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Abstract—In this paper, we study the contribution of network
coding (NC) in improving the multicast capacity of random
wireless ad hoc networks when nodes are endowed with multi-
packet transmission (MPT) and multi-packet reception (MPR)
capabilities. We show that a per session throughput capacity of
Θ

(
nT 3(n)

)
, where n is the total number of nodes and T (n) is

the communication range, can be achieved as a tight bound when
each session contains a constant number of sinks. Surprisingly,
an identical order capacity can be achieved when nodes have only
MPR and MPT capabilities. This result proves that NC does not
contribute to the order capacity of multicast traffic in wireless ad
hoc networks when MPR and MPT are used in the network. The
result is in sharp contrast to the general belief (conjecture) that
NC improves the order capacity of multicast. Furthermore, if the
communication range is selected to guarantee the connectivity in
the network, i.e., T (n) ≥ Θ

(√
log n/n

)
, then the combination

of MPR and MPT achieves a throughput capacity of Θ

(
log

3
2 n√
n

)

which provides an order capacity gain of Θ
(
log2 n

)
compared

to the point-to-point multicast capacity with the same number
of destinations.

I. INTRODUCTION

The seminal work by Gupta and Kumar [1] has sparked a
growing amount of interest in understanding the fundamental
capacity limits of wireless ad hoc networks. Several techniques
[2]–[4] have been developed with the objective of improving
the capacity of wireless ad hoc networks. Network coding
(NC), which was originally proposed by Ahlswede et al. in
[5], is one such technique. Unlike traditional store-and-forward
routing, network coding encodes the messages received at
intermediate nodes, prior to forwarding them to subsequent
next-hop neighbors. Ahlswede et al. [5] showed that network
coding can achieve a multicast flow equal to the min-cut
for a single source and under the assumptions of a directed
graph. This and other work in NC [6], [7] has motivated
a large number of researchers to investigate the impact of
NC in increasing the throughput capacity of wireless ad hoc
networks. However, Liu et al. [8] recently showed that NC
does not increase the order of the throughput capacity for
multi-pair unicast traffic. Nevertheless, a number of efforts
(analog network coding [9], physical network coding [10])
have continued the quest for improving the multicast capacity
of ad-hoc networks by using NC. Despite the claims of
throughput improvement by such studies, the impact of NC
on the multicast scaling law has remained uncharacterized.

Promising approaches [9], [10] implicitly assume the com-
bination of NC with Multi-packet Transmission (MPT) and
Multi-packet Reception (MPR) [11]–[13] (i.e., the ability to
transceive successfully multiple concurrent transmissions by
employing physical-layer interference cancelation techniques).
MPR has been shown to increase the capacity regions of ad
hoc networks [14], and very recently Garcia-Luna-Aceves et
al. [15] have shown that the order capacity in wireless ad
hoc networks subject to multi-pair unicast traffic is increased
with MPR. These prior efforts raise three important following
questions: (a) What is the multicast throughput order achieved
by the combination of NC with MPT and MPR? (b) Does this
combination provide us with an order gain over traditional
techniques based on routing and point-to-point communica-
tion? (c) If yes, what exactly leads to this gain? Is NC
necessary or does the combination of MPT and MPR suffice?

In this work, we address the above three questions. The
answers can be summarized by our main results:
• When each multicast group consists of a constant number

of sinks, the combination of NC, MPT and MPR provides
a per session throughput capacity of Θ(nT 3(n)), where
T (n) is the communication range.

• This scaling law represents an order gain of Θ(n2T 4(n))
over a combination of routing and single packet trans-
mission/reception.

• The combination of only MPT and MPR is sufficient
to achieve a per-session multicast throughput order of
Θ(nT 3(n)). Consequently, NC does not contribute to the
multicast capacity when MPR and MPT are used in the
network!

The remainder of this paper is organized as follows. In
Section II, we give an overview of capacity analysis for NC,
MPT, MPR, and other existing techniques. In Section III, we
introduce the models we used. In Section IV and V, we give
our main results with MPT and MPR when network coding
is not used and used respectively. We conclude our paper in
Section VI.

