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Abstract—We establish a tight max-flow min-cut theorem for
multi-commaodity routing in random geometric graphsWe show
that, as the number of nodes in the networkn tends to infinity, the
maximum concurrent flow(MCF) and the minimum cut-capacity
scale as®(n?r*(n)/k) for a random choice of k > ©(n) source-
destination pairs, where r(n) is the communication range in
the network. We exploit the fact that the MCF in a random
geometric graph equals the capacity of an ad-hoc network unet
the protocol model and interference-free communication talerive
scaling laws for interference-constrained network capaty. We
generalize all existing results reported to date by showinghat
the per-commodity capacity of the network scales a®(1/r(n)k)
for the single-packet reception model suggested by Gupta an
Kumar, and as ©(nr(n)/k) for the multiple-packet reception
model suggested by others. More importantly, we show thatf the
nodes in the network are capable of multiple-packet transmgsion
and reception, then it is feasible to achieve the optimal stiag of
© (n*r®(n)/k), despite the presence of interference. This result
provides an improvement of®© (m‘Q(n)) over the highest achieved
capacity reported to date. In stark contrast to the conventonal
wisdom that has evolved from the Gupta-Kumar results, our
results show that the capacity of ad-hoc networks can actubl
increasewith n while the communication range tends to zero!

I. INTRODUCTION

in [3], [4]) some nodes can utilize NC to concurrently traftsm
multiple packets. Many-to-one and many-to-many communi-
cation is also feasible under a variety of other cooperative
techniques [5]-[7].

Co-operative protocols that provide performance benefits
in specific network configurations need not scale well with
the network size. In particular, Liu et al. [8] proved anathe
disheartening result: NC cannot increase the throughgigror
of wireless ad-hoc networks for multi-pair unicast appiicas
under half-duplex communication. However, in a recent-chal
lenge, Garcia-Luna-Acves et al. [6] call for the realizatiof
ad hoc networks that scale by embracing MAI through the
use of multi-packet reception (MPR) at the receivers. They
show that, if the nodes in the network are capable of MPR,
then the order capacity of a network withunicast sessions
grows as©(r(n)), wherer(n) is the communication range.
This represents a gain 6f (nr2 (n)) over the throughput order
of ©(1/nr(n)) reported by Gupta and Kumar.

Interestingly, the prior work on the capacity of wireless
networks, which we summarize in Section Il, has focused on
what is attainable with specific approaches to handle MAI. No
prior work has focused on first establishing what is the optim

The price, performance and form factors of sensors, proapacity of a wireless network in the absence of MAI, and then
cessors, storage elements, and radios today are at a paint determining whether that capacity is attainable when MAI is
the age of viable large-scale ad-hoc networks would appeaesent. This is precisely the focus and overall contrdyutf
to be finally upon us. Alas, Gupta and Kumar's [1] semindhis paper.
work cautions us to the contrary. They studied the capacitySection Il presents the first contribution of this paper.
of wireless ad-hoc networks with nodes when receivers areWe model arandom networkwith » nodes, a homogeneous
static, transmit or receive one packet at a time, and thear&tw communication range of(rn), and unicast traffic fok source-
traffic consists ofn unicast sessions. Their conclusion was destination (S-D) pairs. In the absence of interferencehsu
rather negative one: The capacity of ad-hoc networks does monetwork orresponds to ndom geometric grapvith an

scale with an increase in network size.

edge between any two nodes separated by a distance less than

Gupta and Kumar's analysis [1] applies to the traditionaln). We define acombinatorial interference modddased

view of ad hoc networking in which protocols are based on@ random geometric graphs, and use it to express all the
one-to-one communication paradigm aimed at avoiding mydrotocol models used in the past and a model that we later
tiple access interference (MAI). However, a number of récense to show that the optimal capcity of a wireless network
advances in cooperative communication and generaliztios indeed attainable. We introduce a protocol model in which
of routing are challenging the long-held view that avoidingodes have the ability to decode correctly multiple packets
interefrence is the way to maximize throughput in ad hdcansmitted concurrently from different nodes, and traihsm
networks. For example, network coding (NC) [2] generalizesoncurrently multiple packets to different nodes. We reter
routing by permitting processing of packets at intermedliathis as the multi-packet transmission and reception (MPTR)
nodes. In certain network configurations (refer to illustmas protocol model.



