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Abstract—We present the first unified modeling framework
for the computation of the throughput capacity of random
wireless ad hoc networks in which information is disseminated
by means of unicast routing, multicast routing, broadcasting,
or different forms of anycasting. We introduce (n, m, k)-casting
as a generalization of all forms of one-to-one, one-to-many and
many-to-many information dissemination in wireless networks.
In this context, n, m, and k denote the total number of nodes in
the network, the number of destinations for each communication
group, and the actual number of communication-group members
that receive information (i.e., k ≤ m), respectively.

We compute upper and lower bounds for the (n, m, k)-
cast throughput capacity in random wireless networks. When
m = k = Θ(1), the resulting capacity equals the well-known
capacity result for multi-pair unicasting by Gupta and Kumar.
We demonstrate that Θ(1/

√
mn log n) bits per second constitutes

a tight bound for the capacity of multicasting (i.e., m = k < n)
when m ≤ Θ(n/(log n)). We show that the multicast capacity of
a wireless network equals its capacity for multi-pair unicasting
when the number of destinations per multicast source is not
a function of n. We also show that the multicast capacity of
a random wireless ad hoc network is Θ(1/n), which is the
broadcast capacity of the network, when m ≥ Θ(n/ log n).
Furthermore, we show that Θ(

√
m/(k

√
n log n)), Θ(1/(k log n))

and Θ(1/n) bits per second constitutes a tight bound for the
throughput capacity of multicasting (i.e., k < m < n) when
Θ(1) ≤ m ≤ Θ(n/ log n), k ≤ Θ (n/ log n) ≤ m ≤ n and
Θ(n/ log n) ≤ k ≤ m ≤ n respectively.

I. INTRODUCTION

The seminal work by Gupta and Kumar [1] on the capacity
of wireless networks 1 has sparked a growing amount of
interest in the understanding of the fundamental capacity
limits of wireless ad hoc networks. The prior work that we
summarize in Section II falls into three main areas. The
first research area has focused on extending the results by
Gupta and Kumar (e.g., [2], [3]). The second area consists
of developing and analyzing schemes capable of increasing
the capacity of wireless networks for unicast applications
(e.g., [4]–[9]). The third area of research has addressed the
fact that Gupta and Kumar’s results apply only to wireless
networks subject to multi-pair unicasts, and includes a number
of studies on the capacity of ad hoc networks subject to
broadcasting (e.g., [10]–[12]) and multicasting (e.g., [13]–
[15]).

1In this paper, capacity is used to denote throughput capacity as was orig-
inally used by Gupta and Kumar [1]. We use the two terms interchangeably.

The work presented in this paper is motivated by the fact
that, to date, there has been no unified treatment on the
capacity of wireless networks subject to different types of
forwarding disciplines. The main contribution of this paper
consists of presenting the first unified modeling framework
for the computation of the throughput capacity of random
wireless ad hoc networks in which information is disseminated
by means of unicast routing, multicast routing, broadcasting,
or different forms of anycasting. We define (n,m, k)-casting
as a generalization of all forms of one-to-one, one-to-many
and many-to-many information dissemination in wireless net-
works. In the context of (n,m, k)-casting, n, m, and k denote
the number of nodes in the network, the number of destinations
for each communication group, and the actual number of
communication-group members that receive information (i.e.,
k ≤ m), respectively. Section III describes the network model
and necessary concepts for the development of our framework.

Section IV presents the capacity of (n,m, m)-casting,
which corresponds to broadcasting or multicasting, and should
be familiar to the reader. We compute the upper and lower
bounds for the capacity of (n,m, m)-casting, and show that2:
(a) Θ

(
1/(
√

mn log n)
)

bits per second is a tight bound
for the capacity of multicasting (i.e., m = k < n) when
m ≤ Θ(n/(log n)); (b) the multicast capacity of a wireless
network equals its capacity for multi-pair unicasting when
the number of destinations for each multicast source is not a
function of n; and (c) and the multicast capacity of a random
wireless ad hoc network is (Θ(1/n)), which is the broadcast
capacity of the network, when m ≥ Θ(n/(log n)).

Section V addresses the capacity of (n,m, k)-casting. We
show that Θ

( √
m

k
√

n log n

)
, Θ

(
1

k log n

)
, and Θ

(
1
n

)
are the

tight bounds for the three capacity regions of (n,m, k)-
casting, respectively. This result generalizes prior results on
the throughput capacity of ad hoc networks for unicasting,
multicasting and broadcasting. When m = k = Θ(1), the
resulting capacity equals the well-known capacity result for
multi-pair unicasting by Gupta and Kumar. For k = 1, this
constitutes the first capacity result for anycasting. Furthermore,
this is the first result for the capacity of “manycasting”
(1 < k < m) in wireless ad hoc networks, where k out of
m members of a communication group receive information

2Θ, Ω and O are the standard order bounds.
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from a source.
Section VI discusses several possible implications of our

new model. We show that the capacity of wireless ad hoc
networks for any type of information dissemination can be
derived with our unified approach using the (n,m, k)-cast
formulation. Our results on the (n,m, k)-cast capacity of a
random wireless network subsume the results from prior work
on the capacity of unicasting, multicasting, and broadcasting
in random wireless ad hoc networks. Furthermore, our mod-
eling framework opens up new areas of research related to
anycasting (routing to or from any one of the nodes in a
communication group) “manycasting” (routing to or from a
subset of the nodes in a communication group), and the effect
of route control signaling on the scaling properties of wireless
networks.