II. LITERATURE REVIEWS

Gupta and Kumar in their seminal paper [1] proved that the
throughput capacity in wireless ad hoc network is not scalable.
Subsequently, many researchers have focused on identifying
techniques that could alter this conclusion. Recently, Ozgur et



al. [2] proposed a hierarchical cooperation technique based
on virtual MIMO to achieve linear per source-destination
capacity. Cooperation can be extended to the simultaneous
transmission and reception at the various nodes in the network,
which is called many-to-many communication and can result
in significant improvement in capacity [3].

Since the original work by Ahlswede et al. [5], most of the
research on network coding has focused on directed networks,
where each communication link has a fixed direction. Li and
Li [16] were the first to study the benefits of network coding
in undirected networks, where each communication link is
bidirectional. Their result [16] shows that, for a single unicast
or broadcast session, there are no improvement with respect
to throughput due to network coding. In the case of a single
multicast session, such an improvement is bounded by a factor
of two. Meanwhile, [11]–[13] studied the throughput capacity
of NC in wireless ad hoc networks. However [11]–[13] employ
network models that are fundamentally inconsistent with the
more commonly accepted assumptions of ad-hoc networks
[1]. Specifically, the model constraints of [11]–[13], [16], [17]
differ as follows: All the prior works assume a single source
for unicast, multicast or even broadcast. Aly et al. [12] and
Kong et al. [13] differentiate the total nodes into source set,
relay set and destination set. They do not allow all of the
nodes to concurrently serve as sources, relays or destinations,
as allowed in the work by Gupta and Kumar [1]. An even
bigger limitation of these results is that they do not consider
the impact of interference in wireless ad hoc networks.

In the absence of interference, the communication scenario
equates an ideal case where a node can simultaneously trans-
mit and receive from multiple nodes. Interference cancelation
techniques such as MPT and MPR indeed enable nodes with
the ability of multi-point communication within a communi-
cation range of T (n). Thus, the model assumptions in [11]–
[13] at the very least assume that nodes are capable of MPT
and MPR. Similarly, works such as Physical-Layer Network
Coding (PNC) [10] and Analog Network Coding [9] also
implicitly assume the ability of MPT and MPR.

III. NETWORK MODEL, DEFINITIONS, AND
PRELIMINARIES

We assume a random wireless ad hoc network with n
nodes distributed uniformly in a unit-square network area. Our
capacity analysis is based on the protocol model for dense
networks, introduced by Gupta and Kumar [1]. The case of
what we call point-to-point communication corresponds to the
original protocol model.

Definition 3.1: The Protocol Model of Point-to-Point Com-
munication: All nodes use a common transmission range r(n)
for all their communication. Node Xi can successfully transmit
to node Xj if for any node Xk, k 6= i, that transmits at
the same time as Xi it is true that |Xi − Xj | ≤ r(n) and
|Xk −Xj | ≥ (1 + ∆)r(n).

We make the following extensions to account for MPT and
MPR capabilities at the transmitters and receivers, respectively.
In wireless ad hoc networks with MPT (MPR) capability,

any transmitter (receiver) node can transmit (receive) different
information simultaneously to (from) multiple nodes within
the circle whose radius is T (n) [15]. We further assume that
nodes cannot transmit and receive at the same time, which is
equivalent to half-duplex communications [1]. From system
point of view, MPT and MPR are dual if we consider the
source and destination duality.

Definition 3.2: Feasible throughput capacity
In a wireless ad hoc network of n nodes where each source
transmits its packets to m destinations, a throughput of Cm(n)
bits per second for each node is feasible if there is a spatial
and temporal scheme for scheduling transmissions, such that,
by operating the network in a multi-hop fashion and buffering
at intermediate nodes when awaiting transmission, every node
can send Cm(n) bits per second on average to its m chosen
destination nodes. That is, there is a T < ∞ such that in every
time interval [(i− 1)T, iT ] every node can send TCm(n) bits
to its corresponding destination nodes.

Definition 3.3: Euclidean Minimum Spanning Tree (EMST)
Consider a connected undirected graph G = (V, E), where
V and E are sets of vertices and edges in the graph G,
respectively. The EMST of G is a spanning tree of G with
the minimum sum of Euclidean distances between connected
vertices of this tree.