Section IV presents the second contribution of this papdmunds on capacity under the physical model. Francesdtetti
which is the characterization of the optimal interfereficee al. [13] closed this gap using percolation theory.
capacity of a wireless network. The task of concurrently Several techniques aimed at improving the capacity of
maximizing the data-rate fok S-D pairs is an instance wireless ad hoc networks have been analyzed. Grossglauser
of the multi-commodity flow problem. Hence, theaximum and Tse [14] demonstrated that a non-vanishing capacity can
concurrent multi-commodity flow-rateMCF) in a random be attained at the price of long delivery latencies by taking
geometric graph equals the interference free capacity the advantage of long-term storage in mobile nodes. Someworks
optimal capacity) of the network. To derive upper bounds afemonstrated that changing physical layer assumptionis suc
the optimal network capacity, we use the fact that the MC& using multiple channels [15] or MIMO cooperation [16]
is less than the minimum capacity of a multi-commaodity cutan change the capacity of wireless networks.
for any arbitrary graph. The max-flow min-cut theorem by Ozgur et al. [17] proposed a hierarchical cooperation tech-
Ford and Fulkerson [9] establishes that this bound is tightque based on virtual MIMO to achieve linear capacity. They
for a single commodity. However, in general, the min-cighowed that the optimal per-session capacity of an ad-hoc
does not provide a tight bound on the max-flow [10]. Theetwork is bounded a®(nlogn), and a constant per-session
bound is known to be tight only for special cases, such aspacity of ©(1) is achievable. Our work is significantly
planar graphs [11], and in general exhibits a gap of at leadifferent from this work, in terms of the the model and
O(log k) [12]. We establish a tight max-flow min-cut theoremassumptions used to derive the results. Ozgur et. al. censid
for random geometric graphs for the first time, and show thtite information-theoretic model, and assume that the mstwo
© (n?r3(n)/k) is a tight bound on the optimal capacity of &employs heterogenous hop-sizes, at times requiring atdirec
wireless network. communication between widely separated nodes. In contrast
Section V presents our third contribution, which considts @ur work is based on the protocol model and assumes a
generalizing prior results by Gupta and Kumar and by Garcihemogenous transmission range, which is a more realistic
Luna-Aceves et al.,, and proving that the optimal capacigssumption.
of wireless networks is attainable in the presence of MAI. Cooperation can be extended to the simultaneous transmis-
We utilize the max-flow min-cut theorem of Section IV tosion and reception at the various nodes in the network, which
deduce tight order bounds for the capacity of random netsvorgan result in significant capacity improvement [5]. As wedav
under various interference models. We show that the petated, Garcia-Luna-Aceves et al. [6] showed that using MPR
commodity capacity, under the protocol model suggested ah the receivers can increase the order capacity of wireless
[1], exhibits a tight order bound o®(1/r(n)k) . This result networks subject to unicast traffic.
generalizes Gupta and Kumar's result to any> ©(n) S- A generalization of the max-flow min-cut theorem to multi-
D pairs. Similarly, we generalize Garcia-Luna-Aceves €$ al ple commodities is not feasible in arbitrary graphs. Howgve
analysis for the MPR protocol model. We show that, under tfilee seminal paper by Leighton and Rao [10] showed that the
MPR model, the per-commodity capacity of the network scalg&p between the max-flow and min-cut is at mégtogn).
asO(nr(n)/k), which means that it is bounded away from thén a recent work, Madan et. al. [18] have utilized the Leighto
optimal capacity by a factor o (nr?(n)). Furthermore, the and Rao’s work to derive bounds for the capacity of ad-hoc
analysis in [6] implicitly assumes the existence of a tiglaxem networks. They focus on the special case where ©(n?)
flow min-cut theorem for random geometric graphs; thergforand thesingle packet receptio(SPR) model.
the results in this paper fill an important gap in their analys Our work is inspired by the analysis of Leighton and Rao.
We show that MPTR achieves the optimal capacity d¥ecause we are able to deduce a tight max-flow min-cut
o (n2r3(n)/k). Hence, MPTR provides a gain @c(nﬁ(n)) theorem, our bounds are tighter than those reported by Madan
over MPR and any previously reported feasible capacity. Whet al. [18]. Furthermore, our work is applicable to a wider
is just as stricking is that MPTR can achieve the dual objectivariety of protocol models and traffic patterns.
of increasing capacity and decreasing the transmissiogeran
asn increases. This is in stark contrast to the commonly held
view that the capacity of multihop wireless networks cannét. Network Model
increase as the number of nodes increases. Indeed, outsresulFor a continuous regio®, we use|R| to denote its area.
demonstrate that the capacity of ad-hoc networks can &gtuale denote the cardinality of a sétby |S|, and by|lx — y|
increasewith n while the communication range tends to zerothe distance between nodesindy. Whenever convenient, we
Section VI addresses the impact of our results on the desigtilize the indicator functiori  py, which is equal to one i is

IlIl. PRELIMINARIES

of protocols for future wireless ad hoc networks. true and zero ifP is false.Pr(F) represents the probability of
eventE. We say that an everlf occurs with high probability
Il. RELATED WORK (w.h.p.) asn — oo if Pr(E) > (1—(1/n)) . We employ the

There have been many contributions on the capacity stustandard order notations, €2, and©.
of wireless ad hoc networks and span unicast, multicast and/Ve assume a random wireless network witmodes dis-
broadcast traffic. Due to space limitations, however, we onlributed uniformly in a unit-square. In our model, asgoes
mention a few of them that focus on unicasting. to infinity, the density of the network also goes to infinity.
A number of papers have extended the results by Gupta aflterefore, our analysis is applicable to dense networks. Fu
Kumar [1], which showed a gap between the upper and lowsermore, we assume a fixed transmission range for all



the nodes in the network. Thus, the network topology can Garcia-Luna-Aceves et al. [6] generalized the above model

be characterized using a random geometric graph, which ¥eeaccount for MPR capability at the receivers. According to

denote byG, and define next. their MPR protocol modeh nodei can simultaneously receive
Definition 3.1: Random Geometric Grah,: all the packets transmitted by nodes within a distareg iff

We associate adirected graph G,-(V,., E,) with a wireless there are no transmitters at a distance greatertfanbut less

network formed by distributing: nodes uniformly in a unit than(1+ n)r(n). Furthermore, if a nodg transmits a packet

square. We represent the node-setWby= {1,--- ,n}. Let to nodei, then it cannot simultaneously transmit a packet to
the locations of these nodes be given ¥, --- , X,,}, the any other node in the network.
edge-set is thelw = {(¢,5) | | X; — X;|| <r(n)} . Definition 3.5: Multi-Packet Reception (MPR) Model:

While the results in this paper can be extended to undirected
graphs, it is more convenient for us to use directed graphs Impr(€) Ispr(e) — (A(e) — B(e)) Ye € E where
because we use edge-coloring techniques in our work. In the A(e) {e€ B ||| Xer — X || <7(n)} (2)
case of undm_ected graphs, the argument should be bg\_sed on Ble) = {é €E |é¢t = e+} A3)
vertices (receivers) rather than edges. Also note thathim t

paper, we permit two edges for a pair of connected vertices\e also consider the case in which nodes have MPR

with possibly different capacity in each direction. and MPT capabilities, i.e., can decode multiple concurrent
We assume that the network operates using a slotted chanpghsmissions and can transmit concurrently multiple ptk

and, in the absence of interference, the data rate in eaeh tify different nodes. We capture the MPR and MPT capabilities

slot for every transmitter-receiver pair is a constant dieaV.- ith a simple yet representativemulti-packet transmission

bits/slot. Given that W does not change the order capac#y, Wnd reception(MPTR) protocol model, which is defined

normalize its value to 1. Hence, we say that the interferenggs|ow.

free capacity of each edge @, isequalto 1.~ Definition 3.6: Multi-Packet Transmission and Reception
Gupta and Kumar [1] have proved the following criteria fO(MPTR) Model:

the connectivity ofG,..

