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Abstract— Wireless information-centric networks consider1

storage as one of the network primitives, and propose to cache2

data within the network in order to improve latency and reduce3

bandwidth consumption. We study the throughput capacity and4

latency in an information-centric network when the data cached5

in each node has a limited lifetime. The results show that with6

some fixed request and cache expiration rates, the order of the7

data access time does not change with network growth, and the8

maximum throughput order is not changing with the network9

growth in grid networks and is inversely proportional to the10

number of nodes in one cell in random networks. Comparing11

these values with the corresponding throughput and latency with12

no cache capability (throughput inversely proportional to the13

network size, and latency of order
√

n and the inverse of the14

transmission range in grid and random networks, respectively),15

we can actually quantify the asymptotic advantage of caching.16

Moreover, we compare these scaling laws for different content17

discovery mechanisms and illustrate that not much gain is lost18

when a simple path search is used.19

Index Terms— Next generation networking, wireless networks,20

performance analysis.21

I. INTRODUCTION22

IN TODAY’S networking situations, users are mostly inter-23

ested in accessing content regardless of which host is24

providing this content. They are looking for a fast and secure25

access to data in a whole range of situations: wired or26

wireless; heterogeneous technologies; in a fixed location or27

when moving. The dynamic characteristics of the network28

users makes the host-centric networking paradigm inefficient.29

Information-centric networking (ICN) is a new networking30

architecture where content is accessed based upon its name,31

and independently of the location of the hosts [1]–[4]. In32

most ICN architectures, data is allowed to be stored in the33

nodes and routers within the network in addition to the content34

publisher’s servers. This reduces the burden on the servers and35

on the network operator, and shortens the access time to the36

desired content.37
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Combining content routing with in-network-storage for the 38

information is intuitively attractive, but there has been few 39

works considering the impact of such architecture on the 40

capacity of the network in a formal or analytical manner. 41

In this work we study a wireless information-centric network 42

where nodes can both route and cache content. We also assume 43

that a node keeps a copy of the content only for a finite period 44

of time, that is until it runs out of memory space in its cache 45

and has to rotate content, or until it ceases to serve a specific 46

content. 47

The nodes issue some queries for content that is not 48

locally available. We suppose that there exists a server which 49

permanently keeps all the contents. This means that the content 50

is always provided at least by its publisher, in addition to the 51

potential copies distributed throughout the network. Therefore, 52

at least one replica of each content always exists in the network 53

and if a node requests a piece of information, this data is 54

provided either by its original server or by a cache containing 55

the desired data. When the customer receives the content, it 56

stores the content and shares it with the other nodes if needed. 57

The present paper thus investigates the asymptotic1 orders 58

of access time and throughput capacity in such content-centric 59

networks and addresses the following questions: 60

1) Looking at the throughput capacity and latency, can we 61

quantify the performance improvement brought about 62

by a content-centric network architecture over networks 63

with no content sharing capability? 64

2) How does the content discovery mechanism affect the 65

performance? More specifically, does selecting the near- 66

est copy of the content improve the scaling of the 67

capacity and access time compared to selecting the 68

nearest copy in the direction of original server? 69

3) How does the caching policy, and in particular, the 70

length of time each piece of content spends in the 71

cache’s memory, affect the performance? 72

We state our results in three theorems; Theorem 1 formu- 73

lates the capacity in a grid network which uses the shortest 74

path to the server content discovery mechanism considering 75

different content availability in different caches, and 76

Theorem 2 and 3 answer the above questions studying two 77

different network models (grid and random network) and two 78

content discovery scenarios (shortest path to the server and 79

shortest path to the closest copy of the content) when the 80

1Given two functions f and g, we say that f (n) = O(g(n)) or f (n) � g(n)
if supn( f (n)/g(n)) < ∞, f (n) = �(g(n)) or f (n) � g(n) if g(n) =
O( f (n)), f (n) = �(g(n)) or f (n) ≡ g(n) if both f (n) = O(g(n)) and
f (n) = �(g(n)), f (n) = o(g(n)) or f (n) ≺ g(n) if f (n)/g(n) → 0, and
f (n) = ω(g(n)) or f (n) � g(n) if g(n)/ f (n) → 0.
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information exists in all caches with the same probability.81

These theorems demonstrate that adding the content sharing82

capability to the nodes can significantly increase the capacity.83

The rest of the paper is organized as follows. After a brief84

review of the related work in Section II, the network models,85

the content discovery algorithms used in the current work,86

and the content distribution in steady-state are introduced87

in Section III. The main theorems are stated and proved in88

Section IV. We discuss the results and study some simple89

examples in Section V. Finally the paper is concluded and90

some possible directions for the future work will be introduced91

in Section VI.92

II. RELATED WORK93

Information Centric Networks have recently received con-94

siderable attention. While our work presents an analytical95

abstraction, it is based upon the principles described in some96

ICN architectures, such as CCN [4], NetInf [5], PURSUIT [2],97

or DONA [6], where nodes can cache content, and requests for98

content can be routed to the nearest copy. Papers surveying the99

landscape of ICN [3] [7] show the dearth of theoretical results100

underlying these architectures.101

Caching, one of the main concepts in ICN networks, has102

been studied in prior works [3]. Reference [8] computes the103

performance of a Least-Recently-Used (LRU) cache taking104

into account the dynamical nature of the content catalog. Some105

performance metrics like miss ratio in the cache, or the average106

number of hops each request travels to locate the content have107

been studied in [9] and [10], and the benefit of cooperative108

caching has been investigated in [11].109

Optimal cache locations [12], cach sizes [13], and cache110

replacement techniques [14] are other aspects most commonly111

investigated. The work in [15] considers a network of LRU112

caches with arbitrary topology and develops a calculus for113

computing bounding flows in such network. And an analytical114

framework for investigating properties of these networks like115

fairness of cache usage is proposed in [16]. Reference [17]116

considered information being cached for a limited amount of117

time at each node, as we do here, but focused on flooding118

mechanism to locate the content, not on the capacity of the119

network. Reference [18] investigates the routing in such net-120

works in order to minimize the average access delay. Rossi and121

Rossini explore the impact of multi-path routing in networks122

with online caching [19], and also study the performance of123

CCN with emphasis on the size of individual caches [20].124

However, to the best of our knowledge, there are just a few125

works focusing on the achievable data rates in such networks.126

Calculating the asymptotic throughput capacity of wireless127

networks with no cache has been solved in [21] and many128

subsequent works [22], [23]. Some work has studied the capac-129

ity of wireless networks with caching [24], [25], and [26].130

There, caching is used to buffer data at a relay node which131

will physically move to deliver the content to its destination,132

whereas we follow the ICN assumption that caching is trig-133

gered by the node requesting the content. Reference [27] uses a134

network simulation model and evaluates the performance (file135

transfer delay) in a cache-and-forward system with no request136

for the data. Reference [28] proposes an analytical model137

Fig. 1. a) Grid network: the transmission range of node v contains four
surrounding nodes. The black vertices contain the content in their local
caches. The arrow lines demonstrate a possible discovery and receive path in
scenario i, where node v downloads the required information from u.
In scenario ii, v will download the data from w instead. b) Random network:
the grey squares are the cells that can transmit simultaneously without
interference, and r(n) is the transmission range of each node.

