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Abstract—We establish a tight max-flow min-cut theorem for
multi-commodity routing in random geometric graphs. We show
that, as the number of nodes in the networkn tends to infinity, the
maximum concurrent flow(MCF) and the minimum cut-capacity
scale asΘ(n2r3(n)/k) for a random choice of k ≥ Θ(n) source-
destination pairs, where r(n) is the communication range in
the network. We exploit the fact that the MCF in a random
geometric graph equals the capacity of an ad-hoc network under
the protocol model and interference-free communication toderive
scaling laws for interference-constrained network capacity. We
generalize all existing results reported to date by showingthat
the per-commodity capacity of the network scales asΘ(1/r(n)k)
for the single-packet reception model suggested by Gupta and
Kumar, and as Θ(nr(n)/k) for the multiple-packet reception
model suggested by others. More importantly, we show that, if the
nodes in the network are capable of multiple-packet transmission
and reception, then it is feasible to achieve the optimal scaling of
Θ

`

n2r3(n)/k
´

, despite the presence of interference. This result
provides an improvement ofΘ

`

nr2(n)
´

over the highest achieved
capacity reported to date. In stark contrast to the conventional
wisdom that has evolved from the Gupta-Kumar results, our
results show that the capacity of ad-hoc networks can actually
increasewith n while the communication range tends to zero!

I. I NTRODUCTION

The price, performance and form factors of sensors, pro-
cessors, storage elements, and radios today are at a point that
the age of viable large-scale ad-hoc networks would appear
to be finally upon us. Alas, Gupta and Kumar’s [1] seminal
work cautions us to the contrary. They studied the capacity
of wireless ad-hoc networks withn nodes when receivers are
static, transmit or receive one packet at a time, and the network
traffic consists ofn unicast sessions. Their conclusion was a
rather negative one: The capacity of ad-hoc networks does not
scale with an increase in network size.

Gupta and Kumar’s analysis [1] applies to the traditional
view of ad hoc networking in which protocols are based on a
one-to-one communication paradigm aimed at avoiding mul-
tiple access interference (MAI). However, a number of recent
advances in cooperative communication and generalizations
of routing are challenging the long-held view that avoiding
interefrence is the way to maximize throughput in ad hoc
networks. For example, network coding (NC) [2] generalizes
routing by permitting processing of packets at intermediate
nodes. In certain network configurations (refer to illustrations

in [3], [4]) some nodes can utilize NC to concurrently transmit
multiple packets. Many-to-one and many-to-many communi-
cation is also feasible under a variety of other cooperative
techniques [5]–[7].

Co-operative protocols that provide performance benefits
in specific network configurations need not scale well with
the network size. In particular, Liu et al. [8] proved another
disheartening result: NC cannot increase the throughput order
of wireless ad-hoc networks for multi-pair unicast applications
under half-duplex communication. However, in a recent chal-
lenge, Garcia-Luna-Acves et al. [6] call for the realization of
ad hoc networks that scale by embracing MAI through the
use of multi-packet reception (MPR) at the receivers. They
show that, if the nodes in the network are capable of MPR,
then the order capacity of a network withn unicast sessions
grows asΘ(r(n)), wherer(n) is the communication range.
This represents a gain ofΘ

(

nr2(n)
)

over the throughput order
of Θ(1/nr(n)) reported by Gupta and Kumar.

Interestingly, the prior work on the capacity of wireless
networks, which we summarize in Section II, has focused on
what is attainable with specific approaches to handle MAI. No
prior work has focused on first establishing what is the optimal
capacity of a wireless network in the absence of MAI, and then
determining whether that capacity is attainable when MAI is
present. This is precisely the focus and overall contribution of
this paper.

Section III presents the first contribution of this paper.
We model arandom networkwith n nodes, a homogeneous
communication range ofr(n), and unicast traffic fork source-
destination (S-D) pairs. In the absence of interference, such
a network orresponds to arandom geometric graphwith an
edge between any two nodes separated by a distance less than
r(n). We define acombinatorial interference modelbased
on random geometric graphs, and use it to express all the
protocol models used in the past and a model that we later
use to show that the optimal capcity of a wireless network
is indeed attainable. We introduce a protocol model in which
nodes have the ability to decode correctly multiple packets
transmitted concurrently from different nodes, and transmit
concurrently multiple packets to different nodes. We referto
this as the multi-packet transmission and reception (MPTR)
protocol model.



2

Section IV presents the second contribution of this paper,
which is the characterization of the optimal interference-free
capacity of a wireless network. The task of concurrently
maximizing the data-rate fork S-D pairs is an instance
of the multi-commodity flow problem. Hence, themaximum
concurrent multi-commodity flow-rate(MCF) in a random
geometric graph equals the interference free capacity (i.e., the
optimal capacity) of the network. To derive upper bounds on
the optimal network capacity, we use the fact that the MCF
is less than the minimum capacity of a multi-commodity cut
for any arbitrary graph. The max-flow min-cut theorem by
Ford and Fulkerson [9] establishes that this bound is tight
for a single commodity. However, in general, the min-cut
does not provide a tight bound on the max-flow [10]. The
bound is known to be tight only for special cases, such as
planar graphs [11], and in general exhibits a gap of at least
Θ(log k) [12]. We establish a tight max-flow min-cut theorem
for random geometric graphs for the first time, and show that
Θ

(

n2r3(n)/k
)

is a tight bound on the optimal capacity of a
wireless network.

Section V presents our third contribution, which consists of
generalizing prior results by Gupta and Kumar and by Garcia-
Luna-Aceves et al., and proving that the optimal capacity
of wireless networks is attainable in the presence of MAI.
We utilize the max-flow min-cut theorem of Section IV to
deduce tight order bounds for the capacity of random networks
under various interference models. We show that the per-
commodity capacity, under the protocol model suggested in
[1], exhibits a tight order bound ofΘ(1/r(n)k) . This result
generalizes Gupta and Kumar’s result to anyk ≥ Θ(n) S-
D pairs. Similarly, we generalize Garcia-Luna-Aceves et al.’s
analysis for the MPR protocol model. We show that, under the
MPR model, the per-commodity capacity of the network scales
asΘ(nr(n)/k), which means that it is bounded away from the
optimal capacity by a factor ofΘ

(

nr2(n)
)

. Furthermore, the
analysis in [6] implicitly assumes the existence of a tight max-
flow min-cut theorem for random geometric graphs; therefore,
the results in this paper fill an important gap in their analysis.

