),
we use a precomputed Blastz set of local alignments of
the repeat-masked human genome against itself (available
through the UCSC genome browser). The significance thres-
hold on sequence similarity was set very high to avoid too
many false-positives.

A pair (u, v) of human regions can only be connected by
an edge if a consecutive block of 15 alignment positions or
more is found betweenu andv by means of a Blastz local
alignment. Lets(u, v) be the similarity score of the part of
Blastz alignment located withinu andv (see Figure 2), cal-
culated using the standard affine-gap penalty method. If the
alignment is too short or of too poor quality (s(u, v) < 0),
no edge is placed betweenu andv. Otherwiseu andv are
connected by an edge of weightw(u, v) = s(u, v). 1

2.3 Identifying clusters
Similar to the result reported by Margulieset al. for a 1.8 Mb
region around the CFTR gene [18], genome-wide we find that
the large majority of conserved regions appear to be unique
in human, at least based on Blastz alignments. About 96% of

1 There may actually be two different Blastz alignments between regionsu
andv, one with each sequence as reference. In that case,w(u, v) is defined
as the maximal scores of the two alignments.

the 699647 vertices of the similarity graph are not connected
to any at other vertex. Nonetheless, this leaves 29349 regions
similar to at least one other in the human genome. The graph
contains 8333 connected components, 1446 of which are of
size at least three vertices and 257 of size at least 10. The
largest connected component has 823 vertices and 1673 edges.

The connected components of the similarity graph construc-
ted constitute a first approximation to the clusters sought.
They correspond to the clusters that would be produced by a
single-linkage clustering algorithm. However, these connec-
ted components are often quite loose and may contain more
than one dense cluster.

The problem of clustering a similarity graph to identify a
dense subgraph has been studied extensively in the case where
the vertices of the graph are proteins (e.g., [15, 17, 8]). It
was noted that in that context, simply taking for clusters the
connected component of the graph was inadequate because: (i)
false-positive edges tend to collapse two dense clusters into
a single large connected component, and (ii) multi-domain
proteins tend to be in several different clusters, again col-
lapsing them into one connected component. The same two
problems occur with our non-coding regions: (i) false-positive
edges are possible, and (ii) conserved regions made of two
different but adjacent functional units play the same role
as multi-domain proteins by connecting unrelated clusters.
Approaches proposed to handle this situation include itera-
tively remove minimum-weight cuts in the graph [15]. Others
rely on the identification of biconnected components and arti-
culation points [17] or use a multi-stage approach [8]. The
approach we use here is a heuristic that borrows from all three
of the above approaches. To refine each connected component,
we define a vertex partitioning operation and a vertex duplica-
tion operation that, when applied recursively on a connected
component, yield a set of dense, edge-disjoint subgraphs.

Recall that a cut of a weighted graphG = (V,E,w) is a
partition of the vertices into two disjoint non-empty subsets
A andB, with A ∪ B = V . The weight of a cut(A,B) is∑

(u,v)∈E,u∈A,v∈B w(u, v). A low-weight cut of the graph
thus separates a set of regions into two groups with little simi-
larity between them. We are going to use minimum-weight
cuts to detect false-positive edges and eliminate them.
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Fig. 3. A. Identification of dense subgraphs by our heuristic. Assuming all edges have weight 1,δc = 1 andδa = 0, the original graph has
no cut of cost less than 2 but has a vertex with local-articulation score zero. This vertex is first duplicated. The resulting graph has two cuts of
cost one, whose edges are removed. The resulting graph has three dense connected components. B. Example of an actual cluster (ID 652.29,
see text for details). Small vertices were those removed by the algorithm.

