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Abstract—In this paper, we propose a new two-stage (TS) struc-
ture for computationally efficient maximum-likelihood decoding
(MLD) of linear block codes. With this structure, near optimal
MLD performance can be achieved at low complexity through TS
processing. The first stage of processing estimates a minimum suf-
ficient set (MSS) of candidate codewords that contains the optimal
codeword, while the second stage performs optimal or suboptimal
decoding search within the estimated MSS of small size. Based on
the new structure, we propose a decoding algorithm that systemat-
ically trades off between the decoding complexity and the bounded
block error rate performance. A low-complexity complementary
decoding algorithm is developed to estimate the MSS, followed by
an ordered algebraic decoding (OAD) algorithm to achieve flex-
ible system design. Since the size of the MSS changes with the
signal-to-noise ratio, the overall decoding complexity adaptively
scales with the quality of the communication link. Theoretical anal-
ysis is provided to evaluate the potential complexity reduction en-
abled by the proposed decoding structure.

Index Terms—Adaptive decoding complementary decoding,
maximum-likelihood decoding, ordered algebraic decoding.

I. INTRODUCTION

OPTIMAL decoding of linear block codes has been proven
to be an NP-hard problem [1], whose complexity grows

exponentially as the code length increases. Many research
efforts have been attempted to develop optimal or suboptimal
decoding algorithms with moderate decoding complexity
[2]–[11]. In general, these algorithms can be classified into
three major categories. The first category [2]–[4] utilizes alge-
braic decoders to perform list decoding. The tradeoff between
decoding complexity and achievable performance is reflected
in the size of the list. The second category of algorithms [7]–[9]
converts the optimal decoding problem to a graph problem and
regards the optimal decoding problem as finding the shortest
path in a graph, using existing graph-based search algorithms.
The third category of algorithms [5], [6] relies on the ordered
statistics of the received data to attain good decoding per-
formance without resorting to algebraic decoding. Ordered
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statistics decoding (OSD) algorithms generate codewords from
the most reliable bits utilizing transformed encoding matrix.
However, the decoding complexity of OSD grows exponentially
in the order selected; thus it may still suffer from high decoding
complexity as higher order decoding is favored over lower
order decoding for performance consideration. Moreover, the
complexity of OSD heavily depends on the information length
and grows quickly with the increase of the code rate for a fixed
block length, given a specific processing order.

There are several strategies to reduce the computational load
of OSD algorithms. Complementary decoding [12] combines
list decoding with OSD to achieve comparable performance
with less complexity. Optimality test criterions (OTC) have
been intensively investigated for the purpose of early termi-
nation or ruling out unnecessary iterations during decoding
[10], [13]–[15]. Heuristic OTC-based search algorithms [10],
[11] are proposed, in which optimal decoding is carried out
adaptively to converge to the optimal codeword. Unfortunately,
the convergence speed can be slow especially at low to mod-
erate signal-to-noise ratio (SNR) regions, thus incurring high
decoding complexity,

In this paper, we propose a new two-stage (TS) decoding
structure that improves the convergence speed of optimal de-
coding, which in turn reduces the overall decoding complexity
substantially. Based on this new structure, we develop a TS
processing procedure to achieve optimal maximum-likelihood
decoding (MLD) performance with high computational effi-
ciency. The first stage of the processing aims at reducing the
overall complexity by estimating a minimum sufficient set
(MSS) of test codes. Albeit small in size, the MSS contains the
optimal codeword, thus enabling ensuing optimal decoding at
reduced complexity. Within the estimated MSS, constrained
optimal or suboptimal decoding is then performed during the
second stage of the processing to achieve the desired decoding
performance. Specifically, we employ a low-complexity com-
plementary decoding algorithm to estimate the MSS in the
first stage of the processing and adopt an innovative ordered
algebraic decoding (OAD) algorithm in the second stage of the
processing to achieve flexible system design. Moreover, OTC
is incorporated into both stages to further reduce the decoding
complexity. The proposed decoding algorithm is able to provide
a system tradeoff design between performance and complexity.
The key distinction of our approach from OSD lies in the MSS
we select. Our estimated MSS is the smallest possible code-
word subset needed to retain optimality of ensuing decoding,
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Fig. 1. System architecture.

which is naturally dictated by the receive SNR. In contrast,
OSD relies on an ad hoc order number to trade performance for
lower complexity and still incurs high complexity to achieve
the optimal decoding performance.

