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Abstract—The paper presents a mathematical framework for
quantifying the overhead of proactive routing protocols in mobile
ad hoc networks (MANETs). We focus on situations where the
nodes are randomly moving around but the wireless transmis-
sions can be decoded reliablely, when nodes are within commu-
nication range of each other. We explicitly present a framework
to model the overhead as a function of stability of topology and
analytically characterize the statistical distribution of topology
evolutions. The OLSR protocol is further singled out for a
detailed analysis, incorporating the proposed analytical model.
Results are compared againstQualnet simulations for random
movements, which corroborate the essential characteristics of
the analytical results. The key insight that can be drawn from
the analytical results of this paper is that nodal movements will
drive up the overhead by a penalty factor, which is a function
of the overall stability of the network.

I. I NTRODUCTION

Mobility brings fundamental challenges to the design of
protocol stacks for mobile ad hoc networks (MANET). Be-
cause of nodes’ movements, routing protocols (e.g OLSR [1],
TORA [2]) of MANETs have to cope with frequent topol-
ogy evolutions and ensure quick response and adaptation
to topology changes. By continuously monitoring topology
changes and disseminating such information over the whole
network, proactive protocols provide fast response to topology
change but at the price of increased overhead of control traffic.
Increasing control traffic could further lead into less packet
delivery ratio and increase in delay. Under the worst case, it
could result in “broadcast-storm” [3] problem and the whole
network will be congested. It is thus essential to understand
the intricate relations between routing overhead and topology
evolutions, for the design of routing protocols in MANETs.

Due to the inherent complexities, simulation-based ap-
proaches [4], [5], [6], [7], [8] have been the major tool to
analyze the performance (routing overhead, packet delivery
ratio, delays) of MANETs in terms of mobility, power and
optimum transmission radios. Few analytical works have been
pursued which bring deeper insights and complement sim-
ulation studies. Zhou et. al [9] gave an analytical view of
routing overhead of reactive protocols, assuming static net-
work (manhattan grid) with unreliable nodes and concludes the
scalability of reactive protocols with localized traffic pattern.
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Topology evolutions from nodes’ mobility was not considered
in [9]. In [10], information theoretic analysis is pursued to
bound the memory requirement and overhead for a hierarchical
protocol in MANET upon entropy rate of topology evolutions.
Such results provide good understanding of the scalability
properties of routing overhead but are not sufficient to justify
the practical impact from topology evolutions. However, to
the best of our knowledge, there is no previous work that
makes such analytical connection between routing overhead
and topology evolutions. Moreover, none of the past work has
analytically characterized topology evolutions as a function
of node mobility, a solution of which is crucial to make the
connection.

In this paper, we provide the first attempt to provide
answers to these questions with a general analytical framework
for proactive routing protocols, where the inter-dependence
between topology evolutions and routing overhead is explored
and quantitative measures are provided to justify the routing
overhead as a function of node mobility. In the meanwhile, we
also provide the answer to the characterization of topology
evolution, by explicitly modeling it as a function of node
mobility and deriving out analytical parameters. Clearly,such
results will supplement the information theoretic analysis
of [10] by providing entropy rate and model of topology
evolutions.

We further take a practical view on optimized link state
routing (OLSR) protocol [1] under the general framework,
with the understanding of the significance and practicalness
of OLSR protocol. Such an analysis not only gives us better
insight to the operation of OLSR algorithm but also corrob-
orates the effectiveness of the general modeling framework.
Analytical results in this paper are compared againstQualnet
simulations for random movements, which confirm the essen-
tial characteristics of the analytical results. The key insight
that can be drawn from the results is that mobility will drive
up the overhead by a penalty factor, which is a function of the
overall stability of the network.

The rest of the paper is organized as follows. Section II
breifly describes the network model and presents the problem
of interest. Section III explains the general framework of
modeling proactive routing overhead, followed by Section IV
to discuss properties of topology and factors that affect the
stability of topology. Section V presents a detailed proposition
on exponentially modeling topology evolutions and demon-
strates the mathematical evaluation of the model parameters.
Section VI applies the analytical models for an in-depth
analysis on routing overhead of OLSR protocol. Finally, we



conclude this paper in Section VII.

II. SYSTEM MODEL & PROBLEM STATEMENT

We consider a square network consistent with several prior
analytical models of MANETs [11], [12], [13]. The entire
network is of sizeL × L and there aren nodes initially
randomly deployed in the square network. It should be noted
that although we consider a square network in the paper,
our analysis can be extended to networks of any shape in a
straightforward way.