II. RELATED WORK

Many contributions have been made on the capacity of
wireless networks subject to unicasting, and due to space
limitations we can mention only a few of them. A number
of papers have extended the results by Gupta and Kumar.
Gupta and Kumar’s original work [1] showed a gap between
the upper and lower bounds on capacity under the physical
model. Franceschetti et al. [2] closed this gap using percolation
theory, and Zhang et al. extended this work to networks with
unrestricted bandwidth [3].

Several techniques have been developed aimed at improving
the capacity of wireless networks. It has also been shown that
changing physical layer assumptions such as using multiple
channels [6] or MIMO cooperation [7] can change the capacity
of wireless networks. Recently, Ozgur et al. [7] proposed a
hierarchical cooperation technique based on virtual MIMO to
achieve linear per source-destination capacity. Cooperation can
be extended to the simultaneous transmission and reception
at the various nodes in the network, which can result in
significant improvement in capacity [8]. El Gamal et al. [16]
characterized the fundamental throughput-delay tradeoff for
both static and mobile networks. We have shown [9] that using
multi-packet reception (MPR) at the receivers can increase the
order capacity of wireless networks.

Considerable prior work has focused on the capacity of
broadcasting and multicasting in wireless networks. Tavli [10]
was first to show that Θ

(
n−1

)
is a bound on the per-node

broadcast capacity of arbitrary networks. Zheng [11] derived
the broadcast capacity of power-constrained networks, together
with another quantity called ”information diffusion rate.” The
work by Keshavarz et al. [12] is perhaps the most general case
of computing broadcast capacity for any number of sources in
the network. Our work in this paper was inspired by some of
the contributions in this work.

To the best of our knowledge, there are only three prior con-
tributions on the multicast capacity of wireless networks [14],
[14], [15]. Jacquet and Rodolakis [14] proved that the scaling
of multicast capacity is decreased by a factor of O(

√
n) com-

pared to the unicast capacity result by Gupta and Kumar [1].
The work by Shakkottai et al [14] is an extension of the work

by Gupta and Kumar when there are nε multicast sources and
n1−ε destinations per flow for some ε > 0. The results from
this work are limited in scope, because of its constraints on
the number of sources and destinations. Li et al. [15] compute
the capacity of wireless ad hoc networks for unicast, multicast,
and broadcast applications. While these results are equivalent
to the capacity results we present for (n,m, m)-casting, it is
worth noting that our work was done concurrent with and
independent of the work in [15], our derivation of the capacity
of (n,m, m)-casting is different than this work, and the results
in this paper are more general.

III. NETWORK MODEL AND PRELIMINARIES

We assume a random wireless network with n nodes dis-
tributed uniformly in the network area. Our analysis is based
on dense networks, where the area of the network is a square
of unit value. Hence, in our model, as n goes to infinity,
the density of the network also goes to infinity. Our capacity
analysis is based on the protocol model for dense networks
introduced by Gupta and Kumar [1].

Definition 3.1: The Protocol Model: All nodes use a com-
mon transmission range r(n) for all their communication.
The network area is assumed to be a unit square area. Node
Xi can successfully transmit to node Xj if for any node
Xk, k 6= i, that transmits at the same time as Xi it is true
that |Xi −Xj | ≤ r(n) and |Xk −Xj | ≥ (1 + ∆)r(n).

The data rate for each transmitter-receiver pair is W
bits/second, which is a constant value and does not depend
on n. Given that W does not change the order capacity of the
network, we normalize its value to 1.

Definition 3.2: Connectivity criterium in dense networks
[1]: The transmission range r(n) in random dense networks
satisfies r(n) ≥ Θ

(√
log n/n

)
.

Definition 3.3: Feasible Throughput capacity of (n,m, k)-
casting: In a wireless ad hoc network of n nodes in which
each source node transmits its packets to k out of m des-
tinations, a throughput of λm,k(n) bits per second for each
node is feasible if there is a spatial and temporal scheme for
scheduling transmissions, such that by operating the network
in a multi-hop fashion and buffering at intermediate nodes
when awaiting transmission, every node can send λm,k(n) bits
per second on average to its k out of its m chosen destination
nodes. That is, there is a T < ∞ such that in every time
interval [(i− 1)T, iT ] every node can send Tλm,k(n) bits to
its corresponding destination node.

Definition 3.4: Order of throughput capacity: Cm,k(n) is
said to be of order Θ(f(n)) bits per second if there exist
deterministic positive constants c and c′ such that





lim
n→∞

Prob (Cm,k(n) = cf(n) is feasible) = 1

lim
n→∞

Prob (Cm,k(n) = c′f(n) is feasible) < 1.
(1)

Definition 3.5: Euclidean Minimum Spanning Tree
(EMST): Consider a connected undirected graph G = (V, E),
where V and E are sets of vertices and edges in the graph
G, respectively. The EMST of G is a spanning tree of G with
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the total minimum Euclidean distance between connected
vertices of this tree.

Definition 3.6: Independent Set (IS(r(n))): An IS(r(n)) of
a graph G is a set of vertices in G such that the distance
between any two elements of this set is greater than r(n).

Definition 3.7: Maximum Independent Set (MIS(r(n))):
The MIS(r(n)) of G is an IS(r(n)) such that, by adding any
vertex from G to this set, there is at least one edge shorter
than or equal to r(n).