Lemma 3.2:For a random distribution of nodes in a unit- Ivprr(e) = Ivpr(e) — B(e) Ve € E 4)
square, the grapli, is connected with high probability as
n — oo, iff. 7(n) > r.(n) = O(y/logn/n). It is important to highlight some of the features of the above

In a dense network, interference is the primary constraintodel. The MPTR protocol model still restricts the nodes
on the capacity of the network. Like Madan et al. [18], wéo operate in a half-duplex mode. Moreover, this model is
describe the interference of a network by the following gine identical to the MPR protocol model in terms of the nodes that
model. are permitted to transmit within the vicinity of a receivigr

Definition 3.3: Combinatorial Interference Model: i.e., both models prohibit transmission from a ngdgich that
The interference model for the grapti(V, E) is determined (n) < || X;—X;|| < (14+n)r(n). Thus, the difference between
by a function] : E — P(FE), whereP(E) is the power set of the MPR and MPTR protocol models stems purely from the
E, i.e., the set of all possible subsetsif For everye ¢ E, fact that, under the MPTR model, a nogetransmitting a
I(e) represents aimterference sesuch that, a transmission onpacket to node can simultaneously transmit packets to other
edgee is successful if and only if (iff) there are no concurrennodes in the network.
transmissions on ang € I(e). An interference model can be We assume that the traffic in the network is generated by
restricted to a sub-grapH (Vi, Fy) by defining a function unicast communication between source-destination (S-D)
Iy : Egy — P(Eg) such thatly(e) = I(e)(\ FEn. pairs. We associate a rate vector= [y, - -, A;] with these

The various protocol models that have been proposed in thgairs. We assume the data rate for each S-D pair to be non-
past can now be expressed as special case€s,.on zero. Hence, without loss of generality (w.l.g) the rateteec

Gupta and Kumar [1] studied aingle packet reception can be written as\ = [fD;,---, fDi] where f € R, and
(SPR)protocol modelunder which a transmission from nodeD; < [1/2,1] for 1 < i < k.We refer to the parametef
i to receiverj is successful iff|| X; — X;|| < r(n) and if as theconcurrent flow rateand toD = [Dy,---, Dy] as the
IX; — Xkl > (1+n)r(n) for any other transmittek. Herenp  demand vector
is a guard-zone that is assumed to be constant for the entir®efinition 3.7: Feasible Flow Rate:
network. Moreover, all the nodes operate in half-duplex eodGiven k£ S-D pairs {(s(1),d(1)),...,(s(k),d(k))}, a rate
The following definition expresses this model in terms of theector A = [fD;,---, fDy] is feasible if there exists a
notation we have introduced. spatial and temporal scheme for scheduling transmissiacts s

Definition 3.4: Single-Packet Reception (SPR) Model:  that by operating the network in a multi-hop fashion, and
Lete = (e™,e™) € E, then the interference set for edgés buffering at intermediate nodes when awaiting transmissio

defined as every source(i) can send\; bits/sec on average to the chosen
Isere) = J(e)—e destinationd(s). A flow rate f is feasible for a demand vector
A ’ D =[Dy,---,Dy| iff X\=[fD;,---,fDy] is a feasible rate
J(e) = {ee€ b |[Xer — Xe-|| < (1 +n)r(n)} (1) vector.

INote thatG,. denotes random geometric graph whilerepresents general Deﬁnition 3.8 CapaCity_ of Random Networks: .
graph. The capacity per commodity of a network@¥ f(n)) if under



a random placement af nodes,a random choice @f S-D Definition 3.12: Multi-commodity Cut Capacity:
pairs and for an arbitrary demand vector we have: Given a graphG(V, E), a capacity functior : E — [0, 1] and
. ) , a cut (S, SY). The multi-commodity cut capacity is defined
lim Pr(cf(n)is feasible flow rate = 1 (5) g
lim inf,, ... Pr(c’ f(n)is infeasible flow rate < 1 (6) Yos = Leen letes,eese)elc) (12)
' Zi:s(i)GS,d(i)GSc D;
Definition 3.13: Minimum Cut Capacity:
ven a graphG(V, E), a capacity functior : E — [0, 1] and
a cut(S, S¢). The minimum multi-commodity cut capacity is

for somec > 0 andc < ¢ < +o0.
In the following sections we repeatedly utilize the Welbi
known Chernoff bounds:
Lemma 3.9: Chernoff BoundsConsider N i.i.d random

variablesY; € {0,1} with p = Pr(Y; = 1). LetY = Zf;l Y;. defined as
Then for everyc > 0 there exist) < §; < 1 andéd, > 0 such Y = min 2ecr Letes,e-escpc(e) (13)
that scv Zi:s(i)es,d(i)esc D;
Pr(Y < (1 - 8;)Np) < e~<NP @) It is well-known that the minimum cut-capacity provides an
Pr(Y > (14 62)np) —¢Np ®) upper bound on the maximum flow rate.
- 2)np) < € Lemma 3.14:For anyk-commodity flow f* < Tq
B. Graph Theory Results IV. OPTIMAL CAPACITY

We review some defintions from graph theory. In particular, We show that for random geometric graphs, the MCF pro-
note that the task of identifying a feasible flow rate can béddes a tight approximation of the minimum-cut capacityisTh
posed as a multi-commodity flow problem, specifically the kelationship implies a tight characterization of the ifdeence-
commodity flow problem. free capacity of wireless ad-hoc networks with a homogenous