Nodes are mobile and initially randomly distributed over
the network. The movement of each node is independent and
unrestricted, i.e, the trajectories of nodes can be anywhere in
the network. For nodei ∈ V = {1, 2, . . . , N}, let {Ti(t), t ≥
0} be the random process representing its trajectory and take
values inD, whereD denotes the domain across which the
node moves. To further impose the modelablility constraint, we
have the following assumption on the trajectory processses.

Assumption 1:[Stationarity] Each of the trajectory process
Ti(t) is stationary, i.e., the spacial node distribution will reach
its steady-state distribution irrespective of the initiallocation.
And theN trajectory processes arejointly stationary, i.e., the
whole network will eventually reach the same steady state
from any initial node placements, within which the statistical
spatial nodes’ distribution of the network remain the same over
time.

The assumption is quite fundamental in the sense that it lays
the foundation of modeling nodes’ movement. Most existing
models, e.g. random direction mobility models [14], [15], [16],
[17], [18], random waypoint mobility models [19], [20] as
well as random trip mobility model [21], clearly satisfy the
assumption. In other words, the assumption ensures that on
the long run, the network will converge to its steady state
and the stationary spatial nodes’ distribution can be utilized in
performance analysis of the network.

The availability of communication links, e.g. from nodei to
node j, is governed by the Signal-to-Interference-plus-Noise
Ratio(SINR) protocol model as,

Pi(t)gij(t)

N0 +
∑

k∈As(t),k 6=i Pk(t)gkj(t)
≥ β (1)

wherePi(t) denotes the transmitting power of nodei at time
t, As(t) is the set of active nodes transmitting at timet, N0

denotes the thermal noise andβ is the minimum SINR for the
receiver to successfully decode data packets.gkl(t) represents
the channel gain from nodek to nodel at timet, capturing path
loss, fading and shadowing effects in the wireless environment.
Eq. (1) states the physical requirement of the existence of a
directional link from nodei to nodej at time t. Since many
routing algorithms necessitate the availability of bi-directional
links, we should also expect the SINR law being satisfied for
the reverse link, e.g.j → i. We simply term bi-directional link
as link throughout the paper.

The topology (or connectivity graph)G(t) of the network at
time t can be obtained by replacing such available links with
lines connecting nodes. In the paper, we use topology and con-
nectivity graph interchangeably. Routing algorithms usually

operate upon the connectivity graph and topology evolutions
(or changes in the connectivity graph) could further trigger
routing protocols to react to the change by disseminating
control packets. As a result, distribution of topology evolutions
is heavily related to control overhead of routing protocols.

However, there has been little work in the literature to
analytically study such distribution of topology evolutions in
MANETs. We attempt to provide the first (to the best of
authors’ knowledge) analytical work on modeling of topology
evolutions in MANETs and make the practical connection
between topology evolutions and proactive routing overhead.
To summarize, we would like to seek answers for the following
questions:

• Does there exist an analytical model to statistically
characterize the distribution of topology evolutions in
MANETs? If so, are we able to derive the parameters
analytically?

• If there is such a model, are we able to apply the model
to analyze the effect of mobility on the control overhead
of proactive routing protocols? Or mathematically, could
we find the functionF that projects the control overhead
Od in MANETs with the knowledge of mobilityV and
control overheadOs of protocol at static scenarios?

F : Os × V → Od (2)

III. PROACTIVE ROUTING OVERHEAD OF DYNAMIC

GRAPH

We know that routing protocol operates on the connectivity
graph (topology)G. Let ~G = {Gi} be the set of all possible
connectivity graphs. In the steady-state, the connectivity graph
G(t) will travel across all such graphs with a stable distribution
vector ~p = {pi} derived from the stationary spatial nodes’
distribution. Change that occurs in the connectivity signals the
transition between connectivity graphs or topology evolution.
However, if we look at the connectivity graph from a single
node point of view, for an active node, it observes the local
connectivity graph (local detailed topology) derived from
neighbors that could be several hops away. Only changes in
its local connectivity graph could trigger the node reacting
to the change. Let’s observe protocol behavior at a typical
active nodek. From ~G, we can derive~Gk = {Gk

i } as the set
of all possible local connectivity graphs with corresponding
distribution vector~pk = {pk

i }.
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Fig. 1. Protocol behaviors with local connectivity graphs.