for single cache miss probability and stationary throughput 138

in cascade and binary tree topologies. Some scaling regimes 139

for the required link capacity is computed in [29] for a static 140

cache placement in a multihop wireless network. 141

Reference [30] considers a general problem of deliv- 142

ering content cached in a wireless network and provides 143

some bounds on the caching capacity region from an 144

information-theoretic point of view, and [31] proposes a coded 145

caching scheme to achieve the order-optimal performance. 146

Additionally, the wireless device-to-device cache networks’ 147

performance with offline caching phase has been studied 148

in [32]–[34]. This is important to note that our current work 149

is different from [30]–[34] since unlike the mentioned works 150

it considers the online caching and assumes that the cache 151

contents are updated during the content delivery time. 152

A preliminary version of this paper [35] has derived the 153

throughput capacity when all the items have exactly the 154

same characteristics (popularity), which has been shown to 155

be one of the important characteristics of such networks 156

[36], [37]. In this work, we do not assume any specific 157

popularity distribution and present the results for any arbitrary 158

request pattern. 159

III. PRELIMINARIES 160

A. Network Model 161

Two network models are studied in this work. 162

1) Grid Network: Assume that the network consists of n 163

nodes {v1, v2, . . . , vn} each with a local cache of size Li = 164

�(1) located on a grid. In this work we focus on the grid 165

shown in Figure 1(a), but conjecture the theorems could be 166

adapted to other regular grid topologies too. Each node can 167

transmit over a common wireless channel, with bandwidth W 168

bits per second, shared by all nodes. The distance between 169

two adjacent nodes equals to the transmission range of each 170

node, so the packets sent from a node are only received by 171

four adjacent nodes. 172

There are m different contents, { f1, . . . , fm} with sizes 173

{B1, . . . , Bm}, for which each node v j may issue a query with 174

probabilities {αk, k = 1, . . . ,m}, where
∑m

k=1 αk = 1, and m 175

and αk are not changing with the network size.2 Based on the 176

2In this work we are not considering applications like YouTube where the
users are content generators.
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content discovery algorithms which will be explained later in177

this section, the query will be transmitted in the network to178

discover a node containing the desired content locally. v j then179

downloads Bk bits of data with rate γ in a hop-by-hop manner180

through the path Px j from either a node (vi , x = i ) containing181

it locally ( f ∈ vi ) or the server (x = s). When the download182

is completed, the data is cached and shared with other nodes183

either by all the nodes on the delivery path, or only by the184

end node. In the paper we consider both options.185

Pjs denotes the nodes on the path from v j to server. Without186

loss of generality, we assume that the server is attached to187

the node located at the middle of the network, as changing188

the location of the server does not affect the scaling laws.189

Using the protocol model and according to [38], the transport190

capacity in such network is upper bounded by �(W
√

n). This191

is the model studied in Theorem 1 and the first two scenarios192

of Theorem 2.193

2) Random Network: The next network studied in194

Theorem 2 is a more general network model where the nodes195

are randomly distributed over a unit square area according196

to a uniform distribution (Figure 1(b)). We use the same197

model used in [38] (section 5) and divide the network area198

into square cells each with side-length proportional to the199

transmission range r(n), which is decreasing when the number200

of nodes increases, and is selected to be at least �
√

log n
n to201

guarantee the connectivity of the network [39] and a non-zero202

capacity. According to the protocol model [38], if the cells203

are far enough they can transmit data at the same time with204

no interference; we assume that there are M2 non-interfering205

groups which take turn to transmit at the corresponding time-206

slot in a round robin fashion. Again, without loss of generality207

the server is assumed to be located at the middle of the208

network. In this model the maximum number of simultaneous209

feasible transmissions will be in the order of 1
r2(n)

as each210

transmission consumes an area proportional to r2(n). All other211

assumptions are similar to the grid network.212

B. Content Discovery Algorithm213

1) Path-Wise Discovery: To discover the location of the214

desired content, the request is sent through the shortest path215

toward the server containing the requested content. If an216

intermediate node has the data in its local cache, it does217

not forward the request toward the server anymore and the218

requester will start downloading from the discovered cache.219

Otherwise, the request will go all the way toward the server220

and the content is obtained from the main source. In case of221

the random network when a node needs a piece of information,222

it will send a request to its neighbors toward the server, i.e.223

the nodes in the same cell and one adjacent cell in the path224

toward the server, if any copy of the data is found it will be225

downloaded. If not, just one node in the adjacent cell will226

forward the request to the next cell toward the server.227

2) Expanding Ring Search: In this algorithm the request228

for the information is sent to all the nodes in the transmission229

range of the requester. If a node receiving the request contains230

the required data in its local cache, it notifies the requester231

and then downloading from the discovered cache is started.232

Fig. 2. Data access process time diagram in a cache for content k

Otherwise, all the nodes that receive the request will broadcast 233

the request to their own neighbors. This process continues 234

until the content is discovered in a cache and the downloading 235

follows after that. This will return the nearest copy from the 236

requester. 237

C. Content Distribution in Steady-State 238

The time diagram of data access process in a cache is 239

illustrated in Figure 2. When a query for content fk is initiated, 240

the content is downloaded from a cache containing it and is 241

received by another cache where it is going to be kept. The 242

same cache may receive the same data after some random 243

time (T k
2 ) with distribution g2k and mean 1/λk . Note that 244

1) no specific caching policy is assumed here, and 2) a node 245

will receive the content only if it does not have it in its local 246

cache. The solid lines in this diagram denote the portions of 247

time that the data is available at the cache. 248

As the requests for different contents are assumed to be 249

independent and holding times are set for each content inde- 250

pendent of the others, we can do the calculations for one single 251

content. If the total number of contents is not a function of the 252

network size, this will not change the capacity order. Assume 253

that content sizes Bk are much larger than the request packet 254

size, so we ignore the overhead of the discovery phase in our 255

calculations. 256

The average portion of time that each node contains a 257

content in its local cache is 258

ρ(k)(n) = 1/μk

1/μk + 1/λk
= λk

λk + μk
, (1) 259

which is the average probability that a node contains the 260

content k at steady-state. λk is the rate of requests for content 261

k received by a cache in case of the data not being available, 262

and μk is the rate of the data being expunged from the cache. 263

Both these parameters can strongly be dependent on the total 264

number of users, or the topology and configuration of the 265

network or the cache characteristics like size and replacement 266

policy. 267

D. Performance Indices 268

The performance indices studied in this work are: 269

1) Throughput Capacity: Throughput capacity is the maxi- 270

mum common content download rate which can be achieved 271

by all users on average. 272

2) Average Latency: The average amount of time it takes 273

for a customer to receive its required content from a cache or 274

server. 275

3) Total Traffic: The total traffic generated by downloading 276

item k is the number of item k bits moving across the netwrok 277

in a second. In other words, it is the product of total request 278

rate (the product of the number of requesting nodes and the 279
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rate at which each node is sending the request), the number280

of hops between source and destination, and the content size.281

IV. THEOREM STATEMENTS AND PROOFS282

Consider a grid wireless network consisting of n nodes,283

transmitting over a common wireless channel, with shared284

bandwidth of W = �(1) bits per second. Assume that there285

is a server which contains all the information. Without loss of286

generality we assume that this server is located in the middle of287

the network. Each node contains some information in its local288

cache. Assume that according to the symmetry, the probability289

of each content k being in all the caches with the same distance290

( j hops) from the server is the same (ρ(k)j (n)).291

Theorem 1: The maximum achievable throughput capacity292

order (γmax) in the above network when the nodes use the293

nearest copy of the required content on the shortest path294

toward the server is given by3
295

γmax296

≡ n
∑m

k=1 αk
∑√

n
i=1 4i

∑i−1
j=0(i − j)ρ(k)j (n)

∏i
l= j+1(1−ρ(k)l (n))