Definition 3.10: k-Commodity Flow Problem: transmission range. Our approach can be summarized as
Consider a directed grapf¥(V, E) with a capacity function follows: For a particular demand vector, we provide an upper
c: E —[0,1]. Let {(s(1),d(1)),...,(s(k),d(k))) be k S-D bound by showing that there exists a multi-commodity cut in
pairs, with a demand vectad € [1/2,1]*. Let f € R, be G, of order O(g(n)) and a lower bound by constructing a
a concurrent flow rate. Find flow function : E — R, for flow of orderQ(g(n)) in a sub-graph,. C G,.. These results

1 < i < k, which satisfy the following flow constraints: along with the following Lemmas prove that the capacity of
Capacity Constraint Ve € E H, andG, has a tight boun®(g(n)).
> file) < cle) ()
1<i<k S nn s°

—

Flow Conservation Vv # s(), d(i)
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i‘
Y file)= D file) (10) :
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|
|
|

E=|o(tny)

e

eret=v ere”=v

j

A

i

Demand Satisfactionl < < k

Y filo= > file)=fD; (11)
eret=s(i) ere” =d(i)
] ] ] Fig. 1. A bi-partitioning of the unit square
Flow functions that satisfy the above constraints are dalle

feasible. Other inputs to the problem being fixed, a flow rate Lemma 4.1:A graphG(V, E) and a sub-grapll (Vz, Ex)
/s said to feasible iff the above problem has a solutioatisfy the following two properties: (a) If is a feasible flow-
Furthermore, letf* be the MCF such that the above problemate in H then f is feasible inG; and (b) the capacity of a cut
has a feasible solution. A wireless network can be represen{ s, S¢) in G is always greater than or equal to the capacity
by an equivalent graph with capacity functions determines} the cut in H.
by the interference. Thus, the MCF in an equivalent graph Proof: To prove Part (a) of the lemma, lety; for
can be perceived as the maximum flow that can be routgd ; < k be the flow functions associated with the feasible
in a network. Additionally, if w.h.p.f* is the MCF for any flow of rate f in H. Note that these flow functions satisfy the
graph formed by a random distribution of nodes, sources ag@nstraints in Definition 3.10. We construct a flow @ of
destinations, then the capacity of the wireless networkss arate f with the following flow functions: Forl < i < k let
I fc.i: E — R, such that
Consider the following additional definitions. (o) if >
Definition 3.11: Vertex Cut: faile) = {fH”(e) "eebn
Given a node set’ , a cut is the separation of the vertex §ét ' 0 otherwise
into two disjoint and exhaustive sets, S¢). We shall often Now, if we show that the functiongy;; satisfy the flow
reference a cut just by the sét. constraints, then the flow ratg is feasible inG. Definition

(14)



3.10 states that(e) > 0 for all the edges. As a resulte € Now, Lemma 3.9 tell us that we can choase 2/(wc;)) and
E — Ey the capacity constraints are satisfied trivially, givenorrespondind < §; < 1 such that
that fz ;(e) = 0 for such edges. Furthermorée € Ey we

have Pr(v>(1- 5)7rm°2(n)) >1—(1/n) (22)
Z Frile) = Z fa.ile) < cle) (15) we use similar arguments to show that < © (nr2(n))
1sisk Isisk w.h.p.. This fact follows from Eq. (8), which implies that

Therefore, f¢ ; satisfy the capacity constraint. In additionyc > 0 there exists & < ¢ < 1 such that
note that the following equations hotd € V: Pr(deg(v) > (14 61)n7rr2(n)) < e—cnmr(n) (23)

Z fa.ile) = Z faile) + Z fa.ie) The union bound and the fact thgt) > co2+/logn/n implies

ecE:e”=v ecEpge—=v ecE—FEp:e”=v that
Pr(A > (1 + 6)mnr?(n)) < ne=crezloen (24)
= > fmile)+0 (16) ( )
e€Epie—=v Therefore, there exists & > 0 s.t

Pr(A < (1+d)mnr?(n)) >1— (1/n) (25)

Yo Jaule)= Y faule)+ > fa.i(e) [ ]
c€Bet=u c€Byet=u c€B-Byet=v Consider the cut described by Figure 1. The cut consists
_ Z Furi(e) +0 17) of all the nodes in the rectangular. region of a constant area.

ceEarohy ' Lemma 4.3:If the network consists ok > ©(logn) S-D

pairs then w.h.p. a regioR of constant arefR| containsO (k)

Egs. (16) and (17) imply that the net in-flow and the netources with destinations outside regifin
out-flow, underfs ; and fy 4, is identical for all nodes and Proof: Let Y; € 0,1 be a random variable that is equal
commodities. Thereforefc,; satisfies the flow conservationto one iff the ith S-D pair is such tha{(i) belongs to region
and demand constraints. R andd(i) does not. Under a uniformly random placement of
To show Part (b), observe that nodes
Seenmy Lot es.ecseie(e) Pr(Yi =1) = |R|(1 - |R]) (26)

Tos=Tns+ (18) " The total number of S-D pairs satisfying the required cdodit

can be represented By = Z’f Y;. If k > clogn the Chernoff
Becauser(e) > 0 for all edges, we hav&f¢.s > Trs. B Bounds imply the existence of constants — 1/(c|R|(1 —
IR|)), 0 <6 <1andd >0 s.t.