As illustrated in Fig. (1) and when there is no change in
topology, we expect that the node will periodically broadcast



topology control (TC) message at regular intervalTc. For
this case, the average TC messages per active node at static
scenariosOs is simply

P (Os) = P (Gk
i ) = 1/Tc,∀i (3)

If we assume that a change happens at timeti,KTc < ti ≤
(K +1)Tc, signaling the transition of local connectivity graph
from Gk

i to Gk
j . The protocol usually responds to the change by

advancing the TC message broadcast at some timet∗i ,KTc <
t∗i ≤ (K +1)Tc rather than broadcast at the next planned time
(K + 1)Tc. And the subsequent TC message broadcast will
perform regularly with graphGk

j . In this case, compared to
the static scenario where no change occurs, the increaseγi(t)
in generated TC message associated withGk

i can be computed
as

γi(ti) =
(K + 1)

t∗i
/

K + 1

(K + 1)Tc

=
⌈t∗i /Tc⌉

t∗i /Tc

(4)

where⌈·⌉ is the ceiling operator. The average increaseγi in
geneated TC messages with the graphGk

i can be computed as

γi = Eti
(
⌈t∗i /Tc⌉

t∗i /Tc

) (5)

Statistically,γi measures the normalized transition cost forGk
i

andt∗i is determined byti that captures the stability of the local
detailed topologyGk

i . Summing over all possible topologies,
we can estimate the average number of generated TC message
per active node as

P =
∑

∀i

pk
i P (Gk

i ) ∗ γi (6)

As we will see in Section V, if we are only concerned with
nodal mobility and since nodes are moving independently
and randomly, we could assume that link change arrives
independently and{ti} are of identical statistical distributions,
being a renewal process. We have

P = γ ×
∑

∀i

pk
i P (Gk

i ) (7)

γ = E(
⌈ζ∗/Tc⌉

ζ∗/Tc

) (8)

whereζ∗ is decided onζ andζ is the observed stability of the
local connectivity graph per active node.γ is thepenalty factor
that measures the cost in graph transitions for an active node
and as we will see later, it is a function of nodal mobility and
stability of the local connectivity graph. Furthermore, a closer
look at Eq. (7) reflects that the increased traffic overhead can
be estimated from the average performance of static graphs,
that is exactly the right term in the equation.

In a homogeneous network, every node in the network
operate in a similar way. Therefore, we can expect similar
results on the whole network. Eventually, we propose the
following model that estimates the control traffic overhead
from the knowledge of mean overheadOs of static scenarios.
Mathematically, we can write it as the tentative answer for the
question raised in Section II as

We could have a functionF that projects the control
overheadP (Od) in MANETs with the knowledge of mobility

V and control overheadP (Os) of protocol at static scenarios.
And the function can be written as,

F : P (Od) = γ(V) ∗ P (Os) (9)

However, we need to know the distribution of topology
evolutions (ti in Eq. (4) for the computation of mobility effect
on proactive routing overhead. To bring up such a model, we
will first discuss factors that affect the stability of topology
and then propose analytical model for topology evolution.

IV. TOPOLOGY: FACTORS FORCHANGES

A. Setup

Due to nodes’ movements and surrounding parallel trans-
missions, links between nodes are set up and broken dynami-
cally. We introduce a{0, 1}-valued on-off processfij(t), t ≥ 0
to model such link changes asfij(t) = 1 (or fij(t) = 0) if
the unidirectional link from node i to node j, is available (or
unavailable) at timet ≥ 0. Clearly, we havefij(t) = fji(t)
because we only consider bi-directional links.

If we map every active (on) link to a edge in a graph with
N vertices where each vertices stands for a node inV , we
can obtain the time-varing graph (topology)G(t) with a time-
varying setE(t) of edges as

E(t) := {{i, j} ∈ V × V, i 6= j; fij(t) = 1} (10)

It should be noted thatG(t) is the connectivity graph of the
network, which is anundirectedgraph as we consider bi-
directional links. LetE be the complete set of possible links
in the graph, i.e,

E := {{i, j} ∈ V × V, i 6= j} (11)

The complimentary setEc(t) of E(t) can be computed as

Ec(t) = E − E(t) (12)

For each link change such as new link formation or breakage
of existing links, both will result in a change in the connec-
tivity graph and could further result in a protocol event in the
network to distribute such change.