We show that MPTR achieves the optimal capacity of
Θ

(

n2r3(n)/k
)

. Hence, MPTR provides a gain ofΘ
(

nr2(n)
)

over MPR and any previously reported feasible capacity. What
is just as stricking is that MPTR can achieve the dual objective
of increasing capacity and decreasing the transmission range
asn increases. This is in stark contrast to the commonly held
view that the capacity of multihop wireless networks cannot
increase as the number of nodes increases. Indeed, our results
demonstrate that the capacity of ad-hoc networks can actually
increasewith n while the communication range tends to zero!
Section VI addresses the impact of our results on the design
of protocols for future wireless ad hoc networks.

II. RELATED WORK

There have been many contributions on the capacity study
of wireless ad hoc networks and span unicast, multicast and
broadcast traffic. Due to space limitations, however, we only
mention a few of them that focus on unicasting.

A number of papers have extended the results by Gupta and
Kumar [1], which showed a gap between the upper and lower

bounds on capacity under the physical model. Franceschettiet
al. [13] closed this gap using percolation theory.

Several techniques aimed at improving the capacity of
wireless ad hoc networks have been analyzed. Grossglauser
and Tse [14] demonstrated that a non-vanishing capacity can
be attained at the price of long delivery latencies by taking
advantage of long-term storage in mobile nodes. Someworks
demonstrated that changing physical layer assumptions such
as using multiple channels [15] or MIMO cooperation [16]
can change the capacity of wireless networks.

Ozgur et al. [17] proposed a hierarchical cooperation tech-
nique based on virtual MIMO to achieve linear capacity. They
showed that the optimal per-session capacity of an ad-hoc
network is bounded asO(n log n), and a constant per-session
capacity of Θ(1) is achievable. Our work is significantly
different from this work, in terms of the the model and
assumptions used to derive the results. Ozgur et. al. consider
the information-theoretic model, and assume that the network
employs heterogenous hop-sizes, at times requiring a direct
communication between widely separated nodes. In contrast,
our work is based on the protocol model and assumes a
homogenous transmission range, which is a more realistic
assumption.

Cooperation can be extended to the simultaneous transmis-
sion and reception at the various nodes in the network, which
can result in significant capacity improvement [5]. As we have
stated, Garcia-Luna-Aceves et al. [6] showed that using MPR
at the receivers can increase the order capacity of wireless
networks subject to unicast traffic.

A generalization of the max-flow min-cut theorem to multi-
ple commodities is not feasible in arbitrary graphs. However,
the seminal paper by Leighton and Rao [10] showed that the
gap between the max-flow and min-cut is at mostΘ(log n).
In a recent work, Madan et. al. [18] have utilized the Leighton
and Rao’s work to derive bounds for the capacity of ad-hoc
networks. They focus on the special case wherek = Θ(n2)
and thesingle packet reception(SPR) model.

Our work is inspired by the analysis of Leighton and Rao.
Because we are able to deduce a tight max-flow min-cut
theorem, our bounds are tighter than those reported by Madan
et al. [18]. Furthermore, our work is applicable to a wider
variety of protocol models and traffic patterns.

III. PRELIMINARIES

A. Network Model

For a continuous regionR, we use|R| to denote its area.
We denote the cardinality of a setS by |S|, and by‖x − y‖
the distance between nodesx andy. Whenever convenient, we
utilize the indicator function1{P}, which is equal to one ifP is
true and zero ifP is false.Pr(E) represents the probability of
eventE. We say that an eventE occurs with high probability
(w.h.p.) asn → ∞ if Pr(E) > (1 − (1/n)) . We employ the
standard order notationsO, Ω, andΘ.

We assume a random wireless network withn nodes dis-
tributed uniformly in a unit-square. In our model, asn goes
to infinity, the density of the network also goes to infinity.
Therefore, our analysis is applicable to dense networks. Fur-
thermore, we assume a fixed transmission ranger(n) for all
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the nodes in the network. Thus, the network topology can
be characterized using a random geometric graph, which we
denote byGr and define next.

Definition 3.1: Random Geometric GraphGr:
We associate adirected graph Gr(Vr , Er) with a wireless
network formed by distributingn nodes uniformly in a unit
square. We represent the node-set byV = {1, · · · , n}. Let
the locations of these nodes be given by{X1, · · · , Xn}, the
edge-set is thenE = {(i, j) | ‖Xi − Xj‖ ≤ r(n)} .

While the results in this paper can be extended to undirected
graphs, it is more convenient for us to use directed graphs
because we use edge-coloring techniques in our work. In the
case of undirected graphs, the argument should be based on
vertices (receivers) rather than edges. Also note that, in this
paper, we permit two edges for a pair of connected vertices
with possibly different capacity in each direction.

We assume that the network operates using a slotted channel
and, in the absence of interference, the data rate in each time
slot for every transmitter-receiver pair is a constant of value W
bits/slot. Given that W does not change the order capacity, we
normalize its value to 1. Hence, we say that the interference-
free capacity of each edge inGr is equal to 1.

Gupta and Kumar [1] have proved the following criteria for
the connectivity ofGr.

Lemma 3.2:For a random distribution ofn nodes in a unit-
square, the graphGr is connected with high probability as
n → ∞, iff. r(n) ≥ rc(n) = Θ(

√

log n/n).
In a dense network, interference is the primary constraint

on the capacity of the network. Like Madan et al. [18], we
describe the interference of a network by the following generic
model.

Definition 3.3: Combinatorial Interference Model:
The interference model for the graph1 G(V, E) is determined
by a functionI : E → P (E), whereP (E) is the power set of
E, i.e., the set of all possible subsets ofE. For everye ∈ E,
I(e) represents aninterference setsuch that, a transmission on
edgee is successful if and only if (iff) there are no concurrent
transmissions on anŷe ∈ I(e). An interference model can be
restricted to a sub-graphH(VH , EH) by defining a function
IH : EH → P (EH) such thatIH(e) = I(e)

⋂

EH .
The various protocol models that have been proposed in the

past can now be expressed as special cases onGr.
Gupta and Kumar [1] studied asingle packet reception

(SPR)protocol modelunder which a transmission from node
i to receiverj is successful iff‖Xi − Xj‖ ≤ r(n) and if
‖Xj −Xk‖ ≥ (1+ η)r(n) for any other transmitterk. Hereη
is a guard-zone that is assumed to be constant for the entire
network. Moreover, all the nodes operate in half-duplex mode.
The following definition expresses this model in terms of the
notation we have introduced.

Definition 3.4: Single-Packet Reception (SPR) Model:
Let e = (e+, e−) ∈ E, then the interference set for edgee is
defined as

ISPR(e) = J(e) − e,

J(e) = {ê ∈ Er | ‖Xê+ − Xe−‖ ≤ (1 + η)r(n)} .(1)

1Note thatGr denotes random geometric graph whileG represents general
graph.