Zi:s(i)GS,d(i)GSc D;

A. Upper Bound Pr(Y > (1— &)|R|(1 - |R|)k) > 1 — e~ctHIRIA=IR])
We utilize the following properties of7,. Rl R los
Lemma 4.2:If r(n) > r.(n) then w.h.p. graplG,. is such >1— e rlRIO-IRDIsn — 1 _ (1/p) (27)

that: (a) The minimum vertex degréé > © (nr*(n)), and

_ _ o—c1k|R|(1-|R|)
(b) the maximum vertex degre& < © (nr2(n)). Pr(Y < (1+06)[R|(1 - [R))k) >1—e

~ Proof: We first show thatV > © (n_rQ(n))_. A node — 1 — emerelRIG-IRDIosn — 1 _ (1 /p) 28)
v in G, is connected to all the nodes in a disk of radius
r(n) centered av . The area of this disk isr?(n). Given [ |

a uniformly random distribution of nodes, the probability o Furthermore, consider the subsétin S defined by a strip
another node: lying within this disk is7r%(n). Consider a of dimensionl x r(n). The total number of vertices in A is
random variable¥;, ,, € {0, 1} which is equal to one iff node ©(nr(n)) because of the uniform distribution of nodes in the
u IS connected to node The degree of node can be written network.
asdeg(v) =3 ,cv_(y} Yo,u- Therefore, the Chernoff Bound Theorem 4.4:f r(n) > r.(n) andk > ©(logn), then the
(11) implies thatvc > 0 there exists & < § <1 such that  capacity of the cufS is Y¢, , = O(n?r3(n)/k) w.h.p.
—enmr(n Proof: According to the definition of+, two nodes are
Pr(deg(v) < (1 = d)nmr?(n)) <e ™9 connected iff they are separated by a distance lessithan
From the union bound we obtain Consequently, if an edge cuts acroSsthen it has to be
incident upon a node at a distance less tham) from the
Pr(V < (1 —68)nmr?(n)) < nPr(deg(v) < (1 —d)nar*(n)) boundary separating and S€ , i.e. the head of the edge
(20)  should lie in the subset of dimension-(n) x 1. Furthermore,

Given thatr(n) > r.(n) we haver(n) > ciy/logn/n for for each node inA the maximum number of edges cutting
somec; > 0. Therefore, Egs. (19) and (20) imply that across the cut is bounded iy

Pr (V S (1 _ 5)71'717"2(71)) < ne ¢ logn = 1/n07"cl—:21) Z 1[e+€S,e*ESC] S |A|A (29)
eckE



In the absence of interferencge) = 1 for all the edges.  Now consider a sub-grapHi, C G, obtained by employing

Hence, location based constraints on the edge-set. In order taidesc
Yo o= ZeeET letes,e-es9) these constraints, we first define a location dependent hash
Zi:s(i)es,d(i)esc D; function.
Definition 4.8: Index Functiom:
< |A]A (30) Divide the network area int& squarelets [20] of side-length
o Zi:s(i)e&d(i)esc D; a =r(n)/3 , as shown in Figure 2. Let be a function that

associates an indef, j) with a squarelet in the,, column
andj,; row. Furthurmore, the index assigned to each squarelet
ég associated with each vertex in the squarelet.

We obtainH,. by removing all edges, except those connect-
ing two nodes in vertically or horizontally adjacent squere
We do not necessarily have to considéy in order to obtain
Lemma 4.2 implies that there exists@ > 0 st. A < & lower bound on the interference-free capacity. Howewer, t
canr?(n), while uniform distribution of nodes in the networkP€rformance bounds falf, play an important role when we
implies that there exists @& > 0 s.t. | A| < csnr(n). Hence, analyge_ |_nterference constrf';uned netwprks in Section V.

Definition 4.9: Geographically Restricted Sub-Graph :
Ya, .5 < 2cac3n?r®(n)/(c1k) (32) The grapht,.(V,, E, g) is a sub-graph oy, with an identical
node-set and an edge-set defined as:

According to Lemma 4.3, there exists > 0 s.t. the total
number S-D pairs across the cut igk. Furthermore, by
Definition 3.10 the demand for each pair is at least 1/2. Hen

(31)

Any cut in G, has a capacity greater than the minimum cufr.z = {e € E [ {(e7) = (a,b) = ((e¥) = (a £ 1,0+ 1)}
capacityY ¢. Consequently Theorem 4.5 implies the following (33)
Corollary.

Corollary 4.5: If r(n) > r.(n) andk > ©(logn) thenY¢,.
is upper bounded a®(n?r3(n)/k).

\\7\

B. Lower Bound N
(n) "
n
1 ® N hd 3 >
[ ]
; (s ° r(n)
square-let
P r(’;;s ®e Fig. 3. A geometric proof to show that any two points in adjgcuare-lets
® are within a distance r(n) of each other. The proof followanirthe fact that
1] e e ® e o ® the chord of a circle lies within it.
[ J

Consider some of the properties of the squarelets idpd

Lemma 4.10: [20] If r(n) > r.(n) then w.h.p. the total
number of nodes in any squarelet @¢nr2(n)).

Fig. 2. Decomposition of network area intd squarelets Proof: The area of a squarelet is equal @(72(”))
Hence, the proof is identical to that of Lemma 4.2. [ ]

To describe a capacity-achieving flow in a more generic Lemma 4.11:If r(n) > r.(n) andk > O(n), then w.h.p.
setting, we use an important result from parallel and disted the total number of sources in any squarelet @&r2(n))
computing. Consider a mesh @ processing units with and the total destinations in any squarelet @(@&r2(n)).
processors in each row and column. Let each processor be Proof:Forl <i <kletY;,, € 0,1 be arandom variable
a source and destination of exactypackets. The problem of that is equal to one iff sourced) belongs to then!” squarelet.
routing thehl? packets to their destinations is known/as Let Y,, = Z’f Y:.m represent the total number of sources in
permutation routing and can be characterized by the fotigwi the squarelet. Becausén) > r.(n), Eq.(11) implies
result [19]. 9 —(cklosn)/n

Lemma 4.6:If in a single slot, each processor can transmit Pr(Ym < (1= 0)kr (n))) < er(chonm/ (34)
one packet each to its immediate horizontal and vertichhe total number of squarelets in a unit square is equal to
neighbors, then ah x h permutation routing in & x [ mesh (3/7(n)) x (3/7(n)) < c1n/logn (35)
can be performed deterministically #i/2 + o(hl) steps. . T

