AMS 212, Assignment \#3

1. Use a perturbation method to solve the BVP (boundary value problem)

$$
\left\{\begin{array}{l}
\varepsilon y^{\prime \prime}+y^{\prime}+y=0 \\
y(0)=e, \quad y(1)=0
\end{array}, \quad \varepsilon \rightarrow 0_{-}\right.
$$

Find the first two terms (i.e., $O(1)$ term and $O(\varepsilon)$ term) in the composite expansion.
2. Use a perturbation method to solve the BVP (boundary value problem)

$$
\left\{\begin{array}{l}
\varepsilon y^{\prime \prime}+y^{\prime}+e^{y}=0 \\
y(0)=1, \quad y(1)=-\ln 2
\end{array}, \quad \varepsilon \rightarrow 0+\right.
$$

Find the leading term in the composite expansion.
Hint: First find a general solution of $y^{\prime}+e^{y}=0$.
3. Recall the example we studied in lecture

$$
\left\{\begin{array}{l}
\varepsilon y^{\prime \prime}+y^{\prime}+y=0 \\
y(0)=0, \quad y(1)=1
\end{array}, \quad \varepsilon \rightarrow 0+\right.
$$

The leading term composite expansion is

$$
y_{a}(x)=e^{1-x}-e^{1-\frac{x}{\varepsilon}}
$$

The exact solution is

$$
y_{e}(x)=\frac{e^{\lambda_{1} x}-e^{\lambda_{2} x}}{e^{\lambda_{1}}-e^{\lambda_{2}}}
$$

where

$$
\lambda_{1}=\frac{-1+\sqrt{1-4 \varepsilon}}{2 \varepsilon}, \quad \lambda_{2}=\frac{-1-\sqrt{1-4 \varepsilon}}{2 \varepsilon}
$$

Consider the difference between the exact solution and the asymptotic solution

$$
\left|y_{e}(x)-y_{a}(x)\right|
$$

For $\epsilon=2^{-3}, 2^{-4}, 2^{-5}, \ldots, 2^{-25}$, calculate numerically

$$
\begin{aligned}
& x(\varepsilon)=\underset{x}{\operatorname{argmax}}\left|y_{e}(x)-y_{a}(x)\right| \\
& \operatorname{err}(\varepsilon)=\max _{x}\left|y_{e}(x)-y_{a}(x)\right|
\end{aligned}
$$

Use $\log \log$ to plot $x(\varepsilon)$ as a function of ε.
Use $\log \log$ to plot $\operatorname{err}(\varepsilon)$ as a function of ε.
Use semilogx to plot $(\operatorname{err}(\varepsilon) / \varepsilon)$ as a function of ε. Is $\operatorname{err}(\varepsilon)$ proportional to ε ?
4. (Optional) In problem 2 above, find the first two terms (i.e., $O(1)$ term and $O(\varepsilon)$ term) in the composite expansion.
Note: The $\mathrm{O}(\varepsilon)$ term in the expansion will involve the integral $\int_{0}^{e^{-u}} \frac{\exp (v)-1}{v} d v$.