Garcia-Luna-Aceves et al. [6] generalized the above model
to account for MPR capability at the receivers. According to
their MPR protocol modela nodei can simultaneously receive
all the packets transmitted by nodes within a distancer(n) iff
there are no transmitters at a distance greater thanr(n) but less
than(1 + η)r(n). Furthermore, if a nodej transmits a packet
to nodei, then it cannot simultaneously transmit a packet to
any other node in the network.

Definition 3.5: Multi-Packet Reception (MPR) Model:

IMPR(e) = ISPR(e) − (A(e) − B(e)) ∀e ∈ E where

A(e) = {ê ∈ Er | ‖Xê+ − Xe−‖ ≤ r(n)} (2)

B(e) =
{

ê ∈ Er | ê+ = e+
}

(3)

We also consider the case in which nodes have MPR
and MPT capabilities, i.e., can decode multiple concurrent
transmissions and can transmit concurrently multiple packets
to different nodes. We capture the MPR and MPT capabilities
with a simple yet representative,multi-packet transmission
and reception (MPTR) protocol model, which is defined
below.

Definition 3.6: Multi-Packet Transmission and Reception
(MPTR) Model:

IMPTR(e) = IMPR(e) − B(e) ∀e ∈ E (4)

It is important to highlight some of the features of the above
model. The MPTR protocol model still restricts the nodes
to operate in a half-duplex mode. Moreover, this model is
identical to the MPR protocol model in terms of the nodes that
are permitted to transmit within the vicinity of a receiveri,
i.e., both models prohibit transmission from a nodej such that
r(n) < ‖Xi−Xj‖ ≤ (1+η)r(n). Thus, the difference between
the MPR and MPTR protocol models stems purely from the
fact that, under the MPTR model, a nodej transmitting a
packet to nodei can simultaneously transmit packets to other
nodes in the network.

We assume that the traffic in the network is generated by
unicast communication betweenk source-destination (S-D)
pairs. We associate a rate vectorλ = [λ1, · · · , λk] with these
k pairs. We assume the data rate for each S-D pair to be non-
zero. Hence, without loss of generality (w.l.g) the rate vector
can be written asλ = [fDi, · · · , fDk] wheref ∈ R+ and
Di ∈ [1/2, 1] for 1 ≤ i ≤ k.We refer to the parameterf
as theconcurrent flow rateand toD = [D1, · · · , Dk] as the
demand vector.

Definition 3.7: Feasible Flow Rate:
Given k S-D pairs {(s(1), d(1)), . . . , (s(k), d(k))}, a rate
vector λ = [fDi, · · · , fDk] is feasible if there exists a
spatial and temporal scheme for scheduling transmissions such
that by operating the network in a multi-hop fashion, and
buffering at intermediate nodes when awaiting transmission,
every sources(i) can sendλi bits/sec on average to the chosen
destinationd(i). A flow ratef is feasible for a demand vector
D = [D1, · · · , Dk] iff λ = [fDi, · · · , fDk] is a feasible rate
vector.

Definition 3.8: Capacity of Random Networks:
The capacity per commodity of a network isΘ(f(n)) if under
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a random placement ofn nodes,a random choice ofk S-D
pairs and for an arbitrary demand vector we have:

lim
n→∞

Pr(cf(n)is feasible flow rate) = 1 (5)

lim infn→∞Pr(c′f(n)is infeasible flow rate) < 1 (6)

for somec > 0 andc < c′ < +∞.
In the following sections we repeatedly utilize the well

known Chernoff bounds:
Lemma 3.9: Chernoff Bounds:ConsiderN i.i.d random

variablesYi ∈ {0, 1} with p = Pr(Yi = 1). Let Y =
∑N

i=1 Yi.
Then for everyc > 0 there exist0 < δ1 < 1 andδ2 > 0 such
that

Pr(Y ≤ (1 − δ1)Np) < e−cNp (7)

Pr(Y ≥ (1 + δ2)np) < e−cNp (8)

B. Graph Theory Results

We review some defintions from graph theory. In particular,
note that the task of identifying a feasible flow rate can be
posed as a multi-commodity flow problem, specifically the k-
commodity flow problem.

Definition 3.10: k-Commodity Flow Problem:
Consider a directed graphG(V, E) with a capacity function
c : E → [0, 1]. Let {(s(1), d(1)), . . . , (s(k), d(k))) be k S-D
pairs, with a demand vectorD ∈ [1/2, 1]k. Let f ∈ R+ be
a concurrent flow rate. Find flow functionsfi : E → R+ for
1 ≤ i ≤ k, which satisfy the following flow constraints:
Capacity Constraint: ∀e ∈ E

∑

1≤i≤k

fi(e) ≤ c(e) (9)

Flow Conservation: ∀v 6= s(i), d(i)
∑

e:e+=v

fi(e) =
∑

e:e−=v

fi(e) (10)

Demand Satisfaction: 1 ≤ i ≤ k
∑

e:e+=s(i)

fi(e) =
∑

e:e−=d(i)

fi(e) = fDi (11)

Flow functions that satisfy the above constraints are called
feasible. Other inputs to the problem being fixed, a flow rate
f is said to feasible iff the above problem has a solution.
Furthermore, letf∗ be the MCF such that the above problem
has a feasible solution. A wireless network can be represented
by an equivalent graph with capacity functions determined
by the interference. Thus, the MCF in an equivalent graph
can be perceived as the maximum flow that can be routed
in a network. Additionally, if w.h.p.f∗ is the MCF for any
graph formed by a random distribution of nodes, sources and
destinations, then the capacity of the wireless network is also
f∗.

Consider the following additional definitions.
Definition 3.11: Vertex Cut:

Given a node setV , a cut is the separation of the vertex setV
into two disjoint and exhaustive sets(S, SC). We shall often
reference a cut just by the setS .

Definition 3.12: Multi-commodity Cut Capacity:
Given a graphG(V, E), a capacity functionc : E → [0, 1] and
a cut (S, SC). The multi-commodity cut capacity is defined
as

ΥG,S =

∑

e∈E 1[e+∈S,e−∈SC ]c(e)
∑

i:s(i)∈S,d(i)∈SC Di
(12)

Definition 3.13: Minimum Cut Capacity:
Given a graphG(V, E), a capacity functionc : E → [0, 1] and
a cut(S, SC). The minimum multi-commodity cut capacity is
defined as

ΥG = min
S⊂V

∑

e∈E 1[e+∈S,e−∈SC ]c(e)
∑

i:s(i)∈S,d(i)∈SC Di
(13)

It is well-known that the minimum cut-capacity provides an
upper bound on the maximum flow rate.