Two approaches are used to detect and break-up multi-
functional regions. First, to break-up a putative such region
u, the Blastz local alignments betweenu and all other regions
it connects to in the graph are mapped onu’s sequence. If
the alignments stack-up in two or more disjoint portions of
u, the regionu is divided into its non-overlapping portions.
This is sometimes not sufficient to break all multi-functional
regions and we introduce the notion of local-articulation point
to handle more difficult cases. We define the local-articulation
score of a vertexv as follows. LetN(v) be the set of neighbors
of v (excludingv itself), letG|X be the subgraph spanned by
a subset of verticesX, and letC = (A,B) be a minimum-
weight cut of the induced subgraphG|N(v) spanned by the
vertices ofN(v) (with N(v) = A ∪ B). Then, we define
local-articulation(v) = weight(C)/|N(v)|. In other words,
vertexv will have a low local-articulation score if, when igno-
red, its neighbors can be partitioned into two sets with little
similarity between them. Vertices with low local-articulation
score are likely to correspond to conserved regions containing
more than one functional unit. When such a vertexv is found,
with a minimum weight cutC = (A,B), it is duplicated and
one copy is connected to the regions inA while the other is
connected to the regions inB (see Figure 3). This approach
is a generalization of the simpler articulation points method
used by Kim [17]. For example, in Figure 3, graph A has no
good cut and no standard articulation vertex, yet the black
vertex is clearly joining two different clusters and is detected
as such.

To decompose a connected component into its dense clu-
sters, the min-cut removal and local-articulation duplication
operations are executed recursively on each connected compo-
nent produced until the clusters left are sufficiently dense (see
an example in Figure 3). Here we use two heuristic Blastz
score thresholdsδc = 2000 below which a cut is perfor-
med, andδa = 200 below which a local-articulation vertex is
duplicated. The details of the algorithm are described below.

Algorithm CUT(V, E, w)
Input: A weighted graphG = (V, E, w).
Output: The minimum weight cut(A, B) of V , and its weight.
Implements the Fiduccia-Mattheyses heuristic[9, 15].

Algorithm BEST-LOCAL-ARTICULATION(V, E, w)
Input: A weighted graph(V, E, w).
Output: The vertexv ∈ V with be best local-articulation score,
together with the partition(A, B) of the neighbors ofv, and the
weight of the cut induced.
smin ← +∞
for eachvertexv ∈ V do

(A, B, s)←CUT(G|N(v))
if (s < smin) then (vmin, Amin, Bmin, smin)← (v, A, B, s)

return (vmin, Amin, Bmin, smin)

Algorithm GRAPH-PARTITIONING(V, E, w, δc, δa)

Input: A connected weighted graphG = (V, E, w)

Output: Prints a set of dense clusters ofG.
(A, B, x)← CUT(V, E, w)
if (x < δc) then E ← E − {(u, v) ∈ V : u ∈ A, v ∈ B}
else

(v, A, B, y)←BEST-LOCAL-ARTICULATION(V, E, w)

if (y/|N(v)| < δa ) then /*duplicate v */
V ← V ∪ {v′} /* add vertexv′ */
E ← E ∪ {(v′, b) : b ∈ B}
E ← E − {(a, b) : a ∈ A, b ∈ B} − {(v, b) : b ∈ B}

else print (V ′, E′), return /* we found a dense cluster */
for each connected component(V ′, E′) of (V, E) do
GRAPH-PARTITIONING(V ′, E′, w)

Since the Fiduccia-Mattheyses heuristic [9] runs in time
O(E), finding the best local-articulation takes timeO(V E),
so each iteration of graph-partitioning takes the same time.
Since each partitioning iteration either removes one or more
edges or duplicates a vertex, and since a vertexv can be
duplicated at mostN(v) times, there can be at worstO(E)
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iterations, and thus the algorithm runs in timeO(V E2). In
practice our 8333 connected components were partitioned in
an hour on a desktop machine, with the largest fraction of the
time spent on the few very large connected components.

Applying the clustering approach above yields a set of
12027 dense, homogeneous clusters whose size vary between
2 and 105 regions, with 296 clusters of size at least 5 and 84
of size at least 10. Among the 84 clusters of size at least 10,
the average degree of a vertex is 6.1. Some clusters are nearly
perfect cliques (e.g., ID 1758.3 has 25 vertices and 206 edges,
over a possible 300), but in most case the degree of a vertex
is between 4-10, irrespective of cluster size. In total, 18734
human regions are within some cluster (less than in the ori-
ginal graph because some vertices became singletons in the
clustering process and were eliminated). The average length
of the regions belonging to a dense cluster is 225 bp.

2.4 Testing significance of features shared by
regions in a cluster

Assuming that members of a cluster share a common func-
tionality, inferring a potential function for the cluster as a
whole may be easier than doing so for each region individually
because (i) functional annotation for one member can be map-
ped to other members, and (ii) statistically over-represented
features shared by members may hint at function. Since very
few of the members of our clusters have reliable annota-
tion, we focus mainly on the statistical over-representation
approach.

