AMS 212, Assignment \#2

1. Use a perturbation method to solve the IVP (initial value problem)

$$
\left\{\begin{array}{l}
y^{\prime}-\varepsilon y+1=0 \\
y(0)=\varepsilon
\end{array}\right.
$$

Find the first two terms in the expansion.
2. Use a perturbation method to solve the IVP (initial value problem)

$$
\left\{\begin{array}{l}
y^{\prime \prime}=2-y-\frac{1}{(1+\varepsilon y)^{2}} \\
y(0)=0, \quad y^{\prime}(0)=0
\end{array}\right.
$$

Find the first two terms in the expansion of y.
Find the first two terms in the expansion of T, the period of oscillation.
3. Use a perturbation method to solve the BVP (boundary value problem)

$$
\left\{\begin{array}{l}
y^{\prime \prime}-2 y^{\prime}+\varepsilon y=0 \\
y(0)=0, \quad y(1)=1
\end{array}\right.
$$

Find the first two terms in the expansion.
4. (Optional) Solve numerically the IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=\frac{-1}{\varepsilon} \sin (\varepsilon y) \\
y(0)=1, \quad y^{\prime}(0)=0
\end{array}\right.
$$

Compute $T(\varepsilon)$, the period of oscillation as a function of ε, for ε in [0.01:0.01:1].
Plot $T(\varepsilon)$ as a function of ε and compare with the asymptotic expansion

$$
T(\varepsilon) \sim 2 \pi\left(1+\frac{\varepsilon^{2}}{16}\right)
$$

Plot $\frac{1}{\varepsilon^{4}}\left(\frac{T(\varepsilon)}{2 \pi}-1-\frac{\varepsilon^{2}}{16}\right)$ as a function of ε to numerically predict the next coefficient.