Lemma 3.14:For anyk-commodity flowf∗ ≤ ΥG

IV. OPTIMAL CAPACITY

We show that for random geometric graphs, the MCF pro-
vides a tight approximation of the minimum-cut capacity. This
relationship implies a tight characterization of the interference-
free capacity of wireless ad-hoc networks with a homogenous
transmission range. Our approach can be summarized as
follows: For a particular demand vector, we provide an upper
bound by showing that there exists a multi-commodity cut in
Gr of order O(g(n)) and a lower bound by constructing a
flow of orderΩ(g(n)) in a sub-graphHr ⊆ Gr. These results
along with the following Lemmas prove that the capacity of
Hr andGr has a tight boundΘ(g(n)).

r(n)r(n)

O(nr(n)
2
)O(nr(n)

2
)

SS S
cS
c

AA

Fig. 1. A bi-partitioning of the unit square

Lemma 4.1:A graphG(V, E) and a sub-graphH(VH , EH)
satisfy the following two properties: (a) Iff is a feasible flow-
rate inH thenf is feasible inG; and (b) the capacity of a cut
(S, SC) in G is always greater than or equal to the capacity
of the cut inH .

Proof: To prove Part (a) of the lemma, letfH,i for
1 ≤ i ≤ k be the flow functions associated with the feasible
flow of ratef in H . Note that these flow functions satisfy the
constraints in Definition 3.10. We construct a flow inG of
rate f with the following flow functions: For1 ≤ i ≤ k let
fG,i : E → R+ such that

fG,i(e) = {
fH,i(e) if e ∈ EH

0 otherwise
(14)

Now, if we show that the functionsfH,i satisfy the flow
constraints, then the flow ratef is feasible inG. Definition
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3.10 states thatc(e) ≥ 0 for all the edges. As a result,∀e ∈
E − EH the capacity constraints are satisfied trivially, given
that fG,i(e) = 0 for such edges. Furthermore,∀e ∈ EH we
have

∑

1≤i≤k

fH,i(e) =
∑

1≤i≤k

fG,i(e) ≤ c(e) (15)

Therefore,fG,i satisfy the capacity constraint. In addition,
note that the following equations hold∀v ∈ V :

X

e∈E:e−=v

fG,i(e) =
X

e∈EH :e−=v

fG,i(e) +
X

e∈E−EH :e−=v

fG,i(e)

=
X

e∈EH :e−=v

fH,i(e) + 0 (16)

X

e∈E:e+=v

fG,i(e) =
X

e∈EH :e+=v

fG,i(e) +
X

e∈E−EH :e+=v

fG,i(e)

=
X

e∈EH :e+=v

fH,i(e) + 0 (17)

Eqs. (16) and (17) imply that the net in-flow and the net
out-flow, underfG,i and fH,i, is identical for all nodes and
commodities. Therefore,fG,i satisfies the flow conservation
and demand constraints.

To show Part (b), observe that

ΥG,S = ΥH,S +

∑

e∈E−EH
1[e+∈S,e−∈SC ]c(e)

∑

i:s(i)∈S,d(i)∈SC Di
(18)

Becausec(e) ≥ 0 for all edges, we haveΥG,S ≥ ΥH,S .

A. Upper Bound

We utilize the following properties ofGr.
Lemma 4.2:If r(n) ≥ rc(n) then w.h.p. graphGr is such

that: (a) The minimum vertex degree∇ ≥ Θ
(

nr2(n)
)

, and
(b) the maximum vertex degree∆ ≤ Θ

(

nr2(n)
)

.
Proof: We first show that∇ ≥ Θ

(

nr2(n)
)

. A node
v in Gr is connected to all the nodes in a disk of radius
r(n) centered atv . The area of this disk isπr2(n). Given
a uniformly random distribution of nodes, the probability of
another nodeu lying within this disk isπr2(n). Consider a
random variableYv,u ∈ {0, 1} which is equal to one iff node
u is connected to nodev. The degree of nodev can be written
asdeg(v) =

∑

u∈V −{v} Yv,u. Therefore, the Chernoff Bound
(11) implies that∀c > 0 there exists a0 ≤ δ ≤ 1 such that

Pr
(

deg(v) ≤ (1 − δ)nπr2(n)
)

< e−cnπr2(n) (19)

From the union bound we obtain

Pr
(

∇ ≤ (1 − δ)nπr2(n)
)

< nPr
(

deg(v) ≤ (1 − δ)nπr2(n)
)

(20)
Given thatr(n) ≥ rc(n) we haver(n) ≥ c1

√

log n/n for
somec1 > 0. Therefore, Eqs. (19) and (20) imply that

Pr
(

∇ ≤ (1 − δ)πnr2(n)
)

< ne−cπc1 log n = 1/ncπc1−1

(21)

Now, Lemma 3.9 tell us that we can choosec ≥ 2/(πc1)) and
corresponding0 < δ1 < 1 such that

Pr
(

∇ ≥ (1 − δ)πnr2(n)
)

> 1 − (1/n) (22)

We use similar arguments to show that∆ ≤ Θ
(

nr2(n)
)

w.h.p.. This fact follows from Eq. (8), which implies that
∀c > 0 there exists a0 ≤ δ ≤ 1 such that

Pr
(

deg(v) ≥ (1 + δ1)nπr2(n)
)

< e−cnπr2(n) (23)

The union bound and the fact thatr(n) ≥ c2

√

log n/n implies
that

Pr
(

∆ ≥ (1 + δ)πnr2(n)
)

< ne−cπc2 log n (24)

Therefore, there exists aδ2 > 0 s.t

Pr
(

∆ ≤ (1 + δ2)πnr2(n)
)

> 1 − (1/n) (25)

Consider the cutS described by Figure 1. The cut consists
of all the nodes in the rectangular region of a constant area.

Lemma 4.3:If the network consists ofk ≥ Θ(log n) S-D
pairs then w.h.p. a regionR of constant area|R| containsΘ(k)
sources with destinations outside regionR.

Proof: Let Yi ∈ 0, 1 be a random variable that is equal
to one iff the ith S-D pair is such thats(i) belongs to region
R andd(i) does not. Under a uniformly random placement of
nodes

Pr(Yi = 1) = |R|(1 − |R|) (26)

The total number of S-D pairs satisfying the required condition
can be represented byY =

∑k
1 Yi. If k ≥ c log n the Chernoff

Bounds imply the existence of constantsc1 = 1/(c|R|(1 −
|R|)), 0 ≤ δ1 ≤ 1 andδ2 > 0 s.t.