Let τ be the moment that the connectivity graphG(t)
changes at timet+ τ from its last change at timet. Clearly,τ
is the random variable describing the duration of stabilityof
the connectivity graphG(t). In general, there are two different
scenarios responsible for changes ofG(t). One is the creation
or arrival of new links, letτo be the random variable capturing
the time duration of such new link arrivals or addition of
new edge inG(t); Complementary, one will have another one
random variableτf , characterizing the breakage of existing
links or deletions of edges inG(t). We will have

τ = min{τo, τf} (13)

Our objective is at first to identify the factors that affect the
stability τ of the connectivity graphG(t) and then find the
analytical model that characterizes the statistical distribution
of τ .



B. Factors in Connectivity Graph

It can be observed that in Eq. (1), the availability of links
not only depends on the wireless environment (captured in
channel gaingkl(t) but also relies on the traffic and MAC
schemes which together decide the active set of transmitting
nodesAs(t). If we do not explicitly model the shadowing
effect and short-term channel variations such as channel fading
between nodes, it is reasonable to assume that the channel
gain can be computed according to the exponential attenuation
model as,

g = r−α (14)

wherer denotes the Euclidean distance between two commu-
nicating nodes andα is the exponential attenuation coefficient,
normally ranging from2 to 5 with various wireless environ-
ments.

By introducing a dynamic and sometimes intractable active
set As(t), the involvement of traffic and MAC schemes
significantly complicates the problem with a dynamic varying
interference term. Such a term, resulting from surrounding
traffics and parallel transmissions, is calledenvironmental
mobility here.

When MAC is perfectly scheduled, the interference will
become negligible compared to the noise and can be consid-
ered zeros, i.e, no environmental mobility. In such cases, the
deciding factors for link availability lies in the transmission
power and radio propagation loss and it can be expressed as,

Pi(t)gij(t)

N0
≥ β and

Pj(t)gji(t)

N0
≥ β (15)

When all nodes transmit at uniform power and together with
Eq. (14), link between two nodes becomes available as soon
as they become reachable, i.e., their Euclidean distance gets
closer than some valueR, that is the maximum radio coverage
for a transmitting node. Obviously, the availability of such
links is purely a function of their relative distances, thatis
governed by nodes’ movements ornodal mobility.

Till now, we have identified two factors that affect the
connectivity graph, i.e.,environmental mobilityand nodal
mobility. The analytical models for the two factors are essential
to the model of stability of the connectivity graph. However,
the defining feature of MANETs is fromnodal mobility,
that is the natural result from nodes’ dynamic movements.
Furthermore, an analytical model ofnodal mobilityeffect on
the connectivity graph is by far not available. For the reason,
we focus on analytical modeling of topology evolutions from
nodal mobility in MANETs.

V. TOPOLOGY: MODEL OF NODAL MOBILITY

Nodes’ motion will change the distance and therefore results
in dynamic set-up and torn-down of links. When compared
to the SINR law in Eq. (1), links defined in Eq. (15) are
longer and stand for the maximum possible duration of link
availability by solely considering mobility effect. In practice,
the traffic and MAC schemes (environmental mobility) operate
with scheduling and/or contention resolution schemes, which
generally leads to less utilization of links. For example,

a global time-division-multiple-access (TDMA) scheduling
scheme together with Eq. (1) result the model in Eq. (15)
but the utilizations of links are much less frequent due to the
scheduling in channel access.

For each link in setE(t), let T o
ij(t) denote theresidual

lifetime of the link after timet, i.e.,T o
ij(t) is the amount of the

time that elapses from timet onward until link is unavailable.
Correspondingly, for each link in setEc(t), we haveT f

ij(t) be
the residualsilence time of link after timet, i.e.,T f

ij(t) is the
amount of the time that elapses from timet onward until a
link is available. Due the underlying stationarity impliedfrom
the joint stationarity of trajectory processes, it clearlysuffices
to consider only the caset = 0 and we can simply dropt here
as we do from now on, e.g,T o

ij instead ofT o
ij(t). Clearly, we

have

τo = min{T o
ij of link {i,j} ,∀{i, j} ∈ E(t)} (16)

τf = min{T f
ij of link {i,j} ,∀{i, j} ∈ Ec(t)} (17)

For each link{i, j}, the associated link availability process
fij(t); t ≥ 0 is simply an on-off process, with successive ups
and downs with associated time durations, denoted by random
variablesfij(k); k = 1, 2, . . . and fji(k); k = 1, 2, . . ., re-
spectively. Such a processes can also be obtained from nodes’
relative trajectories. When only nodal mobility is concerned,
by Eq. (15), a link between nodesi andj in V is available at
time t ≥ 0 if and only if their distance is smaller thanR. As
a result, the link availability is defined as

fij(t) := 1[‖Ti(t) − Tj(t)‖ ≤ R]; t ≥ 0, (18)

where ‖ · ‖ denotes the Euclidean operator to compute the
distance.