We note that MIS(r(n)) is a unique and largest independent
set for a given graph. Finding such a set in a general graph G
is called the MIS problem and is an NP-hard problem [17].

Definition 3.8: Minimum Connected Dominating Set
(MCDS(r(n))): A dominating set (DS(r(n))) of a graph
G is defined as a set of nodes such that every node in the
network either belongs to this set or it is within a range
of r(n) of one of the elements of DS(r(n)). A Connected
Dominating Set (CDS(r(n))) is a dominating set such that
the subgraph induced by its nodes is connected. A Minimum
Connected Dominating Set (MCDS(r(n))) is a CDS of G with
the minimum number of nodes.

Definition 3.9: (n,m, k)-cast tree: An (n,m, k)-cast tree
is a minimum set of nodes that connect a source node of an
(n,m, k)-cast with all its intended m receivers, in order for
the source to send information to k of those receivers.

An (n,m, k)-cast tree is a function of transmission range
r(n). Therefore, the optimum m-cast tree that has the mini-
mum Euclidean distance is a function of r(n). For this reason,
changing the transmission range will change the optimum m-
cast tree.

For simplicity, we also denote by m-cast tree an (n,m, m)-
cast tree (i.e., when m = k).

Definition 3.10: Minimum Euclidean (n,m, k)-cast Tree
(MEMKT(r(n))): The MEMKT(r(n)) of an (n,m, k)-cast is
an (n,m, k)-cast tree in which the k destinations that receive
information from the source among the m receivers of the
(n,m, k)-cast have the minimum total Euclidean distance.
When k = m, we denote by minimum Euclidean m-cast tree
(MEMT(r(n))) an (n,m, m)-cast tree with a total minimum
Euclidean distance.

In the rest of this paper, ‖T‖ denotes the total Euclidean
distance of a tree T , and #T is used to denote the total number
of vertices (nodes) in a tree T , then #T denotes the total
average number of vertices (nodes) in a tree T .

To compute the (n,m, k)-cast capacity, we will use the total
Euclidean distance of MEMT and its relationship with EMST.
Steele [18] determined a tight bound for ‖EMST‖ for large
values of n, which we re-state in the following lemma.

Lemma 3.11: Let f(x) denote the node probability distri-
bution function of the network area. Then, for large values of
n and d > 1, the ‖EMST‖ is tight bounded as

‖EMST‖ = Θ
(

c(d)n
d−1

d

∫

Rd

f(x)
d−1

d dx

)
, (2)

where d is the dimension of the network. Note that both c(d)
and the integral are constants and not functions of n. When

d = 2, then ‖EMST‖ = Θ (
√

n).

IV. THE CAPACITY OF (n,m, m)-CASTING

In this section, we compute the capacity of (n,m, k)-
casting when k is set to m, which corresponds to the case of
multicasting, and also applies to broadcasting when m = n.

A. Upper Bound

Lemma 3.11 computes the average total Euclidean distance
for EMST. To compute the upper bound for (n,m, m)-casting,
we first demonstrate the relationship between #MEMT(r(n))
and ‖EMST‖.

Theorem 4.1: The average number of nodes in an
(n,m, m)-cast tree with transmission range r(n) has the
following lower bound:

#MEMT(r(n)) ≥
{

Θ
(√

m
(
r−1(n)

))
,m ≤ Θ

(
r−2(n)

)

Θ
(
r−2(n)

)
,m ≥ Θ

(
r−2(n)

)
(3)

Proof: From Eq. (2) and assuming that a network has m+
1 nodes, then ‖EMST‖ is equal to Θ(

√
m). If the transmission

range is arbitrarily large, then all the adjacent nodes in the
(n,m, m)-cast tree are connected in one hop. In this case,
#MEMT(r(n)) is equal to Θ(mb) where mb is the threshold
that makes this set a CDS(r(n)). Now, if the transmission
range is not large enough to connect any two adjacent nodes
in the (n,m, m)-cast tree in one hop, then there are some
nodes from the n nodes in the network that will be used to
create a connected (n,m, m)-cast tree. In this case, clearly
‖MEMT(r(n))‖ is greater than Θ(

√
m), which is derived by

connecting all the nodes directly to each other in an (n,m, m)-
cast tree (see Fig. 1). Under this condition, #MEMT(r(n)) is
at least Θ(

√
m/r(n)).

Now the question is what threshold value exists for m
between these two limits. This threshold is derived by com-
puting the number of destinations in an (n,m, m)-cast, mb,
such that the two limits are equal, i.e., Θ

(√
mb

r(n)

)
= Θ(mb).

This equality is true for mb = Θ
(

1
r2(n)

)
. This result implies

that, when m ≤ mb or m ≥ mb, the lower bound of

#MEMT(r(n)) is Θ
(√

m
r(n)

)
or Θ

(
1

r2(n)

)
, respectively.

Theorem 4.1 implies that, when m ≥ mb, the source and
all the destinations in the (n,m, m)-cast tree are connected
without any need to use extra nodes outside of the multicast
group. We will use Theorem 4.1 subsequently to prove the
upper bound of the (n,m, m)-cast throughput capacity.

Lemma 4.2: The per-node capacity of (n,m, m)-casting is
upper bounded by O

(
1
n × #MIS(∆r(n))

#MEMT(r(n))

)
.

