AMS 147 Computational Methods and Applications

Assignment \#1

1. Plot the two functions below

$$
\begin{aligned}
& f_{1}(x)=\sqrt{\frac{1+2 x}{1+x}} \\
& f_{2}(x)=1+\frac{1}{2} x-\frac{5}{8} x^{2}+\frac{13}{15} x^{3}
\end{aligned}
$$

for x in $[0,0.6]$. Plot the two curves in one figure. Use a legend to show which curve is which function. Use about 200 points to represent each curve. Use linear scales for both the X - and Y - axes.

In which region, $f_{2}(x)$ is a good approximation to $f_{1}(x)$?
2. Plot the function of two variables below as a surface

$$
f(x, y)=x \cdot \sin \left(\frac{x}{2}\right)-y \cdot \sin \left(\frac{y}{2}\right)
$$

for x in $[-3,3]$ and y in $[-4,4]$. Use about 50 points in each dimension to represent the surface. Be careful with the component-wise operations!
3. Write a Matlab code to read in data from file "data2.txt" in http://www.cse.ucsc.edu/~hongwang/Codes/Read data

Plot the data and plot the fitting function

$$
f(x)=\cos (2 \exp (c x))
$$

in the same figure and in the same horizontal range.
Use a legend to show which is the fitting curve and which is the data.
Use linear scales for both the X - and Y - axes.
Try to manually adjust the value of c to fit the data. Hint: start near $\mathrm{c}=1$.
4. Consider the non-linear equation

$$
f(x)=\exp (x)-1.5-\cos (x+c)
$$

Here c is a parameter in the equation. The root of the equation varies with c and thus the root is a function of c . Use Newton's method to solve the equation. Plot the root as a function of c for c in $[-1.5,1.5]$. Use about 200 points to represent the curve.
5. File "data2.txt" in http://www.cse.ucsc.edu/~hongwang/Codes/Read data contains a set of data points $(x(j), y(j)), \quad j=1,2, \ldots, N$.

The distance between the data and the fitting function $f(x)=\cos (2 \exp (c x))$ is defined as

$$
d d(c)=\sqrt{\sum_{j=1}^{N}(f(x(j))-y(j))^{2}}
$$

Calculate $d d(c)$ for c in $[0.5,1.5]$. Plot $d d(c)$ as a function of c . Use about 200 points to represent the curve.
6. In problem 5 above, use the golden search method to find the optimal value of c at which the distance function $\operatorname{dd}(\mathrm{c})$ attains the minimum. Plot both the data and the optimal fitting function in one figure. Report the optimal value of c with at least 6 decimal digits.