Definition 3.4: Minimum Euclidean Multicast Tree
(MEMT (T (n))): The MEMT(T (n)) is a multicast tree in
which the m destinations receive information from the source
and this multicast tree has the minimum total Euclidean
distance.

Definition 3.5: Minimum Area Multicast Tree
(MAMT (T (n))): The MAMT(T (n)) in a multicast tree with
m destinations for each source is a multicast tree that has
minimum total area. Area of a multicast tree is defined as the
total area covered by circles centered around each source or
relay with radius of T (n) (see Fig. 1).
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Fig. 1. Area Coverage By One Multicast Tree

Note that EMST and MEMT are spanning trees which
includes only source and destinations, while MAMT is related
to a real routing tree which includes relays.

Definition 3.6: Total Active Area (TAA (∆, T (n))):
The TAA(∆, T (n)) is the total area of the network mul-
tiplied by the average maximum number of simultaneous



transmissions and receptions inside a communication region
of Θ(T 2(n)).

It can be shown that this value has an upper bound of
O(1), O(nT 2(n)) and O(n2T 4(n)) for point-to-point, MPR
(or MPT) and MPR combined with MPT respectively.

In the rest of this paper, ‖T‖ denotes the total Euclidean
distance of a tree T ; #T is used to denote the total number
of vertices (nodes) in a tree T ; S(T ) denotes the area of tree
T covered; and ‖T‖ is used for the statistical average of the
total Euclidean distance of a tree.

To compute the multicast capacity, we use the relationship
between MAMT and EMST. Steele [18] determined a tight
bound for ‖EMST‖ in the following lemma.

Lemma 3.7: Let f(x) denote the node probability distribu-
tion function in the network area. Then, for large values of m
and d > 1, the ‖EMST‖ is tight bounded as

‖EMST‖ = Θ
(

c(d)m
d−1

d

∫

Rd

f(x)
d−1

d dx

)
, (1)

where d is the dimension of the network. Note that both c(d)
and the integral are constant values and not functions of m.
When d = 2, then ‖EMST‖ = Θ (

√
m).

Given that the distribution of nodes in a random network is
uniform, if there are n nodes in a unit square, then the density
of nodes equals n. Hence, if |S| denotes the area of space
region S, the expected number of the nodes, E(NS), in this
area is given by E(NS) = n|S|. Let Nj be a random variable
defining the number of nodes in Sj . Then, for the family of
variables Nj , we have the following standard results known
as the Chernoff bounds [19]:

Lemma 3.8: Chernoff bound
For any 0 < δ < 1, we have

P [|Nj − n|Sj || > δn|Sj |] < e−θn|Sj |. (2)

Therefore, for any θ > 0, there exist constants such that
deviations from the mean by more than these constants occur
with probability approaching zero as n →∞. It follows that,
w.h.p., we can get a very sharp concentration on the number
of nodes in an area, so we can find the achievable lower bound
w.h.p., provided that the upper bound (mean) is given. In the
following sections, we first derive the upper bound, and then
use the Chernoff bound to prove the achievable lower bound.

In [5] it was proved that the max-flow min-cut is equal to
multicast capacity of a directed graph with single source. The
directed graph model is more applicable for wired networks.
However, in this work we wish to study the utility of NC in a
wireless environment where links are bidirectional [11], [12].

In a single-source network, the cut capacity is equal to
the maximum flow. Thus [12] provides an upper bound on
the multicast capacity of a network with single source and
NC+MPT+MPR capability. However, in [11]–[13], the source,
relays and destinations are strictly different and information
can not be transmitted directly towards the destinations. These
two assumptions will be eventually relaxed in this paper.

IV. THE THROUGHPUT CAPACITY WITH MPT AND MPR

We now analyze the scaling laws in random geometric
graphs with MPT and MPR abilities. Wang et al. [20] proved
the unifying capacity with point-to-point communication,
which resolves the general multicast case with m destinations
for each source being a function of n. Here, we use a similar
approach to prove the capacity with MPT and MPR when m
is not a function of n but a constant.

A. Upper Bound

The following Lemma provides an upper bound for the
per-session capacity as a function of TAA(∆, T (n)) and
MAMT (T (n)). Essentially, S (MAMT(T (n))) equals the
minimum area consumed to multicast a packet to m destina-
tions (see Fig. 1), and TAA(∆, T (n)) represents the maximum
area which can be supported when MPT and MPR are used.