Let Z(t) =
∑

∀{i,j} fij(t) and it is clear thatZ(t) is a
renewal process comprised from a total number of|E| on-off
link availability processes, where|·| is the cardinality operator.
Clearly, τ describes the refreshing interval,τo specifies the
interval between upward renewals andτf denotes the interval
between downward renewals of the renewal processZ(t).
By applying the well-known results from renewal processes
and independent on-off processes in equilibrium [22],we have
following theorem onτ ,

Theorem 1:[Stability Model] When both setsE(t) and
Ec(t) involves sufficient number of links and all such links are
assumed to be independent, the distribution ofτo andτf can be
approximated as exponentially distributed with parameterλo

andλf . And the distribution of stabilityτ of the connectivity
graph is also exponentially distributed with parameterλ =
λo + λf . Mathematically, we can write is as

P (τo ≤ t) = 1 − e−λot (19)

P (τf ≤ t) = 1 − e−λf t (20)

P (τ ≤ t) = 1 − eλt = 1 − e−(λo+λf )t (21)

It is also known as Palm’s theorem [22] and in another
words, it states that the distribution of a superposition of
Nr i.i.d random variables will converge to the exponential
distribution as Nr approaches infinite. The above results
can be generalized to incorporate cases of independent but



non-homogeneous motions, where some nodes may follow
different mobility models from others. It might be worthy
of noting that Palm’s theorem has been applied to evaluate
asymptotic distribution of route lifetime duration [23] inad
hoc networks, that are also empirically observed in [24].
However, to our knowledge, a model for topology evolutions
is still not available both empirically and theoretically.

In MANETs, one might be wondering that since neighbor
links share a common node, we cannot make the independent
assumption on links and Palm’s theorem cannot be applied.
However, if the nodes’ movements satisfy somemixing condis-
tions or known asm-dependence[25], the statement in Theo-
rem (1) still holds on such relaxed conditions. Such conditions
introduce a form of asymptotic independence as the hop
distance between links increases, while allowing dependence
in neighborhoods. Specifically,m-dependencemeans that the
correlation between links decreases as hop-distance between
links increases and links can be considered as independent
when the hop distance between links are greater than certain
value of m. Fortunately, most of mobility models fall in
this category, e.g. random waypoint mobility model, random
direction mobility model and random trip mobility model and
our results can be applied to a wide-variety of scenarios in
MANETs.

A. Relations betweenλo and λf

Till now, we have learned that both the new link formation
process and link breakage process can be approximated by
Poisson process with parametersλf andλo, respectively. For
the new link formation process (or the link breakage process),
λf (or λo) characterizes the average number of new link
arrivals (or link breakages). Let’s consider a time window
T and whenT is sufficiently large, the number of new link
arrivals Na and link breakagesNb within the time window
can be approximated by

Na = λf ∗ T (22)

Nb = λo ∗ T (23)

For a network with finite number of nodes and when observed
at an infinite length of time window, the difference of the
number of new link arrivals and link breakages can be denoted
by

lim
T→∞

(Na − Nb) = lim
T→∞

T ∗ (λf − λo). (24)

Clearly, the only choice is

λf = λo. (25)

It indicates that on the long run, the new link arrival process
should be balanced off by the link breakage process. Other-
wise, it contradicts with the fact that the network only involves
finite number of nodes.

B. Analytical Evaluation ofλf or λo

We understand that if we know the parameter for one of the
two processes, we can infer the other one. The link breakage
process is characterized by the distribution of residual link life

time, a direct evaluation of which requires exact knowledge
of the underlying mobility characteristics, and it is clearly
not favorable. Luckily, we can have general statements on
the underlying new link formation process, resorting to the
exponential modeling with parameterλl of point-to-point link
formation in [26].

