AMS 212, Assignment \#6

1. Use Frobenius expansion to find ONE solution near $s=0$ of

$$
\frac{d^{2} y}{d s^{2}}+\frac{1}{s} \frac{d y}{d s}+y=0
$$

We seek a solution of the form

$$
y(s)=s^{\alpha}\left[a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+\cdots\right]
$$

Find coefficients a_{0}, a_{1}, a_{2}, and a_{3} (some of them may be zero).
Note: There is only one solution of the given form above.
To find another solution, we need to use the expansion form

$$
y_{2}(x)=b \log (x) y_{1}(x)+x^{\alpha_{2}} \sum_{m=0}^{\infty} A_{m} x^{m}
$$

which is problem 5 below (optional).
2. Consider ODE

$$
y^{\prime \prime}+\frac{2}{\sqrt{x}} y^{\prime}-\frac{1}{2} \cdot \frac{1}{x^{\frac{3}{2}}} y=0, \quad x \rightarrow+\infty
$$

Suppose $y(x)$ has the form

$$
y(x)=e^{f(x)}
$$

Derive the equation for $f(x)$.
Use the method of dominant balance to find ONE solution. Find the first 2 terms.
Note: The method of dominant balance gives us only one solution.
To find two independent solutions, we first need to reduce the ODE from the general form to the special form

$$
Y^{\prime \prime}+\tilde{q}(x) Y=0, \quad x \rightarrow+\infty
$$

For that purpose, we use $Y(x)=e^{2 \sqrt{x}} y(x)$ and derive

$$
\frac{d^{2} Y}{d x^{2}}-\frac{1}{x} Y=0 \quad \text { as } x \rightarrow+\infty
$$

which looks familiar ...
3. Use the WKB method to find a general solution of

$$
y^{\prime \prime}+\lambda^{2} x^{2} y=0, \quad \lambda \rightarrow+\infty
$$

Find the first 2 terms (up to $\mathrm{O}(1)$ term).
4. Use the WKB method to find large eigenvalues of

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\lambda^{2} x^{2} y=0 \\
y(1)=0, \quad y(3)=0
\end{array}\right.
$$

Bonus Problem (optional):
5. In problem 1 above, use the expansion form

$$
y_{2}(x)=b \log (x) y_{1}(x)+x^{\alpha_{2}} \sum_{m=0}^{\infty} A_{m} x^{m}
$$

to find the second solution.

