AMS 212B, Final Exam, Spring 2009

1. Use the matched asymptotic expansion to solve the BVP (boundary value problem)

$$
\left\{\begin{array}{l}
\varepsilon y^{\prime \prime}-y^{\prime}+y^{2}=0 \\
y(0)=\frac{1}{2}, \quad y(1)=0
\end{array}, \quad \varepsilon \rightarrow 0+\right.
$$

Find the leading term in the composite expansion.
2. Use the method of strained variable to solve the IVP (initial value problem)

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y\left(1+\varepsilon y^{2}\right)=0 \\
y(0)=1, \quad y^{\prime}(0)=0
\end{array}, \quad \varepsilon \rightarrow 0\right.
$$

Find the first two terms of the asymptotic expansion.
Hint:
The solution of $\left\{\begin{array}{l}w^{\prime \prime}+w=\cos (3 s) \\ w(0)=0, \quad w^{\prime}(0)=0\end{array}\right.$ is $w(s)=\frac{1}{8}[\cos (s)-\cos (3 s)]$.
You may need to use $\quad \cos ^{3}(s)=\frac{3}{4} \cos (s)+\frac{1}{4} \cos (3 s)$
3. Use Watson's lemma to obtain an asymptotic expansion of

$$
\int_{0}^{3} \exp \left(-\lambda t^{2}\right)(1-\sin (t)) d t, \quad \lambda \rightarrow+\infty
$$

Find the first two terms of the asymptotic expansion

Hint:

Watson's Lemma: $\quad \int_{0}^{\infty} \exp (-\lambda s) s^{\alpha} d s=\frac{\Gamma(\alpha+1)}{\lambda^{\alpha+1}}$
You may need to use $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
4. Find the leading term expansion of

$$
\int_{-1}^{1} e^{t} \cos [\lambda(\cos (t))] d t, \quad \lambda \rightarrow+\infty
$$

Hint: you may need the expansions of $\int_{-a}^{b} \cos \left(\lambda s^{2}\right) d s$ and $\int_{-a}^{b} \sin \left(\lambda s^{2}\right) d s$. If you do not remember these expansions, you can derive them from

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