Pr(Y ≥ (1 − δ1)|R|(1 − |R|)k) > 1 − e−c1k|R|(1−|R|)

≥ 1 − e−c1c|R|(1−|R|) log n = 1 − (1/n) (27)

Pr(Y ≤ (1 + δ2)|R|(1 − |R|)k) > 1 − e−c1k|R|(1−|R|)

= 1 − e−c1c|R|(1−|R|) log n = 1 − (1/n) (28)

Furthermore, consider the subsetA in S defined by a strip
of dimension1 × r(n). The total number of vertices in A is
Θ(nr(n)) because of the uniform distribution of nodes in the
network.

Theorem 4.4:If r(n) ≥ rc(n) andk ≥ Θ(log n), then the
capacity of the cutS is ΥGr,S

= O(n2r3(n)/k) w.h.p.
Proof: According to the definition ofGr two nodes are

connected iff they are separated by a distance less thanr(n).
Consequently, if an edge cuts acrossS then it has to be
incident upon a node at a distance less thanr(n) from the
boundary separatingS and SC , i.e. the head of the edge
should lie in the subsetA of dimensionr(n)×1. Furthermore,
for each node inA the maximum number of edges cutting
across the cut is bounded by∆

∑

e∈E

1[e+∈S,e−∈SC ] ≤ |A|∆ (29)
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In the absence of interferencec(e) = 1 for all the edges.
Hence,

ΥGr,S =

∑

e∈Er
1[e+∈S,e−∈SC ]

∑

i:s(i)∈S,d(i)∈SC Di

≤ |A|∆
∑

i:s(i)∈S,d(i)∈SC Di
(30)

According to Lemma 4.3, there existsc1 > 0 s.t. the total
number S-D pairs across the cut isc1k. Furthermore, by
Definition 3.10 the demand for each pair is at least 1/2. Hence,

ΥGr,S ≤ 2|A|∆
c1k

(31)

Lemma 4.2 implies that there exists ac2 > 0 s.t. ∆ <
c2nr2(n), while uniform distribution of nodes in the network
implies that there exists ac3 > 0 s.t. |A| ≤ c3nr(n). Hence,

ΥGr,S ≤ 2c2c3n
2r3(n)/(c1k) (32)

Any cut in Gr has a capacity greater than the minimum cut
capacityΥG. Consequently Theorem 4.5 implies the following
Corollary.

Corollary 4.5: If r(n) ≥ rc(n) andk ≥ Θ(log n) thenΥGr

is upper bounded asO(n2r3(n)/k).

B. Lower Bound

h =

r(n)/3

1

i

l

1 j l

(i, j)
th

square-let

Fig. 2. Decomposition of network area intol2 squarelets

To describe a capacity-achieving flow in a more generic
setting, we use an important result from parallel and distributed
computing. Consider a mesh ofl2 processing units withl
processors in each row and column. Let each processor be
a source and destination of exactlyh packets. The problem of
routing thehl2 packets to their destinations is known ash×h
permutation routing and can be characterized by the following
result [19].

Lemma 4.6:If in a single slot, each processor can transmit
one packet each to its immediate horizontal and vertical
neighbors, then anh × h permutation routing in al × l mesh
can be performed deterministically inhl/2 + o(hl) steps.

We utilize the following corollary that can be readily
deduced from the above Lemma.

Corollary 4.7: If a processor is capable of transmitting at
leastη packets to each of its neighbors in each slot, then an
h × h permutation routing in al × l mesh can be performed
deterministically inO(hl/η) steps.

Now consider a sub-graphHr ⊆ Gr obtained by employing
location based constraints on the edge-set. In order to describe
these constraints, we first define a location dependent hash
function.

Definition 4.8: Index Functionζ:
Divide the network area intol2 squarelets [20] of side-length
a = r(n)/3 , as shown in Figure 2. Letζ be a function that
associates an index(i, j) with a squarelet in theith column
andjth row. Furthurmore, the index assigned to each squarelet
is associated with each vertex in the squarelet.

We obtainHr by removing all edges, except those connect-
ing two nodes in vertically or horizontally adjacent squarelets.
We do not necessarily have to considerHr in order to obtain
a lower bound on the interference-free capacity. However, the
performance bounds forHr play an important role when we
analyze interference constrained networks in Section V.

Definition 4.9: Geographically Restricted Sub-GraphHr :
The graphHr(Vr, Er,H) is a sub-graph ofGr with an identical
node-set and an edge-set defined as:

Er,H = {e ∈ E | ζ(e−) = (a, b) ⇒ ζ(e+) = (a ± 1, b ± 1)}
(33)

25%

r(n)

r(n)

3

Fig. 3. A geometric proof to show that any two points in adjacent square-lets
are within a distance r(n) of each other. The proof follows from the fact that
the chord of a circle lies within it.

Consider some of the properties of the squarelets andHr.
Lemma 4.10: [20] If r(n) ≥ rc(n) then w.h.p. the total

number of nodes in any squarelet areΘ(nr2(n)).
Proof: The area of a squarelet is equal toΘ(r2(n)).

Hence, the proof is identical to that of Lemma 4.2.
Lemma 4.11:If r(n) ≥ rc(n) and k ≥ Θ(n), then w.h.p.

the total number of sources in any squarelet areΘ(kr2(n))
and the total destinations in any squarelet areΘ(kr2(n)).

Proof: For1 ≤ i ≤ k let Yi,m ∈ 0, 1 be a random variable
that is equal to one iff sources(i) belongs to themth squarelet.
Let Ym =

∑k
1 Yi,m represent the total number of sources in

the squarelet. Becauser(n) ≥ rc(n), Eq.(11) implies

Pr
(

Ym ≤ (1 − δ)kr2(n))
)

< e−(ck log n)/n (34)

The total number of squarelets in a unit square is equal to

(3/r(n)) × (3/r(n)) ≤ c1n/ logn (35)

Therefore, the union bound implies that

Pr
(

min. no. of nodes in a squarelet< Θ(kr2(n)
)

≤ (total no. of squarelets) × e−(ck log n)/n

≤ (c1n/ logn) × e−(ck log n)/n

= c1/(n(ck/n)−1 log n) (36)
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Thus, k ≥ Θ(n) guarantees the required convergence and
hence we can say that each squarelet has at leastΘ(kr2(n))
sources. The upper bound on the number of sources and
the bounds on the number of destinations can be calculated
similarly.