For a particular connectivity graphGi with associated sets
Ei and Ec

i , there is a total number of|Ec
i | potential point-

to-point links to create. Since the time distribution of new
link formation can be modeled as exponentially distributed
with parameterλl, the stability for this particular connectivity
graph can be measured with parameter

λf (Gi) = |Ec
i | ∗ λl (26)

When network is running at steady-state and inferring from
the joint stationarity assumption of underlying trajectory pro-
cesses,G(t) is a stationary and ergodic process that will
experience all possible connectivity graphs with associated
probability vector derived from steady-state nodes’ distribu-
tion. By averaging all possible graphs, we can compute the
parameterλf as

λf = E(|Ec
i |) ∗ λl (27)

whereE(·) stands for expected value.
A general model of MANETs in steady-state exists and

known asrandom geometric graph[27], that has been widely
adopted in analytical works of MANETs and considered as
an improvement over the model ofrandom graphin static
networks. Using the model ofrandom geometric graph, we
can computeλf as

λf = N̄f ∗ λl (28)

whereN̄f is the average number of potential link pairs and it
can be computed as [27]

N̄f =
N ∗ (N − 1)

2
∗ (1 −

πR2

L2
) (29)

To summarize, we eventually arrive at the following theorem
on the distribution of the stabilityτ of the connectivity graph

Theorem 2:[Analytical Stability Model] The distribution
of stability τ of the connectivity graph in MANETs can be
approximated as exponentially distributed with parameterλ
and the parameterλ is given by

λ = N ∗ (N − 1) ∗ (1 −
πR2

L2
)

∗ 2E[V∗]R

∫ L

0

∫ L

0

π2(x, y)dxdy. (30)

whereπ(x, y) denotes the steady-state spatial nodes’ distribu-
tion andE[V∗] is the average relative velocity.

C. Model Validations

There are a total of100 nodes randomly placed for each
1000m×1000m square cell. Each node has the same transmit
power and the radio transmission range considered is250m,
that is the nominal coverage of IEEE 802.11 PHY layer. Four
different speeds{5m/s, 10m/s, 15m/s, 20m/s} are simu-
lated for the random waypoint mobility model (RWMM).
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Nodes are randomly activated to randomly choose destination
node for data transmission. The traffic of activated nodes are
supplied from a CBR source with a packet rate0.5p/s.

Figs. (2) present the results for RWMM and RDMM, respec-
tively. It can be observed that for both cases, the exponential
distribution model match pretty well with the simulation
results and the analytical evaluation of the parameter also
exhibits quite good approximation to the simulations. Some
imperfections come in because of the edge effect that prevents
random geometric graph model from accurately describing the
steady-state of the network. We can minimize the edge effect
in simulation by reducing the communication range, e.g. to
15m. In that case, the simulations (Figs. (3 ) show almost
perfect match with our analytical model and we predict that
the analytical model is quite accurate for large networks.

VI. PRACTICAL IMPLICATION : ANALYZING CONTROL

TRAFFIC OVERHEAD IN OLSR PROTOCOL

As discussed, the control traffic overhead of a protocol is
heavily related to the stability of the connectivity graph in
MANETs. Solely concerned with nodal mobility, we already
know that the distribution of stability of the connectivity
graph can be approximated as exponentially distributed with
parameterλ given in theorem 2. In this section, through
utilizing the proposed model on proactive routing overhead
and the connectivity graph, our target is to apply the model to
project the control traffic overhead in order to better identify
how nodes’ mobility affect the control traffic overhead of
OLSR protocol.

A. Brief Overview of OLSR protocol

In OLSR protocol, every nodes periodically send out
HELLO messages for the purpose of neighbor sensing in
the network. A HELLO message usually contain its one-hop
neighbors and link status. Upon receiving and analyzing these
consecutives HELLO messages, every nodes are able to keep
track of up to two-hop neighbor links and use the information
to compute its multipoint relays (MPR). The MPR set of
the node is a subset of its neighbor nodes but maintains the
coverage to its whole two-hop neighbors. The original node

is calledMPR Selector. And every node could have multiple
nodes to select itself as a MPR node or in another words, can
have multiple MPR selectors. Topology control (TC) messages
are periodically generated from nodes with non-empty set
of MPR selectorsto disseminate{MPR selector, MPR} link
information to the whole network. In case of nodes detecting
changes in the set ofMPR selector, TC message could be
initiated earlier than the regular interval to respond to the
change. Every nodes keep track the TC messages and use
such link information for path selection and traffic routing.

The idea of multipoint relay (MPR) in OLSR is to minimize
the flooding of broadcast packets and avoid the “broadcast
storm” problem. For every node, its TC packets are retrans-
mitted only by its MPR neighbor nodes and thus results
in a saving of duplicate transmissions but still maintains
satisfactory packet delivery. Clearly, the smaller the MPR
set is, the more saving in the protocol. And the feature is
particularly beneficial for deployment in dense network.