Proof: MIS(∆r(n)) is the upper bound on the number
of simultaneous transmissions in the network. Suppose Xi

(with destination Xj) and Xk are two nodes transmitting
simultaneously. From the definition of the protocol model and
by utilizing the triangle inequality, we have

|Xk −Xi| ≥ |Xi −Xj | − |Xk −Xj | = ∆r(n). (4)
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( )r n
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( )r n£

( )r n£

Real Relay

Minimum Relay

MEMT

Real Routing Tree

Fig. 1. The direct line between any two adjacent nodes in an (n, m, m)-cast
tree is always equal or smaller than the total Euclidean distance in the tree
through multiple relays.

This result implies that the minimum distance between any two
simultaneous transmitters is ∆r(n). Therefore, the maximum
number of simultaneous transmissions in a network is upper
bounded by #MIS(∆r(n)).

We observe that #MEMT(r(n)) represents the total num-
ber of channel usage required to transmit information from
an (n,m, m)-cast source to all its destinations for a sin-
gle (n,m, m)-cast group. By definition, the total (n,m, m)-
cast capacity in the network is equal to nCm,m(n) =∑n

i=1 λi
m,m(n). To achieve a λi

m,m(n) throughput for all
n sources in the network, it is obvious that we require
nCm,m(n) × #MEMT(r(n)) ≤ #MIS(∆r(n)). The upper
bound on the per-node upper bound capacity for (n,m, m)-
casting can be derived directly from this last inequality, which
proves the lemma.

The following lemma states the upper bound of
#MIS(∆r(n)), which was first proven in [12].

Lemma 4.3: The average number of nodes in the maximum
independent set #MIS(∆r) has the following upper bound:

#MIS(∆r(n)) ≤ 1
π∆2r2(n)/16

=
16

π∆2

1
r2(n)

. (5)

Proof: From Eq. (4), it is clear that the minimum distance
between any two transmitters in a dense network is ∆r(n).
This minimum separation distance requires that each transmit-

ter covers an area of at least π
(

∆r(n)
2

)2

. Using this argument,
it is shown in [12] that the upper bound of #MIS(∆r(n)) is
given by Eq. (5).

We are now ready to derive an upper bound for Cm,m(n),
which is stated in the following theorem.

Theorem 4.4: The per-node upper bound on the throughput
capacity of (n,m, m)-casting is given by

Cm,m(n) =





O

(
1

nr(n)
√

m

)
,Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

O
(
n−1

)
, Θ

(
r−2(n)

) ≤ m ≤ n
(6)

The transmission range r(n) should satisfy the connectivity
criteria in the network, i.e., r(n) ≥ Θ

(√
log n/n

)
which

leads to

Cm,m(n) =





O

(
1√

nm log n

)
,Θ(1) ≤ m ≤ Θ

(
n

log n

)

O
(
n−1

)
, Θ

(
n

log n

)
≤ m ≤ n

(7)
Proof: The proof is immediate by combining Theorem

4.1 with Lemmas 4.2 and 4.3.

B. Lower Bound

To derive the achievable lower bound, we use a TDMA
scheme for random dense networks similar to the approach
used in [12], [19], [20].

We first divide the network area into square cells. Each
square cell has an area of r2(n)

2 which makes the diagonal
length of square equal to r(n) as shown in Fig. 2. Under
this condition, connectivity inside all cells is guaranteed and
all nodes inside a cell are within transmission range of each
other. We build a cell graph over the cells that are occupied
with at least one vertex (node). Two cells are connected if
there exist a pair of nodes, one in each cell, that are less than
or equal to r(n) distance apart. Because the whole network
is connected when r(n) ≥ Θ

(√
log n/n

)
, it follows that the

cell graph is connected.
To satisfy the protocol model, we should design cells in

groups such that simultaneous transmissions within each group
do not violate the protocol model for successful communica-
tion. Let L represent the minimum number of cell separations
in each group of cells that communicate simultaneously. Uti-
lizing the protocol model, L satisfies the following condition:

L =
⌈
1 +

r(n) + (1 + ∆)r(n)
r(n)/

√
2

⌉
= d1 +

√
2(2 + ∆)e (8)

If we divide time into L2 time slots and assign each time
slot to a single group of cells, interference is avoided and
the protocol model is satisfied. Fig. 2 represents one of these
groups with a cross sign inside those cells for L = 4.

We can derive an achievable capacity for (n,m, m)-casting
taking advantage of this cell arrangement and the following
property of the TDMA scheme with L parameter that we have
introduced.

Lemma 4.5: The capacity reduction caused by the TDMA
scheme is a constant factor and does not change the order
capacity of the network.

Proof: The TDMA scheme introduced above requires
cells to be divided into L2 groups, such that only nodes in
each group can transmit simultaneously. Eq. (8) demonstrates
that the upper bound of L is not a function of n and is only a
constant factor. Because the proposed TDMA scheme requires
L2 channel uses, it follows that this TDMA scheme reduces
the capacity by a constant factor.