Theorem 4.12:If r(n) ≥ rc(n) andk ≥ Θ(n), then w.h.p.
the maximum flow ratef∗

H in Hr is at leastΘ
(

n2r3(n)/k
)

.
Proof: The proof follows from mapping various compo-

nents of the above defined problem to theh × h permutation
routing problem. Let us map each squarelet to a processor.
Consequently, for the chosen size of squarelets, the network
equates to a mesh ofl2 processors withl = 3/r(n). Assume
that each source intends to transmitDi as the ith element of
the demand vector. BecauseDi ≤ 1, Lemma 4.11 implies that
the total number of bits to be transmitted to and from each
squarelet are at mosth ≤ ckr2(n). Finally, note that any two
nodes in adjacent squarelets are within a distancer(n). Fig. 3
provides a geometric proof for this fact; an alternative proof
can be easily obtained by employing the Pythagoras theorem.
In each slot, we can send one packet along each edge between
two adjacent squarelets. Therefore, Lemma 4.10 implies that

η = (min. no. of edges between adjacent squarelets)

≤ (min. no. of nodes per squarelet)2 ≤ c1n
2r4(n)

Hence, the total number of slotsγ required to complete the
desired routing is

γ ≤ (c2hl/η)

≤ c2 × (ckr2(n)) × (3/r(n)) × (1/c1n
2r4(n))

= (3c2ck/c1n
2r3(n)) (37)

We can repeat the above routing periodically to guarantee a
flow rate of f = (1/γ) ≥ Θ(n2r3(n)/k). By definition, the
max-flow rate is greater than any other feasible flow rate, and
the theorem follows.

Aggregating the above results we have the following con-
clusion.

Theorem 4.13:If r(n) ≥ Θ
√

log n/n andk ≥ Θ(n), then
the max- flowf∗

G in Gr can be approximated tightly by the
min-cut capacityΥ∗

Gr
in Gr. Moreover, thef∗

G andΥ∗
Gr

scale
asΘ

(

n2r3(n)/k
)

.
Proof: Lemma 4.1 implies thatf∗

G ≥ f∗
H . Hence, the

result follows from the lower bound provided by Theorem
4.12 and the upper bound provided by Corollary 4.5

Scaling laws fork = Θ(n) have been given special attention
in the literature. Hence, it is worth stating explicitly theabove
results for this scenario.

Corollary 4.14: Consider an ad-hoc network described by
a random placement ofn nodes in a unit square, withΘ(n)
S-D pairs and a homogenous transmission range ofr(n) ≥
Θ(

√

log n/n). The interference-free capacity of the network
scales asΘ

(

nr3(n)
)

.

V. I NTERFERENCE-L IMITED CAPACITY

A. General Results on Interference Models

Interference can severely limit the network capacity. In this
section we obtain scaling laws for the SPR, MPR and MPTR

interference models. We primarily focus on deducing lower
bounds. Moreover, to facilitate a succinct analysis, we develop
some additional terminology and establish some important
results.

Recall from Section III that, for two different communica-
tion schemesA and B (e.g., SPR and MPR) defined in the
same graph, their corresponding interference functionsIA and
IB are different.

Definition 5.1: Dual-Interference-Set:
Consider an edge setE and an interference setI(e) for an edge
e ∈ E, as defined in Definition 3.3. The dual interference-set
for e is defined byF (e) = {ê ∈ E | e ∈ I(ê)}, which is
the set of edges that experience a collision on account of a
transmission on edgee.

Definition 5.2: Dual Conflict Graph:
Given a graphG(V, E) and an interference functionI , we
defined thedual conflict graphasGD(E, ED) , whereED =
{(e, ê) | ê ∈ I(e))}.

Definition 5.3: Total Degree in Dual Conflict Graph:
The total degree of each node in a dual conflict graph is equal
to |M(e)| whereM(e) = I(e)

⋃

F (e).
Similar to the work in [18], we have the following Lemma.
Lemma 5.4:Consider a graphG(V, E) and interferenceI.

Let κ = maxe∈E |M(e)| . If f is a feasible flow rate in the
absence of interference, then flow ratefI = f/(1 + κ) is
feasible in presence of interferenceI.

Proof: In the absence of interference the capacity of each
edge is assumed to be one. However, because of interference,
all edges cannot be activated simultaneously. Letσ be the
minimum frequency with which each edge is activated without
causing any interference conflicts. Then, for each edge we have
c(e) ≥ 1/σ.

Observe thatκ is the maximum vertex degree of the dual
conflict graphGD . It is well known that, ifκ is the maximum
vertex degree, thenκ + 1 colors are sufficient to provide a
proper vertex coloring [21]. Thus, we can partition the edge-
setE into 1 + κ subsets such that no two edges in the same
subset interfere. Consequently, we can periodically activate
these subsets to realizec(e) ≥ 1/(1+κ) for each edge. Thus,
a feasible flow ratefI = f/(1+κ) can be obtained by scaling
the flow functions associated withf by a factor of1/(1+κ).

The maximum vertex degree does not provide a tight bound
on the minimum number of colors required to provide a proper
vertex coloring. Hence, in order to analyze a wider variety
of protocol models, we introduce the concept ofinterference
clones.

Definition 5.5: Interference Clone:
Two edgese1, e2 are said to be interference-clones under
functionI if they satisfy the conditions thatM(e1) = M(e2).

Lemma 5.6: Clone Piggy-backing Lemma:Consider a
graphG(V, E) along with interference functionsIA and IB,
thenIA andIB are such that:

1) κ = maxe∈E |MA(e)|
2) ∀e ∈ E there exists a setMA,B̄(e) ⊆ MA(e) such that

every edge belongingMA,B̄(e) is an interference-clone
of e underIB . Further, letµ = mine∈E |MAB̄(e)|.
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If f is a feasible flow rate inG without any interference,
fIA

= f/(1 + κ) is a feasible flow rate inG under theIA

interference function andκ as its correponding parameter, then
fIB

= f(1+µ)/(1+κ) is feasible in presence of interference
defined byIB.