,297

298

where ρ(k)0 (n) = 1, which means that the server always299

contains all the contents.300

Proof: Considering the grid topology and large number301

of nodes, each cache may receive requests and downloaded302

contents originated from different nodes. Since the users303

are sending requests independent of each other, the requests304

received by different caches can be assumed independent of305

each other. Thus, the information in each cache is indepen-306

dent of the contents in the other caches. This assumption307

has been made in some other works too, among which are308

[28] and [40]-[43] to name a few.309

A request initiated by a user vi in i -hop distance from the310

server (located in level i = 1, ..,
√

n) is served by cache u j311

located in level j, 1 ≤ j ≤ i on the shortest path from vi to312

the server if no caches before u j , including vi , on this path313

contains the required information, and u j contains it. This314

request is served by the server if no copy of it is available on315

the path. Let P(k)i, j denote the probability of vi ’s request for316

item k being served by u j , this probability is given by P(k)i, j =317

(1 − ρ
(k)
i (n))(1 − ρ

(k)
i−1(n))...(1 − ρ

(k)
j+1(n))ρ

(k)
j (n) (2)318

where ρ(k)j (n) is the probability of content k being available319

in a cache in level j, 1 ≤ j ≤ √
n, and j = 0 shows the320

server and ρ(k)0 (n) = 1. Thus a content k requested by vi is321

traveling i − j hops with probability P(k)i, j . There are 4i nodes322

in level i so the average number of hops (E[hk]) traveled by323

item k from the serving cache (or the original server) to the324

requester is325

E[hk] = 1

n

∑√
n

i=1
4i

∑i−1

j=0
(i − j)P(k)i, j (3)326

Therefore the average number of hops in the network is given327

by E[h] = ∑m
k=1 αk E[hk].328

3Since no online caching assumption is used in this Theorem, it can be used
for offline caching networks as well. However, we skip the offline results and
target the networks with online caching which is the scope of this paper.

Assume that each user is receiving data with rate γ . The 329

transport capacity in this network, which equals to nγ E[h], 330

is upper bounded by �(
√

n) bits-meters/sec divided by the 331

distance of each hop �( 1√
n
), which is �(n) bits-hops/sec. 332

So γmax = �( 1
E[h] ) and the Theorem is proved. 333

Now consider a wireless network consisting of n nodes, 334

with each node containing information k in its local cache with 335

common probability,4,5 ρ(k)(n) � 1 (meaning that it does not 336

tend to 1 when n increases.), otherwise for ρ(k)(n) → 1, the 337

request is served locally and no data is transferred between the 338

nodes. Assume that the request process and cache look up time 339

in each node is not a function of the number of nodes. Here, 340

based on the network models and content discovery methods, 341

we define the following different scenarios, and then study the 342

corresponding performance of caching in Theorems 2 and 3; 343

• Scenario i- The nodes are located on a grid and search for 344

the contents just on the shortest path toward the server, 345

• Scenario ii- The nodes are located on a grid and use ring 346

expansion to find contents, 347

• Scenario iii- The nodes are randomly distributed over 348

a unit square area and use path-wise content discovery 349

algorithm. Each node has a transmission range of r(n) 350

which at least equals to �(
√

log n
n ) so the network is 351

connected. 352

Theorem 2: The average latency order in the three scenar- 353

ios defined above is 354

• Scenario i- �(min(
√

n, 1
min

k
(ρ(k)(n))

)). 355

• Scenario ii- �(min(
√

n, 1√
min

k
(ρ(k)(n))

)). 356

• Scenario iii- �(max[1,min( 1
r(n) ,

1
min

k
(ρ(k)(n))nr2(n)

)]). 357

Here we prove Theorem 2 by utilizing some Lemmas. The 358

proof of lemmas are presented in the Appendix. 359

Lemma 1: Consider the wireless networks described in 360

Theorem 2. The average number of hops between the customer 361

and the serving node (a cache or original server) for item k is 362

• Scenario i- E[hk] asymptotically equals to 363

1

n

√
n∑

i=1

i2(1 − ρ(k)(n))i 364

+ ρ(k)(n)

n

√
n∑

i=1

i
i−1∑

l=1

l(1 − ρ(k)(n))l (4) 365

• Scenario ii- E[hk] asymptotically equals to 366

1

n
{

√
n∑

i=1

i2(1 − ρ(k)(n))2i2−2i+1
367

+
√

n∑

i=2

i
i−1∑

l=1

l(1−ρ(k)(n))2l2−2l+1(1 − (1 − ρ(k)(n))4l)} 368

(5) 369

4The proof does not need the probabilities to be exactly the same, they just
need to be of the same order in terms of n.

5Note that this assumption is correct for networks with online caching.
In offline caching scenarios each content is present in some specific caches.
However, offline caching can be considered as a special case of online caching,
and we still can use this theorem by assigning the value of the fraction of
caches containing the item to the probability of each item being in a cache.
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• Scenario iii- E[hk] asymptotically equals to370

r2(n){
1

r(n)∑

i=2

i2(1 − ρ(k)(n))inr2 (n) + (1 − (1 − ρ(k)(n))nr2(n))371

1
r(n)∑

i=2

i
i−1∑

l=1

l(1 − ρ(k)(n))lnr2(n)} (6)372

Lemma 2: Consider the wireless networks described in373

Theorem 2. For sufficiently large networks, the average num-374

ber of hops between the customer and the serving node375

(a cache or the original server) for item k is376

• Scenario i- E[hk] equals
√

n for ρ(k)(n) � 1√
n

, and 1
ρ(k)(n)

377

for ρ(k)(n) � 1√
n

.378

• Scenario ii- E[hk] equals
√

n for ρ(k)(n) � 1
n , and379

1√
ρ(k)(n)

for ρ(k)(n) � 1
n .380

• Scenario iii- E[hk] equals 1
r(n) for ρ(k)(n) � 1

nr(n) ,381

1
ρ(k)(n)nr2(n)

for 1
nr(n) � ρ(k)(n) � 1

nr2(n)
, and 1 for382

ρ(k)(n) � 1
nr2(n)

.383

Theorem 2 is now simply proved using the above Lemmas.384

Proof: The average number of hops each content is385

traveling is E[h] = ∑m
k=1 αk E[hk].386

We assume that the number of contents and also the387

popularity of each item is not changing with the network size388

(number of users). In the three scenarios mentioned above for389

the cases of ρ(k)(n) � 1√
n

, ρ(k)(n) � 1
n , and ρ(k)(n) � 1

nr(n) ,390

when there is at least one node with average number of hops391

equal to
√

n,
√

n, and 1
r(n) respectively, then that node’s E[hk]392

in E[h] defined above becomes the dominant factor.393

If ρ(k)(n) � 1√
n

, ρ(k)(n) � 1
n , and ρ(k)(n) � 1

nr2(n)
for394

all the contents, in the three scenarios, respectively, then E[h]395

in the three scenarios is given by
∑m

k=1
αk

ρ(k)(n)
≡ 1

min
k
(ρ(k)(n))

,396

∑m
k=1

αk√
ρ(k)(n)

≡ 1√
min

k
(ρ(k)(n))

, and
∑m

k=1 αk = 1.397

In the third scenario, if there is no item for which ρ(k)(n) �398

1
nr(n) , but there is at least one item such that ρ(k)(n) � 1

nr2(n)
,399

then E[h] = ∑m
k=1

αk
ρ(k)(n)nr2(n)

≡ 1
min

k
(ρ(k)(n)nr2(n))