We utilize the following corollary that can be readilyTherefore, the union bound implies that
deduced from the above Lemma. Pr (min. no. of nodes in a squarelet© (kr?(n))

Corollary 4.7: If a processor is capable of transmitting at

. . : <
leastrn packets to each of its neighbors in each slot, then an —
h x h permutation routing in d x ! mesh can be performed < (cin/logn) xe
deterministically inO(hl/n) steps. = ¢/(n\*/ ™M ogn) (36)

(total no. of squarelejsx ¢~ (cFlosm)/n
—(cklogn)/n



Thus, & > ©(n) guarantees the required convergence anaterference models. We primarily focus on deducing lower
hence we can say that each squarelet has at @&@st’(n)) bounds. Moreover, to facilitate a succinct analysis, weetigy
sources. The upper bound on the number of sources auine additional terminology and establish some important
the bounds on the number of destinations can be calculatedults.
similarly. u Recall from Section Il that, for two different communica-
Theorem 4.121f r(n) > r.(n) andk > O(n), then w.h.p. tion schemesA and B (e.g., SPR and MPR) defined in the
the maximum flow ratef;; in H, is at least© (n?r®(n)/k) . same graph, their corresponding interference functibnand
Proof: The proof follows from mapping various compo-I/ are different.
nents of the above defined problem to the h permutation Definition 5.1: Dual-Interference-Set:
routing problem. Let us map each squarelet to a processgbnsider an edge sét and an interference séte) for an edge
Consequently, for the chosen size of squarelets, the nketwere E, as defined in Definition 3.3. The dual interference-set
equates to a mesh &t processors withh = 3/r(n). Assume for e is defined byF(e) = {¢ € E | e € I(é)}, which is
that each source intends to transthit as the i element of the set of edges that experience a collision on account of a
the demand vector. Becausk < 1, Lemma 4.11 implies that transmission on edge
the total number of bits to be transmitted to and from each pefinition 5.2: Dual Conflict Graph:
squarelet are at most < ckr?(n). Finally, note that any two Given a graphG(V, E) and an interference functioh , we
nodes in adjacent squarelets are within a distarieg. Fig. 3 defined thedual conflict graphasGp(E, Ep) , whereEp =
provides a geometric proof for this fact; an alternativeqdro { (¢, ¢) | ¢ € I(e))}.
can be easily obtained by employing the Pythagoras theorempefinition 5.3: Total Degree in Dual Conflict Graph:
In each slot, we can send one packet along each edge betwgg# total degree of each node in a dual conflict graph is equal
two adjacent squarelets. Therefore, Lemma 4.10 implies thg, |M ()| where M (e) = I(e) | F(e).
Similar to the work in [18], we have the following Lemma.
Lemma 5.4:Consider a grapléz(V, E) and interferencd.
Let K = max.cg |[M(e)| . If f is a feasible flow rate in the
Hence, the total number of slots required to complete the absence of interference, then flow rate = f/(1 + ) is

n = (min. no. of edges between adjacent squarglets
< (min. no. of nodes per squarelet< ¢;n’r(n)

desired routing is feasible in presence of interferenée
Proof: In the absence of interference the capacity of each
7 < (e2hl/m) edge is assumed to be one. However, because of interference,
< g x (ckr®(n)) x (3/r(n)) x (1/ein®r?(n)) all edges cannot be activated simultaneously. &ebe the
= (3cack/cin*r3(n)) (37) minimum frequency with which each edge is activated without

_ o causing any interference conflicts. Then, for each edge we ha
We can repeat the above routing periodically to guaranteeC@) > 1/0.

flow rate of f = (1/7) > ©(n?r’(n)/k). By definition, the 5y sanve that is the maximum vertex degree of the dual
max-flow rate is greater than any other feasible flow rate, a%nflict graphGp . It is well known that, ifs is the maximum

the theorem follows. , vertex degree, them + 1 colors are sufficient to provide a
Aggregating the above results we have the following oo her vertex coloring [21]. Thus, we can partition the edge
clusion. setE into 1 + » subsets such that no two edges in the same
Theorem 4.131f r(n) > ©+/logn/n andk > ©(n), then g peet interfere. Consequently, we can periodically attiv
the max- flow /& in G, can be approximated tightly by they,ese supsets to realizée) > 1/(1 + #) for each edge. Thus,
min-cut capacityl'; in G, Moreover, thef;; andT¢, scale , feasiple flow ratef; = f/(1+x) can be obtained by scaling

as® (n’r’(n)/k). o the flow functions associated with by a factor of1/(1 + «).
Proof: Lemma 4.1 implies thatf. > f};. Hence, the -

result follows from the lower bound provided by Theorem

4.12 and the upper bound provided by Corollary 4.5 B o yhe minimum number of colors required to provide a proper
Scaling laws for: = ©(n) have been given special attentiong ey coloring. Hence, in order to analyze a wider variety

in the Ilteratu_re. Henc_e, it is worth stating explicitly tabove of protocol models, we introduce the conceptimterference
results for this scenario. clones

Corollary 4.14: Consider an ad-hoc network described by Definition 5.5 Interference Clone:
a random placement of nodes in a unit square, with(n) Two edgese;, ey are said to be interference-clones under

S-D pairs and a homogenous transmission range(of > ¢ - tion7 if the . o i
. . y satisfy the conditions that/(e;) = M (e2).
©(y/logn/n). The interference-free capacity of the network™ - '='o. " Pigay-backing Lemrgai%:onsicgei)a

3
scales a®) (m (n))' graphG(V, E) along with interference functiongs and I,
thenl4 andIg are such that:

The maximum vertex degree does not provide a tight bound

V. INTERFERENCELIMITED CAPACITY
1) kK = maxeep |[Ma(e)]

A. General Results on Interference Models 2) Ve € E there exists a setl, z(e) C Ma(e) such that
Interference can severely limit the network capacity. lis th every edge belonging/, g is an interference-clone
section we obtain scaling laws for the SPR, MPR and MPTR  of e underlp . Further, lety = min.cg |M 45(e)|.