We consider the following set of boolean features of con-
served regions that may help assign a putative function to the
clusters:
Genomic location:For each of seven types of genomic fea-
tures relative to known genes (1kb and 10kb upstream and
downstream, intergenic regions, UTRs, and introns), a boo-
lean attribute is defined on each conserved region with value
1 if the conserved region overlaps a feature of the given type
and 0 otherwise.
Association to known genes.Each classification term in the
Go [11] and InterPro [22] databases defines a boolean attri-
bute. A conserved regionR has value 1 for such an attribute
if the closest known gene toR has that particular Go or Inter-
Pro classification, or one of its descendants in the ontology
hierarchy.
Coding potential: This attribute is 1 if and only if the region
overlaps a gene prediction from one of four chosen gene pre-
dictors.
Evidence of transcription: Attributes are defined for overlap
with ESTs and mRNAs.
Non-coding RNAs: Attributes are defined for overlap with
known RNA genes [10].
Predicted RNA secondary structure: A region has this
attribute if its minimal free-energy secondary structure (com-
puted with RNAfold [12]) is lower than that of 99% of 1000

randomly shuffled sequences with the same nucleotide com-
position.
Conservation in distant species:Fugu and chicken.

For each boolean attributeA from the list above, we use the
set of all human conserved regions to estimate the background
probability p that a given region has attributeA, except for
the RNA secondary structure attribute where this would be too
costly and where we setp = 0.01. We then obtain a p-value
for the observed number of members with attributeA in a
cluster of a given size, under a null model where the attribute
A has value 1 independently with probabilityp, using the
cumulative of a binomial distribution.

Since more than ten thousand clusters are to be tested, a
Bonferroni type correction is necessary. Here we only report
regions with uncorrected p-value below10−5.

3 RESULTS
Initial analysis of the set of clusters obtained makes it clear
that we are facing a heterogenous set of clusters of a variety
of classes. Table 1 lists a few of the more intriguing clusters
significantly enriched for each type of features described in
Section 2.4.

Considering first the overlap with known functional non-
coding regions, we find 47 clusters containing exclusively
members with an RNA gene annotation [10] (some of which
are shown in Table 1). We find 30 unannotated regions that
belong to a cluster with at least one member annotated as
micro-RNA or RNA gene, suggesting a functional classifica-
tion for the other members of the cluster. A subset of these
novel RNA genes is currently being tested experimentally
[25].

Several clusters are significantly enriched for gene pre-
dictions, and may correspond to novel protein-coding gene
families. Although we have removed from consideration all
known coding regions, and even went to the extent of mas-
king all sequences that resemble even short stretches of coding
exons (recall Figure 1), it is to be expected that uncharacteri-
zed gene families, if they exist, should come up in our analysis.
Several other attributes reinforce the coding hypothesis. First,
for many of the clusters, mRNA and EST evidence exists,
attesting active transcription. Second, many of these puta-
tively coding clusters are also conserved in chicken, further
suggesting functional importance. Finally, in many cases
the boundaries of the gene predictions, obtained through a
conceptually different approach, match closely those of our
conserved regions. Although Blastz detects no DNA sequence
similarity between these regions and any known coding exons,
there are a few clusters for which a more sensitive tBlastn
search reveals some weak protein similarity to know genes
(e.g., cluster 3089.3 in Table 1).

Several clusters are highly enriched for regions conserved
in chicken, and sometimes all the way back to fugu. Besi-
des those with good coding potential described above, many
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Attribute cluster ID #v #Att P-value Comment
RNA genes 5390.1 6 6 9.7e-22 Hu-U71b snoRNAs

2483.22 9 4 1.2e-12 miRNA mir-154. Also detected by RNA sec. struct. p-
value screening.