.400

The total E[h] can be simply written as the results shown401

in Theorem 2.402

Assuming that the delay of the request process and cache403

look up in each node is not increasing when the network size404

(the number of nodes) increases, and that there is enough405

bandwidth to avoid congestion, then the latency of getting406

the data is directly proportional to the average number of407

hops between the serving node and the customer. Thus, the408

latency and the average number of hops the data is traveling409

to reach the customer are of the same order and Theorem 2 is410

proved.411

Theorem 3: Consider the networks of Theorem 2, and412

assume each node can transmit over a common wireless413

channel, with W = �(1) bits per second bandwidth, shared414

by all nodes. The maximum achievable throughput capacity415

order γmax in the three discussed scenarios are416

• Scenario i- �(max( 1
n ,min

k
((ρ(k)(n))2))).417

• Scenario ii- �(max( 1
n ,min

k
(ρ(k)(n)))). 418

• Scenario iii- 419

�(max[ 1
n ,min( 1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]). 420

To prove Theorem 3 we use Lemma 2, and the following two 421

Lemmas. 422

Lemma 3: Consider the wireless networks described in 423

Theorem 2. In order not to have interference, the maximum 424

throughput capacity is upper limited by 425

• Scenario i- �(max( 1√
n
,min

k
(ρ(k)(n)))). 426

• Scenario ii- �(max( 1√
n
,
√

min
k
(ρ(k)(n)))). 427

• Scenario iii- �(min[ 1
nr2(n)

,max( 1
nr(n) ,min

k
(ρ(k)(n)))]). 428

In the previous Lemma, the maximum throughput capacity in 429

a wireless network utilizing caches has been calculated such 430

that no interference occurs. Now it is important to verify if 431

this throughput can be supported by each node (cell), i.e. the 432

traffic carried by each node (cell) is not more than what it can 433

support (�(1)). 434

Lemma 4: The maximum supportable throughput capacities 435

in the studied scenarios are as follows. 436

• Scenario i- �(max( 1
n ,min

k
((ρ(k)(n))2))). 437

• Scenario ii- �(max( 1
n ,min

k
(ρ(k)(n)))). 438

• Scenario iii- 439

�(max[ 1
n ,min( 1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]). 440

The maximum throughput capacity is the value which can be 441

supported by all the nodes while no interference occurs. Thus 442

the throughput capacity will be the minimum of the two values 443

derived in Lemmas 3 and 4, and Theorem 3 is proved. 444

V. DISCUSSION 445

The Theorems above express the maximum achievable data 446

download rate in terms of the availability of the contents in 447

the caches(ρ(k)(n)), in networks with specific topology and 448

content discovery mechanisms. However, no assumption on 449

the caching policy, which is an important factor in determining 450

ρ(k)(n) have been made. In this section, we discuss our results 451

based on two examples and try to study the affect of caching 452

policy on the performance. 453

In these examples we consider two different cache replace- 454

ment policies based on Time-To-Live (TTL). First example 455

uses exponentially distributed TTL, and the second one con- 456

siders constant TTL. According to [44] this can predict metrics 457

of interest on networks of caches running other replacement 458

algorithms like LRU, FIFO, or Random. 459

In order to use the stated theorems, the probability of each 460

item being in each cache is first calculated, and then, the 461

appropriate theorem is used to give the throughput capacity. 462

In the first example, in addition to the capacity, we analyze 463

the total request rate (n(1−ρ(k))λk) and total generated traffic 464

for an item k (n(1 − ρ(k))λk Bk E[hk]) as well. This gives us 465

an idea about how the request rates and cache holding times 466

affect the traffic in the network and how the resources are 467

utilized. 468

A. Example 1 469

1) Network Model: Consider a network where the received 470

data is stored only at the receivers (edge caching [45], [46]) 471
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Fig. 3. Scenario i (a) Total request rate for an item k in the network (λk n(1−
ρ(k)(n))), (b) Total traffic in the network (Bkλk n(1 − ρ(k)(n))E[hk ]) vs. the
request rate (λk ) with fixed time-out rate (μk = 1).

and then shared with the other nodes as long as the node472

keeps the content. Assume that receiving a data k in the473

local cache of the requesting user sets a time-out timer with474

exponentially distributed duration with parameter ηk and no475

other event will change the timer until it times-out, meaning476

that in equation (1) μk = ηk , which is not a function of n.477

Considering the request process for each content k from each478

user being a Poisson process with rate βk not changing with n,479

and using the memoryless property of exponential distribution480

(internal request inter-arrival times), and assuming that the481

received data is stored only in the end user’s cache (the caches482

on the download path do not store the downloading data), it483

can be proved that in equation (1) λk = βk . Thus we can484

write the presence probability of each content k in each cache485

as ρ(k)(n) = βk
βk+ηk

(equal order probability of all the caches486

containing an item k).487

2) Results: Figures 3 (a),(b) respectively illustrate the total488

request rate and the total traffic generated in a fixed size489

network in scenario i for each item k for different request490

rates when the time-out rate is fixed. Small λk means that491

each node is sending requests for k with low rate, so fewer492

caches have that content, and consequently more nodes are493

sending requests with this low rate. In this case most of the494

requests are served by the server. The total request rate of495

item k will increase by increasing the per node request rate.496

High λk shows that each node is requesting the content with497

higher rate, so the number of cached content k in the network498

is high, thus fewer nodes are requesting it with this high rate499

externally. Here most of the requests are served by the caches.500

The total request rate then is determined by the content drop501

rate. So for very large λk , the total request rate is the total502

number of nodes in the network times the drop rate (nμk)503

and the total traffic is nμk Bk . As can be seen there is some504

request rate at which the traffic reaches its maximum; this505

happens when there is a balance between the requests served506

by the server and by the caches. For smaller request rates,507

most of the requests are served by the server and increasing508

λk increases the total traffic. For larger λk , on the other hand,509

most of the requests are served by the caches and increasing510

the request rate will not change the distance to the nearest511

content and the total traffic.512

Figures 4 (a),(b) respectively illustrate the total request rate513

and the total traffic generated in a fixed size network in514

Fig. 4. Scenario i (a) Total request rate in the network (λk n(1 − ρ(k)(n))),
(b) Total traffic in the network (Bkλk n(1 − ρ(k)(n))E[hk ]) vs. the inverse of
the time-out rate (1/μk ) with fixed request ratio (λk = 1).

Fig. 5. Maximum download rate (γmax ) vs. the number of nodes (n) for
ρ = 7/8.

scenario i for different time-out rates when the request rate is 515

fixed. For low 1/μk (high time-out rates or small lifetimes), 516

most of the item k requests are served by the server and 517

caching is not used at all. For large time-out times, all the 518

requests are served by the caches, and the only parameter in 519

determining the total request rate is the time-out rate. 520

However, when the network grows the traffic in the network 521

will increase and the download rate will decrease. If we 522

assume that the new requests are not issued in the middle 523

of the previous download, the request rate will decrease with 524

network growth. If the holding time of the contents in a cache 525

increases accordingly the total traffic will not change, i.e. if by 526

increasing the network size the requests are issued not as fast 527

as before, and the contents are kept in the caches for longer 528

times, the network will perform similarly. 529

In Figure 5 we assume that the request rate is roughly 7 530

times the drop rate for all the contents, so ρ(k)(n) = 7/8, 531

and show the maximum throughput order as a function of 532

the network size. In scenario iii, we set the transmission 533

range to the minimum value needed to have a connected 534

network (r(n) ≡
√

log n
n ). According to Theorem 3 and as 535

can be observed from this figure, the maximum throughput 536

capacity of the network in a grid network with the described 537

characteristics is not changing with the network size if the 538

probability of each item being in each cache is fixed, while 539

in a network with no cache this capacity will be inversely 540

proportional to the network size. Similarly in the random 541

network the maximum throughput is inversely proportional to 542

nr2(n), which is the logarithm of the network size, while in 543

a no cache network it is diminishing with the rate of network 544

growth. 545
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Moreover, comparing scenario i with ii, we observe that546

the throughput capacity in both cases are almost the same;547

meaning that using the path discovery scheme will lead to548

almost the same throughput capacity as the expanding ring549

discovery. Thus, we can conclude that just by knowing the550

address of a server containing the required data and for-551

warding the requests through the shortest path toward that552

server we can achieve the best performance, and increasing553

the complexity and control traffic to discover the closest554

copy of the required content does not add much to the555

capacity.556

On the other hand with a fixed network size, if the prob-557

ability of an item being in each cache is greater than a558

threshold (�( 1√
n
), �( 1

n ), and �( 1
nr2(n)