If f is a feasible flow rate inG without any interference, bind the capacity under the interference models for SPR, MPR
fr. = f/(1 + k) is a feasible flow rate irG under thel, and MPTR.
interference function and as its correponding parameter, then We define a restrictive interference model that introduces
fis = f(14+u)/(1+k) is feasible in presence of interferencenore restrictions (i.e., collisions) on the interferenet for
defined by/p. each edge than those strictly dictated by the original fater

Proof: Consider the interference defined dy. From ence model. We will show that, under this restrictive model,
Lemma 5.4 we know that there exists a conflict free periodibe order of the lower bound capacity achieves the upperdoun
schedule which can activate each edge at least once ewanger the original (non-restrictive) interference model.
(1 4 k) slots. Let us represent this schedule by an indicator Definition 5.9: Restricted SPR (RSPR) Model:
function a(e, 7) which equals one iff edge is active in slot
7. Note that the capacity of each edge under scheduis Irspre) = Wi(e) —{e} Ve € Enp
given by where W (e) U Mgspr(é) (41)
cale) =X ale,7) =1/(1+ k). (38) e¢(em)=¢(e)

Now let us use this schedule in the presence of interferencd €finition 5.10: Restricted MPR (RMPR) Model:

Ip. Observe that, for every, « allocates a distinct slot for Inwpr(e) = W(e)—U(e) Ve € E, g
each edge inV, p(e)({e}. Consequently, every edge has where U(e) = {éeBopy|é = _}’ (42)
|M 4 5(e)| interference clones scheduled in slots distinct from € = (¢€hrmfe =c

each other and the edge itself. In addition, note that if ayeed Definition 5.11: Restricted MPTR (RMPTR) Model:
is activated in a time slot meant for one of its interference

clones, then it does not lead to any conflict. Therefore, we ca Irvetr(e) = W(e)=V(e) Ve€ E.u
define a new conflict-free schedufesuch that3(e,7) = 1 where V(e) = U U(é) (43)
iff there exits ane; € M, g(e)({e} such thata(e;, 7) = 1. e:c(e—)=C(e™)

Given thaty = min.cg |M 45(e)|, the capacity of each edge

under schedul for interferencel, is given by Consider the following properties of the restricted models

Lemma 5.12:For the graphH,, we have a partial order

cgle) = Se,em, ,Sraoler,T) defined by (i) Ispr = Ivpr = IwpTr, (i) IrRsPr =X IrRmPR =
' IrmpTr (i) Ispr = Irspr (V) Irmpr =X Impr (V) IrmPTR =
< (T+p) x (1/(1+ k) (39) Iwptr

Proof: (Sketch) The proof for the partial orders (i) to (iii)
Rllows directly from the definitions. Partial order (iv) lfows
rom the fact that/(e) C W(e) andU(e) C A(e) — Ble).
0imiIarIy, the fact thatd(e) C V (e) implies partial order (v).

[ |
(n) > rc(n), then all edges: € E, g
Rave|M(e)| = © (n*r*(n)) under interference described by
either of the m0d9|stpR, IMPR7 IMPTR7 IRSPR IRMPR, IrRMPTR-

Proof: From Lemma 5.12 we can conclude that RSPR is
the most restrictive model, while MPTR is the least restrict
model. Further note thakrspr(e) € W(e) and Iuprr(e) C
Muyptr(e). Hence, it suffices to prove the following:

Accordingly, a feasible flow off;, = f(1+ u)/(1 + ) can
be obtained by scaling all the flow functions associated wiL
the inference-free flow by a factor ¢t + u)/(1 + k).

In the subsequent discussion, we find it convenient
deduce a bound for a particular interference model and thenLemma 5.13f r
show that it applies to a wider set of models. In order t iy
facilitate such arguments, we define the following partidies.

Definition 5.7: Partial Order of Interference Models:

An interference function/4 is said to be more restrictive
than Iz, represented a$, < Ip, iff every edge satisfies the
conditions that/z(e) C I4(e) .

Lemma 5.8:Consider a graplé:(V, E) along with interfer-
encely andIp. If 14 < Ig, then a feasible flow rate under Ymaz = MaTecp, »|W(e)| = O(n*r*(n)) (44)
I, remains feasible unddis. s _ 2 4

Proof: A conflict free schedule unddr, remains conflict Ymin = Minee . Iwpra(€)] = Q(n"r" (n)) (45)
free under/z. Hence we can say that Recall that a node ifi,. is connected to all and only those
nodes that are placed in adjacent squarelets. Hence Lemma
ca(e) < ecple) (40)  4.10 tells us that the degree of each vertex H, is bounded

whereca(e) and cg(e) represent the edge capacities undét® 9 9
each interference model. Therefore, if a particular flovisiats deynr®(n) < deg(v) < degnr®(n) (46)

the capacity constraints undgs, it necessarily satisfies thosenow lets prove the lower bound by considering the model

same constraints undéf. B MPTR. According to Definition 3.6, the transmission on edge
e experiences interference from any transmission by a node
B. Lower Bounds v such thatr(n) < [|[X.- — X,|| < (14 n)r(n). Therefore,

there exists an annular ring aroumad of width nr(n) such

Direct analysis of the mterferer_lce models can be ted'mfﬁat any transmission from a node in this ring interfereshwit
Hence, for mathematical convenience, we consider the fol-

. - o ¢. The area of this annular ring is given by
lowing restrictive models. Lemma 5.8 allows us to utilize th
performance limits under these restrictive models to ety area of annular ring= 1(2 + n)rr?(n) 47