41 others <1.6e-08 various RNAs and miRNAs
Chicken
conservation

14.381 59 38 3.7e-13 No conservation in Fugu

156.175 16 15 6.3e-10 Many matches to chicken EST
1730.12 13 11 1.4e-6 5 regions have coding potential (pvalue 4.9e-4)
2003.3 19 15 8.1e-8 10 regions have coding potential (pvalue 1.8e-8). 8

regions have RNA sec. struct (pvalue 7.2e-13)
Fugu conserva-
tion

4415.3 5 5 7.9e-11 just 5’ of exons of SCNxA gene family (pvalue 8.4e-6),
all are conserved in chicken (pvalue 3.7e-4)

4290.2 4 4 8.3e-9 3’ end of 5’UTR of histone H1 family
4787.3 4 4 8.3e-9 Downstream of alt. splices exons of the NEB gene
5602.2 4 4 8.3e-9 All are predicted genes with EST evidence
855.1 4 4 8.3e-9 All have strong RNA sec. str (pvalue 1e-8)
24 others <8.6e-07

ESTs 652.29 10,21 6 9.7e-7 6 sites are less than 1kb downstream of exons of various
genes. See Figure 3 (B).

upstream 6137.8 11 10 2.6e-17 5’ of genes of the ALEX family. Many other clusters are
associated with the same family.

6895.5 5 4 4.4e-7 Just 5’ of genes of the PCDHB family
1848.5 4 4 4.4e-7 Just 5’ of genes of the KRTHA family
4982.2 5 5 2.8e-7 5’UTR of genes of the SCNxA family. Many other

clusters are associated with the same family
5105.1 5 4 4.4e-7 5’UTR of genes of the GRYD family
4 other clusters < 5.2e-6 Various gene families

1kb intron flanks 6898.2 12 11 7.5e-11 Downstream of alternative first exons of PCDHG family.
Many other clusters are associated with the same family.

4969.6 12 9 1.2e-7 Upstream of repetitive exons of TTN
Gene predictions 7708.1 15 15 1.8e-19 Consecutive regions contained in a 12kb ORF upstream

of c2orf16
5011.6 5 5 5.6e-7 Consecutive regions contained in a 5kb ORF upstream

of AK126051.
3089.3 5 5 3.1e-8 Similar to collagen alpha 3 VI chain precursor

RNA sec. struct. 652.45 25 13 4.6e-20 8 regions overlap gene predictions
221.127 12 9 2.1e-16 See Figure 4
50 others <1e-6

Go/InterPro anno-
tation

631 18 15 1e-18/1e-28 mostly intronic, to various homeobox transcription
factors

Table 1. A sample of clusters found to be enriched for particular attributes. #v is the number of vertices in the cluster. #Att describes the number of cluster
members that have a given attribute. (also see supplementary material).

are found in the vicinity of coding exons and in UTRs of
gene families, like the Voltage-gated sodium channel alpha
and histone H1 families. These are good candidates for
transcriptional and splicing regulatory elements.

Perhaps one of the most interesting clusters (cluster 652.29
in Table 1) consists of 10 regions, 6 of which occur in introns,
less than 1kb downstream of an exon, and one just upstream of
a first exon. This cluster is shown in Figure 3 (B). Notice that
the seven genes within or near which these regions lie form
the dense core of the cluster. Although some of these genes

have related function (DNA binding), they do not appear to be
paralogs, which suggests that this element family has evolved
independently of a gene family, and perhaps confers a required
function to the genes in which it resides. A detailed study of
this cluster is underway and will be reported elsewhere.

We identify a number of clusters whose members are syste-
matically located upstream, downstream, or in UTRs of
known gene families. Although each gene in these gene fami-
lies originated from a duplication that predated the primate-
rodent split, the regions identified maintain a high degree of
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Human GAGGTGCATTTACTCTTTGA- CCCACTAGGGTACTATTTAGTGTTCTAGAAGAGGTAATTTAGTAAATTGTACCCCAGTGGCCTGAAAAAGTTAA

Mouse GAGGTGCATTTACTCTTTGA- CCCACTAGGGTACTATTTAGTGTTCTAGAAGAGGTAATTTAGTAAATTGCACCCCAGTGGCCTGGAAAAGTTAA  

Human GATTAATGTGT- CTCTTTCATGGCACTAAGGTAC- ATTTAGAGCACTA- AAGAAGTCATTTACTAAATGGTGCCCTTGAGACTTGAAAGAGTTAA

Mouse GATTAATGTGG- CTCTTTCAGGGAACTAAGGTGC- ATTTAGAGCACTA- AAGAAGTCATTTACTAAATGGTGCCCTTGGGACTTGAAAGAGTTAA 

Human - AGGTGCATTAACTCTTCCAGGCCCCTAGGGTATCATTTAGTTCACTG- GAATAGTAATTTACTAAACTGTACCTTAGGGGCCTGAAAATGTTAA

Mouse - AGGTGCATTAACTCTTTCAGGCCCCTAGGGTATCATTTAGTCCACTG- GAATAGTAATTTACTAAACAGTACCTTAGGGGACTGAAAAAGTTAA 

5'