) = �( 1
log n ) in cases559

i, ii and iii, respectively), most of the requests will be served by560

the caches and not the server, so increasing the probability of561

an intermediate cache having the content reduces the number562

of hops needed to forward the content to the customer, and563

consequently increases the throughput. For content presence564

probability orders less than these thresholds (�( 1
nr(n) ) =565

�( 1√
n log n

) in cases iii) most of the requests are served by566

the main server, so the maximum possible number of hops567

will be traveled by each content to reach the requester and the568

minimum throughput capacity (�( 1
n )) will be achieved. Note569

that in these networks, the maximum throughput is limited570

by the maximum supportable load on each link, and more571

specifically on the server.572

As may have been expected and according to our results,573

the obtained throughput is a function of the probability of574

each content being available in each cache, which in turn is575

strongly dependent on the network configuration and cache576

management policy.577

B. Example 2578

1) Network Model: Assume an n-cache grid wireless net-579

work with one server containing all the items located in the580

middle of the network. Each cache in level i (nodes at i581

hops away from the server) receives requests for a specific582

document k according to a Poisson distribution with rate β(k)583

from the local user, and with rate β(k)
′

i (n) from all the other584

nodes. Note that rate β(k)
′

i (n) is a function of the individual585

request rate of users for item k (β(k)) and also the location of586

the cache in the network. The content discovery mechanism587

is path-wise discovery, and whenever a copy of the required588

data is found (in a cache or server), it will be downloaded589

through the reverse path, and either all the nodes on the590

download path or only the requester node store it in their local591

caches. Moreover, we assume that receiving the item k and592

also any request for the available cached data k by a node in593

level i refreshes a time-out timer with fixed duration D(k)
i (n).594

According to [47], this is a good approximation for caches595

with LRU replacement policy when the cache size and the596

total number of documents are reasonably large. Furthermore,597

according to the same work this value is a constant for all598

contents and is a function of the cache size, so we can use599

Di (n) for all contents in caches in level i . We will calculate600

the average probability of item k being in a cache in level i601

(ρ(k)i (n)) based on these assumptions and then use Theorem 1 602

to obtain the throughput capacity. 603

2) Results: Let random variable t(k)ion (T ) denote the total 604

time of the data k being available in a cache in level i (i hop 605

distance from the server) during constant time T . Assume that 606

item k is received N (k)i (T ) times during time T by each node 607

vi in level i (according to the symmetry all nodes in one level 608

have similar conditions.). The data available time between any 609

two successive receipt of item k is Di (n) if the timer set by 610

the first receipt is expired before the second one comes, or is 611

equal to the time between these two receipts. Let τ req(k)
i denote 612

the time between two successive receipts. This process has an 613

exponential distribution with parameter β(k)i = β(k) + β
(k)′
i . 614

So the total time of data k availability in a level i 615

cache is 616

t(k)ion (T ) =
N (k)i (T )∑

j=0

min(τ req(k)
i , Di (n)), (7) 617

and the average value of this time is (E[t(k)ion (T )]) 618

∞∑

l=0

E[
l∑

j=0

min(τ req(k)
i , Di (n))]Pr(N (k)i (T ) = l), 619

=
∞∑

l=0

l E[min(τ req(k)
i , Di (n))]Pr(N (k)i (T ) = l), 620

= E[min(τ req(k)
i , Di (n))]E[N (k)i (T )]. (8) 621

According to the Poisson arrivals of requests (data down- 622

loads) with parameter β(k) + β
(k)′
i , the rightmost term in 623

equation (8) (E[N (k)i (T )]) equals (β(k)+β(k)′i )T . The leftmost 624

term in this equation (E[min(τ req(k)
i , Di (n))]) can also be 625

easily calculated and equals to 1−e−Di (n)(β
(k)+β(k)′i )

β(k)+β(k)′i

. Therefore, 626

E[t(k)ion (T )] = (1 − e−Di (n)(β(k)+β(k)
′

i ))T . And finally the 627

probability of an item k being available in a level i cache is 628

ρ
(k)
i = E[t (k)ion (T )]

T = 1−e−Di (n)(β(k)+β(k)
′

i (n)). Note that D0 = ∞ 629

so that ρ(k)0 = 1. 630

Now we need to calculate the rate of item k received by 631

each node in level i . First, assume that when an item is 632

downloaded , only the end user (the node which has requested 633

the content) keeps the downloaded content, and storing a new 634

content refreshes the time-out timer with fixed duration Di (n). 635

Thus β(k)
′

i (n) = 0, and ρ(k)i (n) = 1− e−Di (n)β(k) . It is obvious 636

that in such network where all the caches have the same size 637

and the request patterns, Di (n) will not depend on the cache 638

location, and since the request rate and the caches sizes are not 639

changing with n this value does not depend on the network size 640

either. Thus, Di (n) can be replaced by fixed and constant D. 641

Therefore, ρ(k)i (n) = 1 − e−Dβ(k) which is similar for all the 642

caches, and the maximum throughput capacity order (γmax ) is 643

n
∑m

k=1 αk
∑√

n
i=1 i

∑i−1
j=0(i− j )(1−e−Dβ(k) )e−(i− j)Dβ(k)

, which is 644

1
∑m

k=1
αke−Dβ(k)

1−e−Dβ(k)

≡ 1. (9) 645
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As the second case, we assume that all the nodes on the646

download path keep the data, and the shortest path from the647

requester to the server is selected such that all the nodes in648

level i receive the requests for item k with the same rate. There649

are 4i nodes in level i and 4(i +1) nodes in level i +1. So the650

request initiated or forwarded from a node in level i + 1 will651

be received by a specific node in level i with probability i
i+1652

if it is not locally available in that node, so β(k)
′

i (n) can be653

expressed as654

β
(k)′
i = (1 − ρ

(k)
i+1)(β

(k) + β
(k)′
i+1)(i + 1)

i
(10)655

Combining equation (10), the relationship between ρ
(k)
i656

and β
(k)′
i , and the fact that there is no external request657

coming to the nodes at the edge boundary of the network658

(β(k)
′√

n
= 0), together with the result of Theorem 1 we659

can obtain the capacity (γmax) in the grid network with660

path-wise content discovery and on-path storing scheme661

which is n divided by
∑m

k=1 αk
∑√

n
i=1 i

∑i−1
j=0(i − j)(1 −662

e−D j (n)(β(k)+β(k)
′

j )
)e− ∑i

l= j+1 Dl (n)(β(k)+β(k)
′

l ).663

The result of this equation cannot exceed �(1) since this is664

the maximum possible throughput order in the grid network.665

Thus, caching the downloaded data in all the caches on the666

download path does not add any asymptotic benefit in the667

capacity of the network, and keeping the downloaded items668

only in the requester caches will yield the maximum possible669

throughput.670

VI. CONCLUSION AND FUTURE WORK671

We studied the asymptotic throughput capacity and latency672

of ICNs with limited lifetime cached data at each node.673

The grid and random networks are two network models we674

investigated in this work. Representing all the results in terms675

of the probability of the items being in the caches while676

not considering any specific content popularity distribution,677

or cache replacement policy has empowered us to have a678

generalized result which can be used in different scenarios.679

Our results show that with fixed content presence probability680

in each cache, the network can have the maximum throughput681

order of 1 and 1
nr2(n)