The rest of this paper is organized as follows. Section II de-
scribes the new TS decoding structure and evaluates its capa-
bility in complexity reduction. Section III is dedicated to de-
tailed description of the proposed TS ML decoding algorithm.
Simulation results are presented in Section IV, followed by con-
cluding remarks in Section V.

II. TS DECODING STRUCTURE

A. System Structure

Fig. 1 illustrates the overall architecture of a block-coded
communication system employing our new adaptive TS de-
coder. A length- source information vector
is first encoded into a length- codeword ,
which is modulated as and then trans-
mitted over an AWGN channel. The receiver signal vector

is the sum of the signal vector and the
noise vector , where each element of is
a Gaussian random variable with zero mean and variance ,
i.e., . Consider BPSK modulation. The demodulator
calculates the log-likelihood vector of as

(1)

The vector is obtained by hard-decision rule.
The corresponding reliability vector is eval-
uated as , . Based on their reliability
values, the decisions can be reordered as .
The vector records the positions of the deci-
sions from the least reliable to the most reliable bits.

B. Adaptive TS Decoder

In decoding , a conventional optimal decoder needs to
search through all the codewords , thus incurring insur-
mountable computational complexity. Our adaptive TS decoder
structure proposed in Fig. 1 is motivated by the need for optimal
decoding at affordable low complexity. The first stage aims at
reducing the search complexity by identifying a minimum set
of candidate codewords that contains the optimal one, while the

second stage performs optimal decoding within the constrained
codeword subset. In addition, OTCs [10], [13]–[15] can be
embedded into the TS decoding procedure to further reduce the
overall complexity. Adhering to this structure, the task of each
stage can be fulfilled by various (existing) techniques respec-
tively. For example, Chase-II [3] or Kaneko [10] algorithm can
be used in the second stage subject to slight modifications. We
will present new solutions to these two stages of processing in
Section III.

To elaborate on the low-complexity feature of our optimal TS
decoder, we now introduce the concept of MSS that is key to the
first stage of processing. Let be the test set consisting of all
length- binary vectors generated by applying all possible error
patterns in the first least reliable positions to
the binary hard-decision vector . Using as the input, an al-
gebraic decoder can generate a set of codewords, which we de-
note as . Clearly, and . Note
that becomes the set of all codewords when ,
where is the error correction capability of the algebraic de-
coder. At certain value of , say , contains the optimal
codeword while does not. For any , the set

contains the optimal codeword and, hence, is sufficient for
optimal decoding. We henceforth term such a set a suffi-
cient set (SS) and the order of this SS. Among all SS,
has the smallest size and is termed the minimum sufficient set
(MSS). One important property of the MSS can be summarized
as follows.

Proposition 1: The MSS is the set in which one error
happens at position and there are exactly errors outside
of the first least reliable positions.

Proof: For any , there will be more than ( )
errors outside of the least positions. Since an algebraic decoder
with error correction capability of can not correct all these
errors, does not contain the optimal codeword, thus not being
a SS. On the other hand, when , there always exists
a test code in the set that can be decoded into the optimal
codeword. Therefore, contains the optimal codeword and is
a sufficient set.