Link breakage is detected when a node fails to receive
several consecutive HELLO messages from one of its neighbor
node. And link addition is detected when a node starts to
receive HELLO messages from a node not in its current one-
hope neighbor set. Every change in the two-hop neighborhood
link set will result in a protocol event of the node reacting to
the change by recomputing its MPR set and could further result
in MPR set. Therefore, it could lead to earlier TC message
broadcast and the increase in the control traffic.

B. Parameterizing OLSR MPR Selection algorithm

In OLSR protocol, MPR scheme plays a critical role in
reducing the flooding packet and maintain the whole net-
work connectivity. By employing MPR, link changes will
not necessarily result in a protocol event. However, the
change that happens atcritical links in OLSR protocol, i.e
{MPR selector, MPR} pairs, will surely trigger a protocol
event. For the reason, we need to find a parameter that
characterizes the performance of MPR selection algorithm in
OLSR protocol and further utilize it to derive the distribution
of the connectivity graph. Before proceeding with choosing
the appropriate performance metric, we need to first review



the MPR selection algorithm. The MPR selection algorithm
work as follows:

1) Select the node within the set of one-hop neighbor nodes
as MPR node, if among the two-hop neighbor nodes,
there are one or more than one nodes that are only
covered by the node.

2) Choose a one-hop neighbor node as MPR node, if it
covers the most of remaining two-hop neighbor nodes
that are not covered by nodes in the MPR set. Repeat
the step until all two-hop neighbor nodes are covered by
the MPR set.

Clearly, the MPR selection algorithm is a greedy algorithm and
its performance will vary with graphs on which it operates. The
heuristic approach together with edge effect and graph depen-
dent performance significantly complicates the problem and
prevents an analytical modeling (if feasible) of the algorithm.
For the reason, the parameter that we are looking for should
reflect the statistical performance of the MPR algorithm andan
evaluation of such parameter could be obtained by statistical
evaluation with random geometric graph model.

A natural choice of the parameter should be the performance
metric that answers the questions how much savings the MPR
selection algorithm bring in reducing the duplicate flooding
packet. Let’s defineNeighbor{i} as the set of one-hop
neighbor nodes and letMPR{i} be the MPR set for node
i. It is obvious that,MPR{i} ⊆ Neighbor{i} Then the one-
hop savingβi from MPR selection can be evaluated as

βi =
|MPR{i}|

|Neighbor{i}|
(31)

Clearly, 0 < βi ≤ 1. Eventually, we define a parameterβ
termed asbroadcast efficiencyto characterize the statistical
performance of MPR selection algorithm. And it can be
obtained through the statistical averaging over all possible
nodes and graphs of the one-hop saving computed in Eq. (31).

β = EG,i(βi), 0 < β ≤ 1 (32)

The smallerβ is, the more saving the MPR algorithm brings.
β is also a statistical measure of the percentage of critical
links ({MPR selector, MPR} pairs) out of total links in OLSR
protocol. From Section V, we can infer that the distribution
of link breakages of such links can also be approximated as
exponentially distributed with parameterλc = β ∗ λo.

C. Computation of Penalty Factor

The only remaining problem is to computeγ as a function
of nodal mobility or the stabilityζ of the local connectivity
graph. First, we need to look at howζ∗ is determined fromζ,
i.e., to understand how OLSR protocol reacts to an effective
change. Effective change means that the node detect a change
in the set of MPR selectors, since OLSR protocol operates on
the sub-graph from critical links.

Fig. (4) illustrates how a protocol reacts to an effective
change. Suppose that a change arrives atKTc < ζ ≤ (K +
1)Tc, then the scheduled next TC message will be advanced
to be broadcasted at timeζ∗, the choice of which depends on
when the change actually happened. IfKTc < ζ ≤ KTc +∆,
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Fig. 4. Graphical Illustration on Change Response

then the TC message will be broadcasted atζ∗ = KTc + ∆.
For other casesKTc + ∆ < ζ ≤ (K + 1)Tc, TC message
will be broadcasted immediately (ζ∗ = ζ) when change is
detected. The purpose of having∆ in protocol is to avoid the
case where changes arrive too often and result in too much
flooding from broadcasting TC messages. By aggregating such
changes during∆ period in one TC message, the protocol can
limit the maximum TC message broadcast rate but still achieve
satisfactory performance. Summarizing the above analysis, one
has

ζ∗ =

{

KTc + ∆, KTc < ζ ≤ KTc + ∆
ζ, KTc + ∆ < ζ ≤ (K + 1)Tc

(33)

As said, effective change is the change that results in a
change in the set of MPR selectors. Such changes depend
on the stability of local connectivity graph. Any changes in
the local connectivity graph could lead to a re-computationof
MPR set and further results in an effective change. We have
the following itemized discussions on changes,

• A new link is detected in the local connectivity graph
of nodek. It will result in a MPR set recomputation of
neighbors within two hop distance of the new link. Such
link may or may not lead to a change in MPR selectors
of nodek.