in cases of grid and random networks,682

respectively, and the number of hops traveled by each data to683

reach the customer (or latency of obtaining data), can be as684

small as one hop.685

Moreover, we studied the impact of the content discovery686

mechanism on the performance in grid networks. It can be687

observed that looking for the closest cache containing the688

content will not have much asymptotic advantage over the689

simple path-wise discovery when min
k
ρ(k)(n) is sufficiently690

small (min
k
ρ(k)(n) � 1

n ) or big enough (min
k
ρ(k)(n) � 0).691

For other values of min
k
ρ(k)(n), looking for the nearest copy692

at most decreases the throughput diminishing rate by a factor693

of two. Consequently, downloading the nearest available copy694

on the path toward the server has similar performance as695

downloading from the nearest copy. A practical consequence696

of this result is that routing may not need to be updated697

with knowledge of local copies, just getting to the source 698

and finding the content opportunistically will yield the same 699

benefit. 700

Another interesting finding is that whether all the caches 701

on the download path keep the data or just the end user 702

does it, the maximum throughput capacity scale does not 703

change. 704

In this work, we represented the fundamental limits of 705

caching in the studied networks, proposing a caching and 706

downloading scheme that can improve the capacity order is 707

part of our future work. 708

APPENDIX 709

Proof of Lemma 1: Let hk , dsr , and dmax denote the number 710

of hops between the customer and the serving node (cache or 711

original server) for content k, the number of hops between the 712

customer and the serving node (cache or original server), and 713

the maximum value of dsr , respectively. The average number 714

of hops between the customer and the serving node (E[hk]) 715

is given by 716

E[hk] =
dmax∑

i=1

E[hk |dsr = i ]Pr(dsr = i). (11) 717

Scenario i- This case can be considered as a special case 718

of the network studied in Theorem 1, where ρ(k)i (n) is the 719

same for all i .6 Thus, we can drop the index i and let 720

ρ(k)(n) denote the common value of this probability. Using 721

equation (2) and (3) we will have E[hk] equal to 722

4

n

√
n∑

i=1

i{i(1 − ρ(k)(n))i +
i−1∑

j=1

(i − j)(1 − ρ(k)(n))i− jρ(k)(n)} 723

(12) 724

The constant factor 4 does not change the scaling order 725

and it can be dropped. By defining l = i − j , then the proof 726

follows. 727

Scenario ii - dmax in this network is �(
√

n), and there are 728

4i nodes at distance of i hops from the original server. Thus, 729

Pr(dsr = i) ≡ i
n . Each customer may have the required 730

item k in its local cache with probability ρ(k)(n). If the 731

requester is one hop away from the original server, it gets 732

the required item from the server with probability 1−ρ(k)(n). 733

The customers at two hops distance from the server (8 such 734

customers) download the required item from the original server 735

(traveling hk = 2 hops) if no cache in a diamond of two hops 736

diagonals contains it (with probability (1−ρ(k)(n))2), and gets 737

it from a cache at distance one hop if one of those caches has 738

the item (with probability (1 − ρ(k)(n))(1 − (1 − ρ(k)(n))4)). 739

Using similar reasoning, the customers at distance i from 740

the server get the item from the server (distance hk = i 741

hops) with probability (1 − ρ(k)(n))1+4(1+2+···+(i−1)) = (1 − 742

ρ(k)(n))2i2−2i+1, and from a cache at distance hk = l < i 743

with probability (1 − ρ(k)(n))2l2−2l+1(1 − (1 − ρ(k)(n))4l) as 744

there are 4l nodes at distance of l hops. Therefore, using 745

6We will give examples in Section V using this assumption.
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equations (11), (2), and (3)746

E[hk] ≡ 1

n

√
n∑

i=2

i
i−1∑

l=1

l(1−(1−ρ(k)(n))4l)(1−ρ(k)(n))2l2−2l+1
747

+ 1

n

√
n∑

i=1

i2(1 − ρ(k)(n))2i2−2i+1 (13)748

Scenario iii - The number of caches within transmission749

range (one hop) is �(nr2(n)). dmax in this network is of the750

order of 1
r(n) and Pr(dsr = i) ≡ ir2(n).751

Each customer may have the required item k in its local752

cache with probability ρ(k)(n). If the requester is one hop away753

from the original server (4�(nr2(n)) nodes), it receives the754

required item from the server with probability 1−ρ(k)(n). The755

customers at two hops distance from the server (8�(nr2(n))756

such customers) download the required item from the original757

server (traveling hk = 2 hops) if no cache in the cell at one hop758

distance contains it (probability (1−ρ(k)(n))2nr2(n)), and gets it759

from a cache at distance one hop if one of those caches has the760

item (probability (1−ρ(k)(n))(1−(1−ρ(k)(n))2nr2(n))). Using761

similar reasoning the customers at distance i from the server762

receive the item from the server (distance hk = i hops) with763

probability (1 − ρ(k)(n))inr2(n), and from a cache at distance764

hk = l < i with probability (1 − ρ(k)(n))lnr2(n)(1 − (1 −765

ρ(k)(n))nr2(n)). Therefore, according to equation (11) E[hk]766

equals to767

r2(n){(1 − ρ(k)(n))+
1

r(n)∑

i=2

i2(1 − ρ(k)(n))inr2 (n)
768

+ (1 − (1 − ρ(k)(n))nr2(n))

1
r(n)∑

i=2

i
i−1∑

l=1

l(1 − ρ(k)(n))lnr2(n)}.769

(14)770

Noting that r2(n)(1 − ρ(k)(n)) is always less than one,771

and tends to zero for sufficiently large n, the Lemma is772

proved.773

Proof of Lemma 2: To simplify the notations, we have774

dropped the index k when there is no ambiguity.775

To prove this Lemma we use (A): limN→∞(1−x)N ≈ e−x N
776

approximation, which is ≈ 1 for x = o( 1
N ) (region 1), ≈ e−1

777

for x = �( 1
N ) (region 2), and ≈ 0 for x = ω( 1

N ) (region 3).778

Scenario i - Let us define779

Ei
s = 1

n

√
n∑

i=1

i2(1 − ρ(n))i , Ei
c = ρ(n)

n

√
n∑

i=1

i
i−1∑

l=1

l(1−ρ(n))l .780

(15)781

Thus equation (4) is written as E[h] = Ei
s + Ei

c. First we782

investigate the value of Ei
s for different ranges of ρ(n). The783

summation for Ei
s can be decomposed into two summations.784

Ei
s ≡ 1

n
{
∑

i≺√
n

i2(1 − ρ(n))i +
∑

i≡√
n

i2(1 − ρ(n))i } (16)785

Assume ρ(n) ≡ 1√
n

, then using first and second region of 786

equation (VI) we have 787

Ei
s ≡ 1

n
{
∑

i≺√
n

i2 +
∑

i≡√
n

i2} ≡ n3/2

n
≡ √

n. (17) 788

Moreover it can easily be seen that Ei
s is a decreasing 789

function of ρ(n), so for ρ(n) with order less than 1√
n

it is 790

more than
√

n. Since dmax = √
n, we can say Ei

s ≡ √
n for 791

ρ(n) � 1√
n

. Now we expand the summation to obtain 792

Ei
s ≡ (1 − ρ(n))(2 − ρ(n))

nρ3(n)
− (1 − ρ(n))