C. Complexity of Adaptive TS Decoding

The computational complexity of the TS decoder depends
critically on the size of the MSS and its associated order .
Treating as a random variable subject to the noise effect, we
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denote as the probability of being the MSS for a
given , and as the joint probability associated with
the events when is the MSS and there are exactly a total
number of errors. The overall decoding complexity can be cal-
ibrated by the mean value of , which we denote as . It fol-
lows immediately that and

.
When , the hard-decision vector can be directly

mapped to the optimal codeword, resulting in . For
, reduces to

(2)

To evaluate for , we deduce from Proposi-
tion 1 that

(3)

where is the joint prob-
ability when ( ) errors are located at positions

respectively in a length- or-
dered sequence. Each summand in (3) can be approximated as
[16]

(4)
where is the error probability of having an error at
location in an length- ordered sequence. It can be shown
that

(5)

where is the one-sided noise power density,
with , and

is the complemen-
tary error function.

Equations (2)–(5) provide the steps to numerically compute
the decoding complexity measure . Simulation results in Sec-
tion IV will show that takes a fairly small value compared
with the code-length . As a result, the overall decoding com-
plexity can be greatly reduced.

III. TS ML DECODING ALGORITHM

Based on the TS structure, we propose a new TS ML decoding
algorithm that is capable of not only reaching the optimal per-
formance at low complexity, but also achieving bounded block
error performance with bounded decoding complexity. The TS
ML also consists of two stages: a low-complexity complemen-
tary decoding algorithm for estimating the MSS, and an inno-
vative OAD algorithm for implementing constrained decoding.

A. Stage 1: Estimation of the MSS

The first processing stage attempts to identify the MSS or
obtain a SS that is as close to the MSS as possible. This goal
should be accomplished at low complexity to avoid excessive
overhead. Our strategy here is to apply Lemma 2 of [10] to effi-
ciently estimate a SS from any available codeword. The closer
the initial codeword is to the optimal one, the closer the SS es-
timate is to the MSS. The problem of estimating the MSS is
thus reduced to finding a good codeword close to the optimal
codeword. To this end, we propose a low-complexity comple-
mentary decoding algorithm by combining the Chase-III [3] and
OSD-1 [5] algorithms. In contrast, the existing complementary
decoding algorithm [12] combines the Chase-II [3] and OSD al-
gorithms, which still incurs high complexity when close-to-op-
timal decoding performance is desired [12]. In our algorithm,
we aims at simply finding a good codeword rather than the op-
timal codeword. With the relaxed performance requirement, our
complementary decoding algorithm can afford to have lower
complexity than that in [12], yet being capable of generating a
good codeword sufficient for estimating the MSS via [10].
The estimated , its set order and the corresponding error
set are passed to the second stage for further decoding
processing.

B. Stage 2: Ordered Algebraic Decoding

The objective of the second processing stage is to search for
the optimal codeword within the small set . This problem
belongs to constrained optimal decoding, for which we propose
an ordered algebraic decoding (OAD) algorithm.

We note that the test set is generated from all possible
error patterns in the first least reliable positions. Let rep-
resent the set comprised of all possible test codes in that are
generated from the hard-decision vector based on all possible
error patterns that have exactly errors in the first least reli-
able positions . It is clear that

. Each test code can be decoded into a codeword and all test
codes in yield a set of codewords. Among these codewords,
the codeword that has the minimum Euclidean distance to is
chosen as the output, a procedure we term as order- algebraic
processing (OAP- ).

Our order- algebraic decoding (OAD- ) algorithm consists
of the following steps. In an ascending order, OAP-0 to OAP-
are carried out successively. Among all the decoded codewords,
the decoder selects its output to be the codeword with the min-
imum Euclidean distance to . Meanwhile, OTC [10] is em-
bedded into the decoder to terminate decoding whenever the
optimal codeword has been found. The estimated is also
dynamically updated whenever a better estimate is obtained.

Obviously, OAD- achieves the optimal decoding perfor-
mance since is a SS. The following proposition summarizes
the error correction capability of the OAD- technique.

Proposition 2: For a linear block code with the minimum
Hamming distance , the OAD- algorithm is able to correct up
to ( ) errors. In particular, the OAD-( ) algorithm
can correct up to errors to achieve the same performance
as the Chase-I algorithm [3].
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Fig. 2. Complexity ( �M ) versus SNR: BCH(31,16).