We have already seen ( Lemma 4.2) that an are@(@Ff(n)) is feasible under the RSPR model. If we take into considera-
contains at leas®(nr?(n)) nodes. Hence, there existsca tion the interference clones, then Lemma 5.6 further ingplie

such that that the rate
2 2
Ymin 2 c3nr(n) x deynr(n) (48) frupr = fx(1/(1+K)) x (1 + prymPR)
Eq. (48) proves the reqd. lower bound. The proof for the > (cs/r(n)k) x (canr®(n))
upper bound is obtained with a similar argument. First, ket u = (czeqnr(n)/k) (53)

inspect the transmission along edgeinder the SPR model. _ o
Any transmission from a node in a disk of radilis+ n)r(n) 1S feasible under the RMPR model. Similarly, the rate
arounde™, interferes withe. Moreover, a transmission from

. ' : Co ! . = x (1/(1+ x (1+
et interferes with any reception in a disk of radi{istn)r(n) frmpr S (/1 +8)) 2( 4 HRMPTR)
arounde™. Given that|| X+ — X, || < r(n), there exists a (es/r(n)k) x (esn”r"(n))
disk of radius(2 +n)r(n) arounde™ containing all the nodes = (czesn’r®(n)/k) (54)
that may have transmission conflicts withFurther note that is feasible under the RMPTR model. Finally, note that a

a squarelet can be completely |nscr.|bed ina cwcum-qro&le feasible rate under a restricted model is necessarily igasi
radius(1/3+v/2)r(n). Hence, there exists a circle of maximum

radius R = (2+ 1 + (1/3v3))r(n) containing all the nodes ;n1d3er the c|>r|g|narll modeI;c Hence, the result proven in Lemma
that may have transmission conflicts withunder the model ™ completes the proof. -
RSPR. The area of is ©(r%(n)) and hence there exists a

constantc, such that C. Upper Bounds

The interference-free capacity provides an upper bound on

Y

Ymaz = MaTeek, | W(e)l the capacity under any model, and Theorem 5.15 already
< (max. no. of nodes in Ry (max. node degree) shows that the MPTR model achieves this capacity. However,
< en(2+n+ (V2/6))r(n)? x degnr?(n) we need to provide additional arguments to obtain a tight
= O(n**(n)) (49) bound on the capacity under SPR and MPR. Our arguments

are similar to [8] and [6], and we briefly sketch the proof of
m the following result for the sake of completeness.
Lemma 5.14:Consider the graph, with r(n) > r.(n) Theorem 5.16:Forr(n) > r.(n) andk > ©(n), the capac-
andk > ©(n). In such a graph, each edgehas at least ity of random geometric network is at most: (@)1/r(n)k)
© (nr?(n)) clones under interferendgver and® (n?r#(n))  under the SPR model, (&) (nr(n)/k) under the MPR model,
clones under interferendgwprr, Such that these clones interand (€)©(n?r?(n)/k) under the MPTR model.

fere with each other and, under the interferencézspr Proof: (Sketch) Consider the Cu$ in Figure 1. The
Proof: According to Definitions 5.10 and 5.11(¢) and capacity of this cut and hence the network is less than
V (e) represent the desired set of clones fatier and IrmpTr (no. of transmitters in Ax (max. tranmission per node)
respectively. Lemma 4.10 implies that there existand ¢, 1/2)k
such that (55)
) The total number of transmitters iA is less than the total
HRMPR = Mineek, |U(e)] number of nodes iM. We have already shown that the total
> min. vertex degree- c;nr?*(n)  (50) number of nodes i) (nr(n)). Under the MPTR model, each

node can transmit a maximum @ (nr?(n)) packets, and
under the MPR model each packet trasnmits just a single
) ) packet. This provides the bounds for MPR and MPTR. To
[mincer, ,;|U(e)|] x min. nodes per squarelebhiain the bound for SPR, we note that each transmitter
cinr?(n) x canr?(n) (51) silences all the nodes within an area@fr?(n)). Hence, only
O(1/r(n)) nodes are capable of transmitting simultaneously
across a cut. Each of these nodes transmits a single paaket an

~ Theorem 5.15Forr(n) > r.(n) andk > ©(n), the capac- therefore, the above equation provides the bound for SRR.
ity of random geometric network is at least: @)nr(n)/k)

under the SPR model, (I&)(nr(n)/k) under the MPR model,
and (c)O(n?r®(n)/k) under the MPTR model.

Proof: Recall that the capacity of the random network is The results we have presented demonstrate that future ad
greater than the feasible flow rate .. Theorem 4.12 shows hoc networks can scale well beyond the Gupta-Kumar capacity
that a rate off = c,n%r3(n)/k is feasible inf,.. Additionally, bpunds attained when nodes_ simply try to avoid MAI [1].
Lemma 5.13 shows that the size of the largest interfererice 5&st. we showed that the optimal capacity tlaaty protocol

under RSPR is at most = c;n2r*(n). Hence, Lemma 5.4 architecture can attain in a wireless networldign?r(n)/k).
implies that a rate of Second, we demonstrated that this capacity can indeed be at-

tained when nodes embrace MAI as transmitters and receivers
frspr=fx1/(14+k)) > (cs/r(n)k) (52) and that a non-vanishing capacity is attainable per S-D pair

HWRMPTR Mineer, |V (e)l

AVANY]

VI. DISCUSSION
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even when information must be disseminated over multipthssemination. We also hope that this paper motivates refsea
hops. Given that the majority of nodes in an ad hoc netwodn protocol architectures that combine multi-packet réoep
are sources and destinations of information, we frame the rand transmission to attain massively scalable ad hoc nkswor
of our discussion for the important case lof= ©(n).
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n. As per our analysis, the capacity of a network is a constant Or;timal Capa%ity Scalilng in ad hoc network$EEE Transactions on
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capacity still increases a3(n°2%).
In closing, we should point out that, while our results pro-
vide a completely new outlook on the design of wireless ad hoc
networks, much work remains to be done to fully understand
their fundamental limits! For example, the results we have
presented address only unicast traffic; our model can be used
to study the cases of multicast and broadcast information
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Fig. 4. Simulation result of per-node capacity as a functibm