The following lemma establishes the achievable lower
bound for the (n,m, m)-cast capacity as a function of
#MEMTC(r(n)), the total number of cells that contains all
the nodes in an (n,m, m)-cast group.
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( )r n

( )

2

r n

( )

2

r n
L ×

1

O
( )

2

r n

Fig. 2. Cell construction used to derive a lower bound on capacity

Lemma 4.6: The achievable lower bound of the (n,m, m)-
cast capacity is

Cm,m(n) = Ω

(
1

#MEMTC(r(n))
× 1

nr2(n)

)
. (9)

Proof: There are 1
(r(n)/

√
2)2

cells in the unit square

network area. From the definition of #MEMTC(r(n)) and
the fact that our TDMA scheme does not change the order
capacity (Lemma 4.5), it is clear that there are at most
#MEMTC(r(n)) interfering cells for any (n,m, m)-cast com-
munications. Therefore, at any given time we can have at least
Ω( 1

#MEMTC(r(n))

1
r2(n) ) simultaneous communications in the

network. Accordingly, the per-node lower bound capacity is
given by Ω( 1

#MEMTC(r(n))

1
nr2(n) ), which proves the lemma.

Given the above lemma, to express the lower bound of
Cm,m(n) as a function of network parameters, we need to
compute the upper bound of #MEMTC(r(n)), which we do
next.

Lemma 4.7: The average number of the cells that belongs
to an (n,m, m)-cast tree satisfy the following upper bound.

#MEMTC(r(n)) ≤ min
(

Θ
(√

m

r(n)

)
,Θ

(
1

r2(n)

))
(10)

Proof: Because the maximum number of cells in this
network is equal to Θ

(
1

r2(n)

)
, it is clear that one upper bound

for #MEMTC(r(n)) is this value. That is, #MEMTC(r(n))
cannot exceed the total number of cells in the network. On
the other hand, the total Euclidean distance of the (n,m, m)-
cast tree was shown earlier to be Θ(

√
m). Because r(n) is the

transmission range of the network, the maximum number of
cells for this (n,m, m)-cast tree must be at most Θ

(√
m

r(n)

)
,

i.e., #MEMTC(r(n)) ≤ Θ
(√

m
r(n)

)
. This upper bound can be

achieved only if every two adjacent nodes in the (n,m, m)-
cast tree belong to two different cells in the network. However,

in practice, it is possible that some adjacent nodes in the
(n,m, m)-cast tree are located in a single cell. Consequently,
this value is the upper bound. The actual upper bound clearly
is the minimum of these two extreme values in the network,
which is a function of the topology of the network and this
proves the lemma.

The achievable lower bound when the transmission range
is fixed to its minimum value for connectivity (i.e., r(n) =

Θ
(√

log n
n

)
) is given in the following theorem.

Theorem 4.8: The achievable lower bound of the
(n,m, m)-cast capacity is

Cm,m(n) =





Ω
(

1
nr(n)

√
m

)
,Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

Ω
(
n−1

)
, Θ

(
r−2(n)

) ≤ m ≤ n
(11)

When r(n) = Θ
(√

log n/n
)

, we can get

Cm,m(n) =





Ω
(

1√
n log n

√
m

)
, Θ(1) ≤ m ≤ Θ

(
n

log n

)

Ω
(

1
n

)
, Θ

(
n

log n

)
≤ m ≤ n

(12)
Proof: Combining Lemmas 4.6 and 4.7, we arrive this

theorem

Cm,m(n) = Ω

(
1

#MEMTC(r(n))
1

nr2(n)

)

= Ω
(

max
[(

1√
mnr(n)

)
,
(
n−1

)])
(13)

In order to compute the threshold for m to achieve either of
these capacities, we compute the values of m that make one
of these capacities larger than the other one.





(
1√

mnr(n)

)
≥ (

n−1
)

when m ≤ Θ
(
r−2(n)

)

(
n−1

) ≥
(

1√
mnr(n)

)
when m ≥ Θ

(
r−2(n)

)
,

(14)

Combining (14) and (13) proves the theorem. The sec-
ond equation of this theorem is derived using r(n) =
Θ

(√
log n/n

)
.

From theorems 4.8 and 4.4, we can provide a tight bound
for the (n,m, m)-cast capacity.

Theorem 4.9: The (n,m, m)-cast capacity is tightly
bounded as follows

Cm,m(n) =





Θ
(

1
nr(n)

√
m

)
,Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

Θ
(
n−1

)
, Θ

(
r−2(n)

) ≤ m ≤ n
(15)

When transmission range equals to the minimum one as
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Θ
(√

log n/n
)

, the tight bound is

Cm,m(n) =





Θ
(

1√
n log n

√
m

)
,Θ(1) ≤ m ≤ Θ

(
n

log n

)

Θ
(

1
n

)
,Θ

(
n

log n

)
≤ m ≤ n.

(16)

V. THE CAPACITY OF (n,m, k)-CASTING

This section provides the throughput capacity of (n,m, k)-
casting in random wireless networks. The proofs of many
theorems and lemmas for the case of (n,m, k)-cast capacity
are much the same as those presented for the (n,m, m)-cast
capacity in the previous section. Accordingly, we only include
those proofs that have important differences.

A. Upper Bound

As we did for the proof of Theorem 4.1, we will first
compute the lower bound on the number of nodes in a
MEMKT(r(n)) tree.

Theorem 5.1: The average number of nodes in
MEMKT(r(n)) has the following lower bound as a function
of the transmission range r(n).