3'

Fig. 4. (top) Predicted RNA secondary structure for one human region belonging to cluster 221.127, at genomic position chr15:65621880-
65622205 (Structure predicted by mfold). (bottom) Alignment of a portion of three human regions belonging to that cluster, each with its
mouse ortholog. The first sequence is the one folded in (A).

inter-species and intra-human conservation. We hypothesize
that these are probably involved in the transcriptional or spli-
cing regulation of the respective gene family. The use of the
Go functional annotation and InterPro protein domain classi-
fication allows us to examine the genes within, or next to lie
the elements of a cluster. This facilitates both an independent
analysis of the clusters, as well as an added perspective on any
of the sets highlighted by the other attributes.

Finally, more than 50 clusters are highly enriched for regi-
ons with significant RNA secondary structures. Although
some of them overlap known RNA genes and micro-RNAs,
a large fraction is left unannotated, and most of them have
no significant correlation with any other attribute we tested.
Among the most interesting examples are ID 652.45 (see
Table 1), containing 25 members, 20 of which are predic-
ted to fold into a significant RNA secondary structure usually
made of three long hairpins. Another interesting case is clu-
ster 221.127, whose members consistently fold into a single,
long hairpin. An alignment of three of these regions, together
with their respective mouse orthologs is shown in Figure 4.
This type of secondary structure, together with the very high
degree of sequence conservation in mouse may indicate that
this cluster corresponds to a novel family of micro-RNAs.

The interpretation of the function of many of the larger clu-
sters is more problematic, with none of the attributes tested
revealing statistically significant biases, except for occasio-
nal weak enrichment for RNA secondary structure. Although
some of these clusters appear quite dense in terms of ave-
rage pairwise similarity, it is possible that they may still
contain more than one dense core that our algorithm has
failed to decompose. This would obviously hamper the anno-
tation efforts by increasing the noise level. On the other hand,
it is also possible that some of these clusters do share a
function that does not correlate with any of the features we
tested. Another possibility is that these clusters correspond to

undocumented repetitive regions, although the strict phyloge-
netic conservation threshold we employ should remove from
consideration most of these non-functional regions.

4 DISCUSSION AND FUTURE WORK
This paper presents a first step towards genome-wide intra-
species annotation of functional non-coding human regions
based on sequence homology. We show that a large number
of these regions can be clustered in groups of highly similar
sequences, and thus are likely to consist of elements of similar
function. Admittedly, these represent a relatively small frac-
tion of all the conserved human regions. In fact, we repeated
the clustering procedure with the subset ofcodingsequences
found in the top 5% of the human genome aligning to mouse
and rat, after filtering out non-syntenic regions, similar to our
pre-processing in Figure 1. While only about 5% of the inter-
vals (and total number of bases) in our set had any edge to
another member of the set, as much as 50% of the highly con-
served, syntenic coding sequences have such matches within
their respective set. Nonetheless, the 18734 non-coding regi-
ons that we clustered represent a large set highly enriched for
putative functional elements.

We see this as a very encouraging sign: despite the fact that
the measure of similarity used was not targeted at finding one
specific type of functional region, a large number of clusters
were identified and many proved to provide valuable infor-
mation about the function of their members. The function of
the majority of the clusters we identified remains unclear but
because of the strict filtering applied to the input, it is unli-
kely to be too similar to known features in the genome. As
our understanding of our genome improves, more and more
clusters will be better characterized and understood.

A number of research directions are opened up by our
approach. A first, immediate goal, which we are already pur-
suing is the further analysis of the elucidated clusters. Several
more screens can be applied to each individual cluster, as
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well as ancestral reconstruction to attempt and detect remote
homologies, and possibly hierarchical relationships between
the different clusters, as is the case in the protein world. It
is also expected that with the characterization of these clu-
sters we may be able to better define sequence similarity
measures for specific types of functional regions, such as regu-
latory modules and classes of RNA genes, as well as improve
our clustering methodology. This interplay between methods
and results is bound to enrich our set of clusters as well as
improve our understanding of them, in much the way that our
understanding of protein sequences has evolved.
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