√
n+1

nρ3(n)
793

×{n(1−ρ(n))2−(1−ρ(n))(2n + 2
√

n−1)+ (
√

n + 1)2} 794

(18) 795

If ρ(n) � 1√
n

, then using third region in equation (VI), 796

(1 − ρ(n))
√

n+1 is going to zero exponentially, so n(1 − 797

ρ(n))
√

n+1 → 0. Thus, Ei
s ≡ 1

nρ3(n)
, and in summary 798

Ei
s ≡

{√
n ρ(n) � 1√

n
1

nρ3(n)
ρ(n) � 1√

n

(19) 799

According to equation (19) and since E[h] = Ei
s +Ei

c, when 800

Ei
s ≡ √

n (for ρ(n) � 1√
n

) which is the maximum possible 801

order for E[h], then adding Ei
s to E[h] cannot increase its 802

order beyond the maximum possible value. Now to derive the 803

order of E[h] for other values of ρ(n), we decompose the 804

equation of Ei
c = Ei1

c + Ei2
c to the following summations and 805

investigate their behaviors when ρ(n) � 1√
n

. 806

Ei1
c = 1

n

∑

i≡√
n

i
i−1∑

l=1

lρ(n)(1 − ρ(n))l , 807

Ei2
c = 1

n

∑

i≺√
n

i
i−1∑

l=1

lρ(n)(1 − ρ(n))l (20) 808

The number of i ≡ √
n is in the order of �(1). Therefore 809

using the following series
∑n

x=1 xax = an+1(na−n−1)+a
(a−1)2

, we 810

have Ei1
c ≡ 1√

n

∑√
n

l=1 lρ(n)(1 − ρ(n))l ≡ 1−ρ(n)
ρ(n)

√
n
(1 − (1 − 811

ρ(n))
√

n(1 + ρ(n)
√

n)), which is equivalent to 1
ρ(n)

√
n

when 812

ρ(n) � 1√
n

. 813

Utilizing the same series, the first summation in Ei2
c is 814

�(
√

n). Hence we arrive at 815

Ei2
c 816

≡ 1 − ρ(n)

ρ(n)n

∑

i≺√
n

i [1 − {1 − ρ(n)+ ρ(n)i}(1 − ρ(n))i−1] 817

≡
1−ρ(n){1− 1

n

∑

i≺√
n

i(1−ρ(n))i − 1
n

∑

i≺√
n

i2ρ(n)(1−ρ(n))i−1}

ρ(n)
818

≡ 1 − ρ(n)

ρ(n)
− (1 − ρ(n))2

ρ3(n)n
− 1

ρ3(n)n
≡ 1

ρ(n)
(21) 819
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Since ρ(n) � 1√
n

, Ei2
c is the dominant factor in Ei

c, and820

also it is dominant factor in E[h]. Thus, E[h] ≡ Ei
s ≡ √

n for821

ρ(n) � 1√
n

, and E[h] ≡ Ei2
c ≡ 1√

ρ(n)
for ρ(n) � 1√

n
.822

Scenario ii - Let us define823

Eii
s = 1

n

√
n∑

i=1

i2(1 − ρ(n))2i2−2i+1,824

Eii
c = 1

n

√
n∑

i=2

i
i−1∑

k=1

l(1 − ρ(n))2l2−2l+1(1 − (1 − ρ(n))4l)825

(22)826

So E[h] = Eii
s + Eii

c . Assume that ρ(n) ≡ 1
n , then827

Eii
s ≡ 1

n

√
n∑

i=1

i2(1 − 1

n
)2i2−2i+1 ≡ 1

n

√
n∑

i=1

i2 ≡ √
n. (23)828

Since Eii
s is increasing when ρ(n) is decreasing and its829

maximum possible order is
√

n, then Eii
s ≡ √

n for all830

ρ(n) � 1
n .831

For ρ(n) � 1
n , we approximate the summation with the832

integral.833

Eii
s834

≡ 1

n

∫ √
n

v=1
v2(1 − ρ(n))2v

2−2v+1
835

≡ {
(1−log(1−ρ(n)))√2π(1−ρ(n))er f (

(2v−1)
√− log(1−ρ(n))√

2
)

n log3/2(1 − ρ(n))
836

+ −2
√− log(1 − ρ(n))(2v + 1)(1 − ρ(n))2v

2−2v+1

n log3/2(1 − ρ(n))
}|

√
n

v=1837

(24)838

where er f is the error function which is always limited839

by [−1, 1] and is zero at zero. If ρ(n) → 1, then it is840

obvious that Eii
s → 0. For other values of ρ(n) � 1

n841

we use the third approximation in equation (VI), and also842

− log(1 − ρ(n)) ≡ ρ(n), which is true when ρ(n) tends to843

zero while n approaches infinity, and − log(1 − ρ(n)) ≡ 1844

for ρ(n) � 0 to prove that Eii
s ≡ √

n for ρ(n) � 1
n , and845

Eii
s ≡ 1

nρ3/2(n)
for ρ(n) � 1

n . Since for ρ(n) � 1
n the Eii

s846

reaches the maximum E[h], therefore Eii
c cannot increase the847

scaling value of E[h] anymore. For ρ � 1
n we have Eii

c ≡848 √
1
ρ(n) . Thus it can easily be verified that E[h] ≡ Eii

s ≡ √
n849

for ρ(n) � 1
n , and E[h] ≡ Eii

c ≡
√

1
ρ(n) for ρ(n) � 1

n .850

Scenario iii - Let us define E[h] = Eiii
s + Eiii

c , where851

Eiii
s = r2(n)

1
r(n)∑

i=2

i2(1 − ρ(n))inr2 (n)
852

Eiii
c = r2(n)(1 − (1 − ρ(n))nr2(n))853

× {
1

r(n)∑

i=2

i
i−1∑

l=1

l(1 − ρ(n))lnr2 (n)} (25)854

First we check the behavior of Eiii
s when ρ(n) ≡ 1

nr(n) . 855

Using the second region in equation (VI) we will have Eiii
s ≡ 856

1
r(n) . Eiii

s is increasing when ρ(n) is decreasing and the 857

maximum possible value for the number of hops is 1
r(n) , then 858

Eiii
s ≡ 1

r(n) for all ρ(n) � 1
nr(n) . 859

By approximating the summation with integral, we arrive at 860

Eiii
s ≡ r2(n)

∫ 1
r(n)

2
v2(1 − ρ(n))vnr2(n)dv, (26) 861

which equals to 862

{(v2 log2 (1 − ρ(n))nr2(n) − 2v log (1 − ρ(n))nr2(n) + 2) 863

× r2(n)(1 − ρ(n))vnr2(n)

log3 (1 − ρ(n))nr2(n)
}|

1
r(n)
v=2. (27) 864

If 1
nr(n) � ρ(n) � 1

nr2(n)
, using the fact that 865

log (1 − ρ(n))nr2(n) ≡ −ρ(n)nr2(n) and also equation (VI), 866

we will have Eiii
s ≡ 1

n3ρ3(n)r4(n)
. 867

When ρ(n) � 1
nr2(n)

, equation (27) tends to zero. 868

Using the previous approximations along with 1 − (1 − 869

ρ(n))nr2(n) ≡ 1 for ρ(n) � 1
nr2(n)

, and ρ(n)nr2(n) for 870

ρ(n) � 1
nr2(n)

, we can approximate Eiii
c as its dominant terms 871

(Eiii
c ≡ 1

nρ(n)

∑ 1
r(n)
i=2 i ≡ 1

ρ(n)nr2(n)
). 872

When ρ(n) � 1
nr2(n)

, the dominant term is �(1). Thus, 873

E[h] ≡

⎧
⎪⎨

⎪⎩

Eiii
s ≡ 1

r(n) ρ(n) � 1
nr(n)

Eiii
c ≡ 1

ρ(n)nr2(n)
1

nr(n) � ρ(n) � 1
nr2(n)

Eiii
c ≡ 1 1

nr2(n)
� ρ(n)

(28) 874

It can be seen that for large enough ρ(n) the average 875

number of hops between the nearest content location and the 876

customer is just �(1) hops. This is the result of having nr2(n) 877

caches in one hop distance for every requester. Each one of 878

these caches can be a potential source for the content. When 879

the network grows, this number will increase and if ρ(n) 880

is large enough ( 1
nr2(n)