#MEMKT(r(n)) ≥





Θ
(

k√
mr(n)

)
,m ≤ Θ

(
1

r2(n)

)

Θ(k) ,m ≥ Θ
(

1
r2(n)

)
≥ k

Θ
(

1
r2(n)

)
,m ≥ k ≥ Θ

(
1

r2(n)

)

(17)
Proof: From Lemma 3.11, if we select only m destina-

tions of n nodes to construct an EMST, then the total average
Euclidean distance of the EMST is at least Θ(

√
m). Given

that there are m destinations for the tree, then the average
Euclidean distance between any two nodes for this tree is√

m
m . Because the assignment of source-destinations groups

is completely random, we can say that, on average, the total
Euclidean distance for k destinations is equal to

√
mk
m . Using a

similar argument to that used in the proof of Theorem 4.1, we
can say that when the transmission range is not a very large
value, then the number of nodes in such tree is lower bounded
by
√

m k
mr(n) . This is the top lower bound in Eq. (17). When

the transmission range is very long, all the m destinations
in the (n,m, k)-cast tree are connected and given that we
only need the closest k nodes in the set, then the number
of nodes is Θ(k). This is the second lower bound in Eq. (17).
Once k ≥ Θ

(
1

r2(n)

)
, then the transmission range is so large

that we can use Θ
(

1
r2(n)

)
as the lower bound, which is

the last lower bound in Eq. (17). In a similar fashion to the
proof of Theorem 4.1, the threshold for r(n) is derived when
the first lower bound in Eq. (17) is equal to the number of
nodes in broadcast when all the nodes are reachable in one
hop, i.e., #MEMKT(r(n)) = k. Therefore, it is true that

Θ
( √

m
m k

r(n)

)
= Θ(k), and the solution to this last equality is

mb = Θ
(

1
r2(n)

)
. This means that, when m ≤ mb or m ≥ mb,

the lower bound of #MEMKT(r(n)) is Θ
(

k√
mr(n)

)
or Θ(k),

respectively. This proves the lemma.
Theorem 5.1 implies that, when m ≥ mb, all of the source

and destinations are connected by themselves without any need
to additional nodes in the network.

Lemma 5.2: The upper bound of the per-node (n, m, k)-cast
capacity is O

(
1
n × #MIS(∆r(n))

#MEMKT(r(n))

)
.

Proof: The proof is similar to the proof of lemma 4.2,
with the only difference that we must use #MEMKT(r(n))
instead of #MEMT(r(n)).

Theorem 5.3: The upper bound on the per-node (n,m, k)-
cast capacity is

Cm,k(n) ≤





O
(√

m(nkr(n))−1
)
, Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

O
((

nkr2(n)
)−1

)
, k ≤ Θ

(
r−2(n)

) ≤ m ≤ n

O
(
n−1

)
, Θ

(
r−2(n)

) ≤ k ≤ m ≤ n
(18)

We omit the proof of this theorem, because it is essentially
the same as the proof of Theorem 4.4. The following section
describes a design for achieving a lower bound that matches
our upper bound.

B. Lower Bound
We obtain an achievable lower bound following the same

approach we presented in Section IV-B.
Lemma 5.4: The achievable lower bound of the (n,m, k)-

cast capacity is given by

Cm,k(n) = Ω

(
1

#MEMKTC(r(n))
× 1

nr2(n)

)
, (19)

where #MEMKTC(r(n)) is the mean number of nodes in
MEMKTC(r(n)).

The proof is essentially the same as for Lemma 4.6, and we
omit it for brevity.

Lemma 5.5: The average number of cells in
MEMKT(r(n)) tree, with high probability, is upper bounded
as follows:

#MEMKTC(r(n)) =





O
(
k(
√

mr(n))−1
)
, m ≤ Θ

(
r−2(n)

)

O (k) , k ≤ Θ
(
r−2(n)

) ≤ m ≤ n

O
(
r−2(n)

)
, Θ

(
r−2(n)

) ≤ k ≤ m
(20)

The proof of this lemma is very similar to the proof of lemma
4.7 in the previous section, and is therefore omitted.

Combining these results, we can compute the achievable
lower bound capacity when the transmission range is set to
r(n) = Θ

(√
log n/n

)
.

Theorem 5.6: The achievable lower bound of the (n,m, k)-
cast capacity is

Cm,k(n) =





Ω
(√

m(nkr(n))−1
)
, Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

Ω
((

nkr2(n)
)−1

)
, k ≤ Θ

(
r−2(n)

) ≤ m ≤ n

Ω
(
n−1

)
, Θ

(
r−2(n)

) ≤ k ≤ m ≤ n
(21)
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Proof: From lemmas 5.4 and 5.5, we can complete the
proof which is similar as Theorem 4.8.

Combining theorems 5.6 and 5.3, a tight bound for the
capacity of (n,m, k)-cast can be derived.

Theorem 5.7: The capacity of (n,m, k)-cast in a random
wireless network is

Cm,k(n) =





Θ
(√

m(nkr(n))−1
)
, Θ(1) ≤ m ≤ Θ

(
r−2(n)

)

Θ
((

nkr2(n)
)−1

)
, k ≤ Θ

(
r−2(n)

) ≤ m ≤ n

Θ
(
n−1

)
, Θ

(
r−2(n)

) ≤ k ≤ m ≤ n
(22)

When r(n) = Θ(
√

log n/n),

Cm,k(n) =





Θ
( √

m

k
√

n log n

)
for Θ(1) ≤ m ≤ Θ

(
n

log n

)

Θ
(

1
k log n

)
for k < Θ

(
n

log n

)
≤ m ≤ n

Θ
(

1
n

)
for Θ

(
n

log n

)
≤ k < m ≤ n

(23)
Note that the thresholds for different values for m and k

provide various capacities for (n,m, k)-casting.