Proof: Consider the interference defined byIA. From
Lemma 5.4 we know that there exists a conflict free periodic
schedule which can activate each edge at least once every
(1 + κ) slots. Let us represent this schedule by an indicator
function α(e, τ) which equals one iff edgee is active in slot
τ . Note that the capacity of each edge under scheduleα is
given by

cα(e) = Στα(e, τ) = 1/(1 + κ). (38)

Now let us use this schedule in the presence of interference
IB . Observe that, for everye, α allocates a distinct slot for
each edge inMA,B̄(e)

⋂{e}. Consequently, every edge has
|MA,B̄(e)| interference clones scheduled in slots distinct from
each other and the edge itself. In addition, note that if an edge
is activated in a time slot meant for one of its interference
clones, then it does not lead to any conflict. Therefore, we can
define a new conflict-free scheduleβ such thatβ(e, τ) = 1
iff there exits ane1 ∈ MA,B̄(e)

⋂{e} such thatα(e1, τ) = 1.
Given thatµ = mine∈E |MAB̄(e)|, the capacity of each edge
under scheduleβ for interferenceIB , is given by

cβ(e) = Σe1∈M
A,B̂

Στα(e1, τ)

≤ (1 + µ) × (1/(1 + κ)) (39)

Accordingly, a feasible flow offIB
= f(1 + µ)/(1 + κ) can

be obtained by scaling all the flow functions associated with
the inference-free flow by a factor of(1 + µ)/(1 + κ).

In the subsequent discussion, we find it convenient to
deduce a bound for a particular interference model and then
show that it applies to a wider set of models. In order to
facilitate such arguments, we define the following partial order.

Definition 5.7: Partial Order of Interference Models:
An interference functionIA is said to be more restrictive
than IB , represented asIA � IB , iff every edge satisfies the
conditions thatIB(e) ⊆ IA(e) .

Lemma 5.8:Consider a graphG(V, E) along with interfer-
enceIA andIB . If IA � IB , then a feasible flow rate under
IA remains feasible underIB .

Proof: A conflict free schedule underIA remains conflict
free underIB . Hence we can say that

cA(e) ≤ cB(e) (40)

where cA(e) and cB(e) represent the edge capacities under
each interference model. Therefore, if a particular flow satisfies
the capacity constraints underIA, it necessarily satisfies those
same constraints underIB.

B. Lower Bounds

Direct analysis of the interference models can be tedious.
Hence, for mathematical convenience, we consider the fol-
lowing restrictive models. Lemma 5.8 allows us to utilize the
performance limits under these restrictive models to indirectly

bind the capacity under the interference models for SPR, MPR
and MPTR.

We define a restrictive interference model that introduces
more restrictions (i.e., collisions) on the interference set for
each edge than those strictly dictated by the original interfer-
ence model. We will show that, under this restrictive model,
the order of the lower bound capacity achieves the upper bound
under the original (non-restrictive) interference model.

Definition 5.9: Restricted SPR (RSPR) Model:

IRSPR(e) = W (e) − {e} ∀e ∈ Er,H

where W (e) =
⋃

ê:ζ(ê−)=ζ(e−)

MSPR(ê) (41)

Definition 5.10: Restricted MPR (RMPR) Model:

IRMPR(e) = W (e) − U(e) ∀e ∈ Er,H

where U(e) =
{

ê ∈ Er,H | ê− = e−
}

(42)

Definition 5.11: Restricted MPTR (RMPTR) Model:

IRMPTR(e) = W (e) − V (e) ∀e ∈ Er,H

where V (e) =
⋃

ê:ζ(ê−)=ζ(e−)

U(ê) (43)

Consider the following properties of the restricted models.
Lemma 5.12:For the graphHr, we have a partial order

defined by (i)ISPR � IMPR � IMPTR, (ii) IRSPR � IRMPR �
IRMPTR, (iii) ISPR � IRSPR (iv) IRMPR � IMPR (v) IRMPTR �
IMPTR

Proof: (Sketch) The proof for the partial orders (i) to (iii)
follows directly from the definitions. Partial order (iv) follows
from the fact thatJ(e) ⊆ W (e) and U(e) ⊆ A(e) − B(e).
Similarly, the fact thatA(e) ⊆ V (e) implies partial order (v).

Lemma 5.13:If r(n) ≥ rc(n), then all edgese ∈ Er,H

have|M(e)| = Θ
(

n2r4(n)
)

under interference described by
either of the models:ISPR, IMPR, IMPTR, IRSPR, IRMPR, IRMPTR.

Proof: From Lemma 5.12 we can conclude that RSPR is
the most restrictive model, while MPTR is the least restrictive
model. Further note thatFRSPR(e) ⊆ W (e) and IMPTR(e) ⊆
MMPTR(e). Hence, it suffices to prove the following:

γmax = maxe∈Er,H
|W (e)| = O(n2r4(n)) (44)

γmin = mine∈Er,H
|IMPTR(e)| = Ω(n2r4(n)) (45)

Recall that a node inHr is connected to all and only those
nodes that are placed in adjacent squarelets. Hence Lemma
4.10 tells us that the degree of each vertexv ∈ Hr is bounded
as

4c1nr2(n) ≤ deg(v) ≤ 4c2nr2(n) (46)

Now lets prove the lower bound by considering the model
MPTR. According to Definition 3.6, the transmission on edge
e experiences interference from any transmission by a node
v such thatr(n) < ‖Xe− − Xv‖ ≤ (1 + η)r(n). Therefore,
there exists an annular ring arounde− of width ηr(n) such
that any transmission from a node in this ring interferes with
e. The area of this annular ring is given by

area of annular ring= η(2 + η)πr2(n) (47)
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We have already seen ( Lemma 4.2) that an area ofΘ(r2(n))
contains at leastΘ(nr2(n)) nodes. Hence, there exists ac3

such that

γmin ≥ c3nr2(n) × 4c1nr2(n) (48)

Eq. (48) proves the reqd. lower bound. The proof for the
upper bound is obtained with a similar argument. First, let us
inspect the transmission along edgee under the SPR model.
Any transmission from a node in a disk of radius(1+ η)r(n)
arounde−, interferes withe. Moreover, a transmission from
e+ interferes with any reception in a disk of radius(1+η)r(n)
arounde+. Given that‖Xe+ − Xe−‖ ≤ r(n), there exists a
disk of radius(2+ η)r(n) arounde− containing all the nodes
that may have transmission conflicts withe. Further note that
a squarelet can be completely inscribed in a circum-circle of
radius(1/3

√
2)r(n). Hence, there exists a circle of maximum

radiusR = (2 + η + (1/3
√

2))r(n) containing all the nodes
that may have transmission conflicts withe under the model
RSPR. The area ofR is Θ(r2(n)) and hence there exists a
constantc4 such that

γmax = maxe∈Er,H
|W (e)|

≤ (max. no. of nodes in R)× (max. node degree)

≤ c4n(2 + η + (
√

2/6))2r(n)2 × 4c2nr2(n)

= O(n2r4(n)) (49)

Lemma 5.14:Consider the graphHr with r(n) ≥ rc(n)
and k ≥ Θ(n). In such a graph, each edgee has at least
Θ

(

nr2(n)
)

clones under interferenceIRMPR andΘ
(

n2r4(n)
)

clones under interferenceIRMPTR, such that these clones inter-
fere with each other ande, under the interferenceIRSPR.