• A link breakage is detected in the local connectivity
graph but not in the critical links of nodek. For such
cases, it still leads to a recomputation of MPR set but
not necessarily affect the operation of nodek.

• A link breakage in critical links of nodek is detected and
as a result, nodek will detect a change in the set of MPR
selectors. Such change is surely an effective change on
nodek and nodek needs to react to the change by earlier
TC message broadcast.

Due to the heuristic characteristic of MPR selection algo-
rithm, an analysis of the first two scenarios could be signif-
icantly complicated (if feasible at all). Taking a conservative
approach, we only consider the last scenario where link
breakage is detected in critical links. Since we know that the
stability of overall critical links can be approximated as expo-
nentially distributed with parameterλc, we can approximate
the single-node stabilityζ of critical links as also exponentially
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Fig. 8. perfectMac: N100

distributed with parameterλs = N ∗ λc. Please be noted that
such approximation becomes closer as node density increases,
i.e., nodes associated with more critical links.

Till now, we can compute the penalty factorγ as a funciton
mobility V as

γ(V) = E(
⌈ζ∗/Tc⌉

ζ∗/Tc

) = f(λs) (34)

wheref(·) denotes mapping function and can be numerically
computed after knowing the parameterλs of ζ (or ζ∗). It is
also worthy of noting that the penalty factor is a direct function
of local connectivity graph and suggests that the stabilityof
connectivity graph can greatly affect the protocol performance.

D. Simulation Results

In the simulation, the network is a1000m× 1000m square
cell. Each node has the same transmit power and the ra-
dio transmission range considered is250m. The number of
nodes changes in the set{40, 60, 80, 100} to simulate vari-
ous node densities. The implementation of OLSR algorithm
is the default implementation inQualnet 3.9.5. Nodes are
randomly activated to randomly choose destination node for
data transmission. The traffic of activated nodes are supplied
from a CBR source with a packet rate0.5p/s. And the
movement follows the random waypoint model as the default
setting in Qualnet. The maximum speeds considered are
{0m/s, 5m/s, 10m/s, 15m/5, 20m/s}, ranging from static
topologies, pedestrian speed to normal vehicle speed. And
the MAC layer is set as the 802.11 MAC. Overall, we

simulate a total of20 different network configurations. For
each configuration,50 simulations with random generated
seeds are conducted to capture the statistical performance.

To exclusively simulate the effect from nodal mobility, we
modified the algorithm ofQualnet to exclusively consider
such situations. Under such modifications, network layer will
not experience packet loss from collisions i.e. due to envi-
ronmental mobility— and we call itperfect MAC. Fig. (5)
to (8) demonstrate the performance of analytical models versus
simulative performance exclusively withnodal mobility. It can
be observed that the analytical model provide good estimateto
the simulations. Because we take a conservative approach in
Section VI-C, the analytical model usually underestimatesthe
overhead. And, as expected, the difference between the model
and simulations decreases as node density increases, as critical
links become more dominance in the local connectivity graph
or link changes at non-critical links brings less effect on the
sub-graph from critical links.

To evaluate the model in practical scenarios, we further
turn back to the original setting ofQaulnet in interference
computation. And in this case, the real 802.11 MAC works
under collisions and back-offs. The simulation results arethen
illustrated in Fig. (9) and (10). In general, the model still
provides a good approximation but the difference between the
model and simulations are deeper due to additional effect from
environmental mobility. Overall, we believe that our model
provides satisfactory performance in estimating the routing
overhead and brings deeper insight on how mobility affect
the routing overhead.
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VII. CONCLUSION

In the paper, we analytically evaluated the inter-dependence
between routing overhead and the stability of topologies, by
characterizing the statistical distribution of topology evolu-
tions. The stability of topology can be modeled as expo-
nentially distributed with parameter computed from network
configurations. Utilizing the proposed model, routing overhead
of OLSR protocol is further analyzed and the results show that
the proposed model gives good estimate of routing overhead
and meanwhile provides good insight on how nodal mobility
affect the routing overhead.
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