VI. DISCUSSION OF RESULTS AND THEIR IMPLICATIONS

There is much valuable insight to be gained from mod-
eling the capacity of unicasting, multicasting, broadcasting
and anycasting using the same framework. Our (n,m, k)-cast
framework allows us to analyze the throughput capacity of
wireless networks as a function of the number of receivers
of a communication group, which can set from 1 up to the
number of nodes in the network, as well as a function of
the transmission range. Accordingly, the results obtained in
all prior work can be derived from our model by selecting
the appropriate values for r(n) and m in the capacity results
obtained in Sections IV and V. For example when m = 1
and r(n) = Θ

(√
log n/n

)
, the result by Gupta and Kumar

for unicast capacity follows from Eq. (16). In addition, our
framework also provides new insight on the capacity of
information dissemination techniques that are becoming more
prevalent with the availability of in-network storage, namely
anycasting, and allows us to reason about the nature that route
signaling should be to render more scalable wireless networks.
In the following, we first address a number of implications of
our results as they relate to the capacity of multicasting and
broadcasting, and then address the more general case of the
capacity of (n,m, k)-cast.

A. Cm,m(n) as a Function of Group Size (m)

Fig. 3 shows the throughput capacity of a wireless network
obtained from Eq. (16) as a function of the number of des-
tinations of each source node. As the number of destinations
per source m is varied from 1 to n, the capacity of (n,m, m)-
cast becomes that of unicast, multicast, and broadcast. The
figure clearly shows that there are two threshold values for m
(denoted by mu and mb) that are critical to the throughput
capacity of (n,m, m)-cast.

m

, ( )m m
C n

O

log

n

n

æ ö
Qç ÷
è ø

1

logn n

æ ö
Qç ÷ç ÷
è ø

1

n

æ öQç ÷
è ø

1 1

logm n n

æ ö
Qç ÷ç ÷
è ø

( )nQ( )1Q

1

n

æ öQç ÷
è ø

1

logn n

æ ö
Qç ÷ç ÷
è ø

Multicast

Broadcast

Unicast

2

1

( )r n

æ ö
Qç ÷
è ø

1

( )nr n m

æ ö
Qç ÷
è ø

1

( )nr n

æ ö
Qç ÷
è ø

Fig. 3. Order throughput capacity as a function of m

First, if the number of destinations m is not a function
of n, then the order of capacity does not change. More
explicitly, if m varies from 1 to mu = Θ(1), then the capacity
of the network is Θ

(
1√

n log n

)
, which is the well known

results computed originally by Gupta and Kumar for multiple
unicasts [1]. This result implies that the order capacity for both
unicast and multicast with limited number of destinations is
the same! This is very relevant for real networks, where the
constituency of any given multicast group is much smaller
than the total number of nodes, and is independent of the size
of the network. The main reason for this result is the fact
that, when the number of destinations is constant, the order of
total Euclidean distance of multicast tree does not change.
Consequently, the order of channel uses for the multicast
tree which is inversely proportional to the network capacity
does not change. For this reason, the order capacity is the
same Θ

(
1√

n log n

)
for unicast and multicast whose number

of destinations is order Θ(1).
The second threshold for the values of m is mb =

Θ(n/ log n). If m ≥ mb, then the capacity of the wireless ad
hoc network converges to the broadcast capacity, regardless
of the number of destinations in the network, as long as this
number is greater than mb. This is the lowest capacity that can
be attained by the network utilizing multihop communications.

When mu ≤ m ≤ mb, then the capacity of the network
decreases as the number of destinations per communication
group increases (see fig. 3). Note that the decrease in capacity
is by a factor of Θ(

√
m) instead of Θ(m). The reason behind

this behavior of the network capacity is the fact that the
destinations in a plane are spread within a total Euclidean
distance of Θ(

√
m) from the source in the multicast tree.

Because we use multihop communication to reach all the
destinations, it follows that the number of hops is proportional
to this total Euclidean distance Θ(

√
m) and therefore, because

of channel reuse, the capacity decreases inversely to this value.
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B. Cm,m(n) as a Function of Transmission Range (r(n))

Eq. (6) shows that the (n,m, m)-cast order capacity of
wireless ad hoc networks decreases when the transmission
range r(n) increases and receivers cannot decode more than
one packet at a time. This is equivalent to the well-known
fact that multihop communications is the optimal technique
for interference-dominant wireless ad hoc networks.

From Definition 3.2, a minimum transmission range is
needed to maintain connectivity. Based on Eq. (6) and the
second line of Eq. (11), it follows that increasing transmission
range will decrease the capacity. Therefore, the optimum
choice for transmission range is the minimum value such
that the network remains connected. The reason behind this
behavior of the network is the negative effect of interference.
By increasing the transmission range in the network, we
actually increase the interference to more adjacent nodes and
force them to be silent during a communication session.
Clearly, the capacity is maximized if we maximize the num-
ber of simultaneous transmissions in the network. Ideally, if
connectivity for all the nodes were not a concern, then one
could reduce the transmission range further than the minimum
value. This observation suggests that, if we use power control
for those nodes that require longer range for connection, one
can potentially obtain higher capacities in the network (e.g.,
see [21]).