� ρ(n)) the probability that at least 881

one of these nodes contain the required data will approach 1, 882

i.e., limn→∞(1 − (1 − ρ(n))nr2(n)) = 1. 883

Proof of Lemma 3: Assume that each content is retrieved 884

with rate γ bits/sec. The traffic generated because of one 885

download from a cache (or server) at average distance of E[h] 886

hops from the requester node is γ E[h]. The total number 887

of requests for a content in the network at any given time 888

is limited by the number of nodes n. Thus the maximum 889

total bandwidth needed to accomplish these downloads will 890

be nE[h]γ , which is upper limited by (�(n)) in scenarios 891

i, ii, and (�( 1
r2(n)

)) in scenario iii. Thus, nE[h]γ � n and 892

γmax ≡ 1
E[h] in scenarios i, ii, and nE[h]γ � 1

r2(n)
and 893

γmax ≡ 1
E[h]nr2(n)

in scenario iii. Therefore the maximum 894

download rate is easily derived using the results of Lemma 2. 895

896

Proof of Lemma 4: Each link between two nodes in sce- 897

narios i and ii, or two cells in scenario iii can carry at most 898

�(1) bits per second. Here we calculate the maximum traffic 899

passing through a link considering the throughput capacities 900
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derived in previous theorems, and check if any link can be a901

bottleneck.902

Scenario i- Each one of the four links connected to the903

server will carry all the traffic related to the items not found904

in the on-path caches. Thus, the total traffic related to item k905

carried by each of those links is ψk = ∑√
n

i=1 γ i(1 −ρ(k)(n))i .906

When ρ(k)(n) � 1√
n

, we have (1 − ρ(k)(n))i ≡ 1 for all907

i ≤ √
n. So this traffic is equal to ψk = ∑√

n
i=1 γ i ≡ nγ .908

When ρ(k)(n) � 1√
n

, using equation (VI) the above sum-909

mation can be written as910

γ
(−1+ρ(k)(n))(√nρ(k)(n)(1−ρ(k)(n))√n+(1−ρ(k)(n))√n−1)

(ρ(k)(n))2
911

≡ γ

(ρ(k)(n))2
. (29)912

The total traffic is ψ = ∑m
k=1 αkψk which must be less913

than one. If ρ(k)(n) � 1√
n

for all the items, then the item with914

minimum ρ(k)(n) will be the dominant factor in the above915

equation (ψ ≡ �( γ
min

k
(ρ(k)(n))2)

)), and if at least one item has916

ρ(k)(n) � 1√
n

, it will put the bound on the maximum rate (ψ ≡917

nγ ). Thus, ψ ≡ min(nγ, γ
min

k
(ρ(k)(n))2)

) � 1, then γmax ≡918

max( 1
n ,min

k
((ρ(k)(n))2)).919

Therefore, the links directly connected to the server will be920

a bottleneck if γ is more than the above values. On the other921

hand, the traffic related to item k carried by a node to cache922

content in level j is
∑√

n− j
i=1 γ i(1 − ρ(k)(n))i � ∑√

n
i=1 γ i(1 −923

ρ(k)(n))i , so the server links carry the maximum load, and924

thus the derived upper limits are supportable in every link.925

Scenario ii- Each one of the four links connected to the926

server will carry all the traffic related to the items not found927

in any caches closer to the requester. Thus, the total traffic928

related to item k (ψk) carried by each of those links is929

γ (1 − ρ(k)(n))+
√

n∑

i=1

4γ i(1 − ρ(k)(n))(1+4
∑i

j=1 j )
930

≡ γ (1 − ρ(k)(n))+
√

n∑

i=1

γ i(1 − ρ(k)(n))2i2+2i+1,931

≡ γ {(1 − ρ(k)(n))+ (1 − ρ(k)(n))n − (1 − ρ(k)(n))4

log(1 − ρ(k)(n))/(1 − ρ(k)(n))
932

+

√

− log(1−ρ(k)(n))
1−ρ(k)(n) er f (

√−n log(1 − ρ(k)(n)))

log(1 − ρ(k)(n))/(1 − ρ(k)(n))
933

−

√

− log(1−ρ(k)(n))
1−ρ(k)(n) er f (

√− log(1 − ρ(k)(n)))

log(1 − ρ(k)(n))/(1 − ρ(k)(n))
}. (30)934

If ρ(k)(n) � 1
n , then (1 − ρ(k)(n))2i2+2i+1 ≡ 1 for all 1 ≤935

i ≤ √
n. Thus the above traffic will be ψk ≡ nγ . If ρ(k)(n) �936

1
n the above equation is equivalent to ψk ≡ γ

ρ(k)(n)
.937

The total traffic then is ψ ≡ ∑m
k=1 αkψk � 1.938

If ρ(k)(n) � 1
n for all the items, then ψ ≡ γ

min
k
(ρ(k)(n))

.939

If ρ(k)(n) � 1
n for at least one item, then ψ ≡ nγ .940

Thus, ψ ≡ min(nγ, γ
min

k
(ρ(k)(n))

) � 1, then γmax ≡ 941

max( 1
n ,min

k
(ρ(k)(n))). 942

Using similar reasoning as in scenario ii other links carry 943

less traffic, so the above capacities are supportable for all the 944

other links. 945

Scenario iii- The traffic load for item k between the server 946

cell and each of the four neighbor cells (ψk) is given by 947

γ nr2(n){(1 − ρ(k)(n))+
1

r(n)∑

i=2

i(1 − ρ(k)(n))inr2 (n)} 948

≡ γ nr2(n){(1 − ρ(k)(n)) 949

+ (1 − ρ(k)(n))nr(n)(nr(n) log(1 − ρ(k)(n))− 1)

log2(1 − ρ(k)(n))nr2(n)
950

− (1 − ρ(k)(n))nr2(n)(log(1 − ρ(k)(n))nr2(n) − 1)

log2(1 − ρ(k)(n))nr2(n)
} (31) 951

If ρ(k)(n) � 1
nr(n) , then (1 − ρ(k)(n))inr2(n) → 1 for 952

2 ≤ i ≤ 1
r(n) , thus the traffic load equals to γ nr2(n)

∑ 1
r(n)
i=2 i ≡ 953

nγ . 954

If 1
nr(n) � ρ(k)(n) � 1

nr2(n)
, then the maximum traffic load 955

ψk on a link is 956

γ nr2(n)+ γ nr2(n)
1 + 2ρ(k)(n)nr2(n)

(ρ(k)(n))2n2r4(n)
957

≡ γ

(ρ(k)(n))2nr2(n)
(32) 958

If ρ(k)(n) � 1
nr2(n)

, then equation (31) is equivalent 959

to γ nr2(n). Therefore, if ρ(k)(n) � 1
nr2(n)

for all the 960

items, then the total traffic (ψ = ∑m
k=1 αkψk) is simply 961

ψ ≡ γ nr2(n). If ρ(k)(n) � 1
nr(n) for all items but there 962

is at least one item for which ρ(k)(n) � 1
nr2(n)

, then 963

the total traffic is dominated by the traffic generated by 964

the item with the least ρ(k)(n) (ρ(k)(n) � 1
nr2(n)

). And 965

finally if there is at least one item for which ρ(k)(n) � 966

1
nr(n) , then it will generate the dominant traffic (ψ ≡ nγ ). 967

Thus, ψ ≡ min[nγ, max(γ nr2(n), γ
min

k
(ρ(k)(n))2nr2(n)

)] � 1, 968

γmax � max[ 1
n ,min( 1

nr2(n)
,min

k
((ρ(k)(n))2)nr2(n))]. Note 969

that if there is no cache in the system, or ρ(n) is very low, 970

less than the stated threshold values, almost all the requests 971

would be served by the server, and the maximum download 972

rate would be �( 1
n ). 973
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