Proof: According to Definitions 5.10 and 5.11,U(e) and
V (e) represent the desired set of clones forIRMPR andIRMPTR

respectively. Lemma 4.10 implies that there existc1 and c2

such that

µRMPR = mine∈Er,H
|U(e)|

≥ min. vertex degree= c1nr2(n) (50)

µRMPTR = mine∈Er,H
|V (e)|

≥ [mine∈Er,H
|U(e)|] × min. nodes per squarelet

≥ c1nr2(n) × c2nr2(n) (51)

Theorem 5.15:For r(n) ≥ rc(n) andk ≥ Θ(n), the capac-
ity of random geometric network is at least: (a)Θ(nr(n)/k)
under the SPR model, (b)Θ(nr(n)/k) under the MPR model,
and (c)Θ(n2r3(n)/k) under the MPTR model.

Proof: Recall that the capacity of the random network is
greater than the feasible flow rate inHr. Theorem 4.12 shows
that a rate off = c1n

2r3(n)/k is feasible inHr. Additionally,
Lemma 5.13 shows that the size of the largest interference set
under RSPR is at mostκ = c2n

2r4(n). Hence, Lemma 5.4
implies that a rate of

fRSPR = f × (1/(1 + κ)) ≥ (c3/r(n)k) (52)

is feasible under the RSPR model. If we take into considera-
tion the interference clones, then Lemma 5.6 further implies
that the rate

fRMPR = f × (1/(1 + κ)) × (1 + µRMPR)

≥ (c3/r(n)k) × (c4nr2(n))

= (c3c4nr(n)/k) (53)

is feasible under the RMPR model. Similarly, the rate

fRMPR = f × (1/(1 + κ)) × (1 + µRMPTR)

≥ (c3/r(n)k) × (c5n
2r4(n))

= (c3c5n
2r3(n)/k) (54)

is feasible under the RMPTR model. Finally, note that a
feasible rate under a restricted model is necessarily feasible
under the original model. Hence, the result proven in Lemma
5.13 completes the proof.

C. Upper Bounds

The interference-free capacity provides an upper bound on
the capacity under any model, and Theorem 5.15 already
shows that the MPTR model achieves this capacity. However,
we need to provide additional arguments to obtain a tight
bound on the capacity under SPR and MPR. Our arguments
are similar to [8] and [6], and we briefly sketch the proof of
the following result for the sake of completeness.

Theorem 5.16:For r(n) ≥ rc(n) andk ≥ Θ(n), the capac-
ity of random geometric network is at most: (a)Θ(1/r(n)k)
under the SPR model, (b)Θ(nr(n)/k) under the MPR model,
and (c)Θ(n2r3(n)/k) under the MPTR model.

Proof: (Sketch) Consider the CutS in Figure 1. The
capacity of this cut and hence the network is less than

(no. of transmitters in A)× (max. tranmission per node)
(1/2)k

(55)
The total number of transmitters inA is less than the total
number of nodes inA. We have already shown that the total
number of nodes isΘ(nr(n)). Under the MPTR model, each
node can transmit a maximum ofΘ(nr2(n)) packets, and
under the MPR model each packet trasnmits just a single
packet. This provides the bounds for MPR and MPTR. To
obtain the bound for SPR, we note that each transmitter
silences all the nodes within an area ofΘ(r2(n)). Hence, only
Θ(1/r(n)) nodes are capable of transmitting simultaneously
across a cut. Each of these nodes transmits a single packet and,
therefore, the above equation provides the bound for SPR.

VI. D ISCUSSION

The results we have presented demonstrate that future ad
hoc networks can scale well beyond the Gupta-Kumar capacity
bounds attained when nodes simply try to avoid MAI [1].
First, we showed that the optimal capacity thatany protocol
architecture can attain in a wireless network isΘ

(

n2r3(n)/k
)

.
Second, we demonstrated that this capacity can indeed be at-
tained when nodes embrace MAI as transmitters and receivers,
and that a non-vanishing capacity is attainable per S-D pair
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even when information must be disseminated over multiple
hops. Given that the majority of nodes in an ad hoc network
are sources and destinations of information, we frame the rest
of our discussion for the important case ofk = Θ(n).

The capacity under the SPR model whenk = Θ(n) equals
Θ(1/nr(n)), which is the well-known Gupta-Kumar result,
and shows that avoiding MAI in the communication protocols
of ad hoc networks does not scale. Given that today’s ad
hoc networks are based on interference avoidance, it is clear
that massively scalable ad hoc networks cannot exist without
substantial changes to the way in which protocols are designed.
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Fig. 4. Simulation result of per-node capacity as a functionof n

On the other hand, under the MPR model [6] the network
capacity is equal toΘ(r(n)), which constitutes a dramatic
improvement over SPR, and promises to provide capacity
gains in practice by embracing interference at the receivers.
However, to attain a non-vanishing capacity,r(n) must be
Θ(1), i.e., use single-hop communication. Unfortunately, this
is not feasible in practice, because of the energy that would
be incurred in transmissions and the complexity required for
the receivers to decode a number of transmissions in the order
of the nodes in the network.

In contrast to the above, MPTR achieves the optimal per-
node capacity ofΘ(nr3(n)). Thus, any choice ofr(n) =
Ω(n1/3) allows us to increase the per-node capacity of the
network with n, while still having multihop communication.
Moreover, the transmission range and hop-size decreases with
n. As per our analysis, the capacity of a network is a constant
factor of Γ, where Γ = 2ηmin/l(kmax), such thatηmin is
the minimum number of edges between any two squarelets,
kmax is the maximum number of sources or destinations in
a single squarelet andl × l is the total number of squarelets.
To illustrate this, we numerically evaluated the behavior of
Γ as a function ofn. Figure 4 presents the mean, minimum
and maximum observed value ofΓ over a thousand network
topologies randomly generated and in whichk = n/2 and
r(n) = 1/n0.25. Clearly, asn → ∞ we haver(n) → 0.
Nevertheless, the numerical results show that the per-node
capacity still increases asΘ(n0.25).

In closing, we should point out that, while our results pro-
vide a completely new outlook on the design of wireless ad hoc
networks, much work remains to be done to fully understand
their fundamental limits! For example, the results we have
presented address only unicast traffic; our model can be used
to study the cases of multicast and broadcast information

dissemination. We also hope that this paper motivates research
on protocol architectures that combine multi-packet reception
and transmission to attain massively scalable ad hoc networks.
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