The results we have derived are based on the assumption
that nodes try to avoid interference. However, a different
emerging viewpoint in wireless ad hoc network is based on
embracing interference [8], [9]. We have shown [9] that with
this new paradigm, which we call many-to-many communi-
cation [8], increasing the transmission range actually does
not decrease the capacity of wireless ad hoc networks. This
approach requires nodes to have more complex receivers in or-
der to be able to decode multiple transmitters simultaneously.
Determining Cm,m(n) under many-to-many communication is
an open problem.

C. Cm,k(n) as a Function of Group Size (m)

Figure 4 shows Cm,k(n) as a function of m. As it was
the case for Cm,m(n), if m varies from 1 to mu = Θ(1),
the capacity of the network does not change and equals
Θ

(
1√

n log n

)
. For values of m larger than mu, the (n,m, k)-

cast order capacity can increase or decrease depending on the
value of k. The smallest order capacity corresponds to the
case when k = m, i.e., multicasting (m < n) or broadcasting
(m = n), and the largest order capacity is attained for
anycasting (k = 1). The shaded area in the figure shows the
achievable capacity for manycasting (1 < k < m) for different
values of m and k.

We observe that, regardless of the value of k, the ca-
pacity of wireless ad hoc networks becomes constant when
m ≥ Θ(n/ log n) and an increase in the value of m does not
change the transport capacity. This result can be understood
by the fact that, when the number of destinations reaches
Θ(n/ log n), this set becomes the connected dominating set

m
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n n
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Fig. 4. Unifying view of throughput capacity

(CDS(r(n))) of the entire network as long as the transmission
range r(n) is chosen such that the network is a connected
network. Equivalently, if a broadcast is made to the entire
network, the capacity does not change because all the nodes
in the network are either inside this set or within one hop from
an element in this set.

We note that the capacity of anycast or manycast is greater
than the capacity of unicast if k < Θ(

√
m), even if each node

requires to transmit its packets to more than one destination.
This result shows that as long as k < Θ(

√
m), the total

number of hops required to transmit packet to k destinations is
always, on average, less than sending the packet from the same
source to a single randomly selected destination in unicast
communications. Equivalently, the total Euclidean distance
for a manycast tree is on average less than the Euclidean
distance between any randomly selected source and destination
in unicast communication. However, this Euclidean distances
become the same, on average, when k = Θ (

√
m). As it can

be predicted from this figure, the total Euclidean distance in
a manycast tree increases as k increase and for k > Θ(

√
m),

the capacity of manycast becomes less than unicast because
of the total Euclidean distance in the manycast tree.

D. New Implications on Scaling Laws

An important observation to be made regarding the behavior
of Cm,k(n) as a function of m is that, in a real wireless net-
work, data dissemination occurs together with route signaling.
The issue is that, in practice, all unicast and multicast routing
protocols involve some form of broadcasting (e.g., flooding
of link-state updates, propagation of route requests or join
requests, or diffusion of distance updates). Hence, the scaling
properties of an ad hoc wireless network is really determined
by the dominating form of information dissemination, which
may occur for control signaling or data. Accordingly, in
order for future wireless ad hoc networks to have the best
possible scaling properties, it is clear from our results that the
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number of nodes impacted by any one route signaling packet
on the average should be bounded by Θ(1). One possible
approach for scale-free route signaling is to ensure that only
those nodes who actually have an interest in the routes for
which a signaling packet is needed receive the signaling
packet. Clearly, this poses a challenge, because no distributed
oracle exists with instantaneous knowledge of what control
information each node needs. However, such an interest-driven
signaling can be an important ingredient for scalable wireless
ad hoc networks.

Another result derived from the behavior of Cm,k(n) as
a function of m is that anycasting and manycasting render
a higher order capacity than unicasting when the number of
destinations in the communication group of a source that actu-
ally receive the information from the source is k < Θ(

√
m).

This indicates that capacity increase can be attained by an
appropriate use of in-network storage and information dissem-
ination from the random site(s) of a communication group to
the group source (the node with interest in the information),
rather than from pre-defined origins hosting the content. If
the communication group is the entire network (m = n),
information flows from the closest neighbor(s) to each node
and the maximum capacity gain is attained. If the group size
is independent of the size of the network (m = Θ(1)), the
order capacity is the same as for unicasting.

VII. CONCLUSION

We introduced a unifying framework for the modeling of the
order capacity of wireless networks subject to different types
of information dissemination. To do so, we defined (n,m, k)-
casting as a generalization of all forms of one-to-one, one-to-
many and many-to-many information dissemination in wire-
less networks. Our modeling framework provides a unique
perspective on the understanding of the capacity of wireless
ad hoc networks. Our approach unifies existing results on the
order capacity of wireless networks subject to unicasting [1],
multicasting, or broadcasting [10]–[12], provides new capacity
results for anycasting and manycasting, and helps to develop
new insight on the role of route signaling and in-network
storage on the capacity of wireless ad hoc networks.

We showed that the capacity of wireless ad hoc networks
depends greatly on the number of destinations m. We in-
troduced two important thresholds, namely mu = Θ(1) and
mb = Θ

(
n

log n

)
, and used them to characterize the capacity

of a wireless ad hoc network when each source communicates
with a receiver group of size m. When m ≤ mu, the capacity
of a wireless network is similar to its unicast capacity; when
mu < m < mb, then the network capacity is similar to its
multicast capacity; and when m ≥ mb, the capacity of the
network is equivalent to its broadcast capacity. We also showed
that anycasting and manycasting provide higher order capacity
than unicasting when k < Θ(

√
m).
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