Proof: As a sufficient set, includes the optimal code-
word and there are at most errors outside of the first least
reliable positions. OAD- considers all possible (up to ) errors
in the first least reliable positions. When the total number
of errors , it is guaranteed that at least
errors fall within those positions. OAD- is then capable of
correcting up to errors. In particular, OAD-
corrects up to errors, thus achieving
the near-optimal performance of Chase-I algorithm. By properly
selecting the decoding order , the OAD algorithm also effects
flexible design tradeoff between decoding complexity and per-
formance. To guide such a design, we derive the union bound of
the block error rate of OAD- as follows:

(6)

where is the uncoded bit-error rate. Based on (6), the de-
coding order of OAD can be determined based on the desired
block error rate performance, thus avoiding unnecessary com-
putation spent on higher order decoding.

IV. PERFORMANCE EVALUATION AND SIMULATIONS

The proposed TS ML algorithm attains low-complexity
optimal decoding by exploiting the MSS estimated during the
first stage of processing. In contrast, Kaneko’s algorithm [10]
directly starts from the entire set of codewords for optimal
decoding, while the Chase-II algorithm [3] narrows down to
a subset with a prescribed value for regardless of the
sufficiency of the set , resulting in suboptimal decoding
performance.

Computer simulations are conducted to compare our TS ML
algorithm with Kaneko [10], Chase-II [3], and OSD-2 [5] algo-
rithms. The (31,16) BCH code is used in all simulations. For a
good tradeoff design, we choose OAD-2 of order 2 in the second
stage of processing and correspondingly refer this version of our
algorithm as 2-TS ML. Fig. 2 depicts the average decoding order

Fig. 3. Complexity ( �N ) versus SNR: BCH(31,16).

of all the algorithms, along with the theoretical lower bound
of derived in Section II-C. Several observations can be made.

• The theoretical bound of indicates the potential com-
plexity reduction enabled by the first stage of the new TS
structure, had an optimal decoder been used in the second
stage. Apparently, the TS structure could lead to optimal
decoding with very low complexity.

• The low-complexity complementary decoding algorithm
in Section III-A yields very good estimate of the MSS.

• Much lower complexity is expected from the 2-TS ML
algorithm than Kaneko and Chase-II algorithms, with
better or comparable performance.

Fig. 3 depicts the complexity of 2-TS ML, Kaneko, and
Chase-II algorithms with respect to the algebraic decoder usage

. The decoding complexity of Chase-II algorithm is normal-
ized to 1, while the relative complexity of other algorithms are
plotted in the normalized coordinate. Chase-II algorithm has
fixed complexity regardless of the SNR value. The decoding
complexity of our TS ML algorithm, on the other hand, drops
monotonically as SNR increases, and stays well below that of
Chase-II algorithm in all the simulated SNR regions. The de-
coding complexity of our TS ML is substantially less than that
of Kaneko algorithm in low to moderate SNR regions, because
the TS structure considerably speeds up the convergence rate
for decoding.

Fig. 4 shows the error performance of our 2-TS ML as com-
pared to Kaneko, Chase-II, and OSD-2 algorithms. Our algo-
rithm attains word error rate (WER) performance comparable
to that of Kaneko and OSD-2 algorithms. In all the simulated
SNR regions, our algorithm performs consistently better than
the Chase-II algorithm at much lower complexity.

V. CONCLUSION

In this paper, we propose a new decoding structure along with
practical implementation for optimal decoding of linear block
codes. The decoding is divided into two stages with distinct
objectives. The first stage substantially decreases the decoding
complexity without affecting the decoding performance, while
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Fig. 4. Performance comparisons: BCH(31,16).

the second stage attains the optimal performance. Through
the TS processing, the algorithm achieves the optimum per-
formance at low average complexity. Furthermore, bounded
suboptimal performance can be achieved in the second stage at
further reduced complexity.
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