AMS 212, Assignment \#7

1. Use the WKB method to find a general solution for $x>0$ and a general solution for $x<0$ of

$$
y^{\prime \prime}+\lambda^{2} x\left(1+x^{2}\right)^{2} y=0, \quad \lambda \rightarrow+\infty
$$

Find the first 2 terms (up to $O(1)$ term).
2. Use the WKB method to find large eigenvalues of

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda^{2} x\left(1+x^{2}\right)^{2} y=0 \\
y(-\infty)=0, \quad y(1)=0
\end{array}\right.
$$

Hint: You don't need to write out the inner solution near $x=0$. You only need to use the connection formula to connect the WKB approximation for $x>0$ to the WKB approximation for $x<0$.
3. Find the first two non-zero terms in the asymptotic expansion of

$$
\int_{0}^{\infty} \exp (-\lambda t) \sin (\sqrt{t}) d t, \quad \lambda \rightarrow+\infty
$$

4. (Optional) Use the WKB method to find large eigenvalues of

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda^{2} x\left(1+x^{2}\right)^{2} y=0 \\
y(0)=0, \quad y(1)=0
\end{array}\right.
$$

5. (Optional) Write a code to compute the first 64 eigenvalues of

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda^{2}(1-\sin (x))^{2} y=0, \quad \lambda \rightarrow+\infty \\
y(0)=0, \quad y(1)=0
\end{array}\right.
$$

Calculate the difference between the numerical eigenvalue and the asymptotic eigenvalue

$$
\operatorname{Err}(n)=\lambda_{n}^{(\text {numerical })}-\lambda_{n}^{(\text {asymptotic })}
$$

where $\lambda_{n}^{\text {(asymptotic) }}=\frac{n \pi}{\cos (1)} \quad$ (you can derive it!)
Plot $\operatorname{Err}(n)$ vs n.