Lemma 4.1: In random dense wireless ad hoc networks, the
per-node throughput capacity of multicast with MPT and MPR
is given by O

(
1
n × TAA(∆,T (n))

S(MAMT(T (n)))

)
.

Proof: With MPT and MPR, we observe that
S (MAMT(T (n))) represents the total area required to
transmit information from a multicast source to all its m
destinations. The ratio between average total active area,
TAA(∆, T (n)), and S (MAMT(T (n))) represents the average
number of simultaneous multicast communications that can
occur in the network. Normalizing this ratio by n provides
per-node capacity.

Lemma 4.1 provides the upper bound for the multicast
throughput capacity with MPT and MPR as a function of
S (MAMT(T (n))) and TAA(∆, T (n)). In order to compute
the upper bound, we derive the upper bound of TAA(∆, T (n))
and the lower bound of S (MAMT(T (n))). Combining these
results provides an upper bound for the multicast throughput
capacity with MPT and MPR.

Lemma 4.2: The average area of a multicast tree with
transmission range T (n), S (MAMT(T (n))) is lower bounded
by Ω(T (n)), when m is a constant value.

Proof: From [21], it can be deduced
that S (MAMT(T (n))) is lower bounded as
Ω

(
‖EMST‖ × T (n)

)
. Even for the case of the minimum

value for T (n) to assure connectivity, this upper bound is
guaranteed for constant values of m. Lemma 3.7 states that
‖EMST‖ = Θ(

√
m) = Θ(1). The proof follows immediately.

Lemma 4.3: The average total active area, TAA(∆, T (n)),
has the following upper bound in networks with MPT and
MPR.

TAA(∆, T (n)) = O
(
n2T 4(n)

)
(3)

Proof: As discussed earlier, the TAA(∆, T (n)) for point-
to-point communication is equal to 1 since for each circle
of radius T (n), there is only a single pair of transmitter-
receiver nodes (see Fig. 2). For the case of MPR and MPT, the
number of nodes in a circle of radius T (n) is upper bounded
as O(nT 2(n)). This is also upper bound for the number of



transmitters or receivers in this region. The upper bound for
TAA(∆, T (n)) is achieved when the maximum number of
transmitter and receivers are employed in this circle. Figure
2 demonstrates an example that can achieve this upper bound
simultaneously for transmitters and receivers. Let a circle of
radius T (n)

2 located at the center of another circle of radius
T (n). Note that with this construction, any two nodes inside
the small circle are connected. If we randomly assign half of
the nodes inside the smaller circle as transmitters and the other
half as receiver nodes, then the average number of transmitters
and receivers in this circle are proportional to Θ(nT 2(n)).
Given the fact that this value also is the maximum possible
number of transmitter and receiver nodes, the result follows
immediately.

( )T n

transmitter

receiver

( ) / 2T n

Point to point communication MPT and MPR

Fig. 2. Upper Bound of Total Available Area Based On Protocol Model

Combining Lemmas 4.1, 4.2 and 4.3, we can compute the
upper bound for multicast capacity of MPT and MPR.

Theorem 4.4: In wireless ad hoc networks with MPT and
MPR, the upper bound on the per-node throughput capacity
of multicast with constant number of destinations is

Cm(n) = O
(
nT 3(n)

)
(4)

B. Lower Bound
To derive an achievable lower bound, we use a TDMA

scheme for random dense wireless ad hoc networks similar
to the approach used in [22], [23].

We first divide the network area into square cells. Each
square cell has an area of T 2(n)/2, which makes the diagonal
length of square equal to T (n), as shown in Fig. 3. Under this
condition, connectivity inside all cells is guaranteed and all
nodes inside a cell are within communication range of each
other. We build a cell graph over the cells that are occupied
with at least one vertex (node). Two cells are connected if
there exist a pair of nodes, one in each cell, that are less than
or equal to T (n) distance apart. Because the whole network
is connected when T (n) = r(n) ≥ Θ

(√
log n/n

)
, it follows

that the cell graph is connected [22], [23].
To satisfy the MPT and MPR protocol model, we organize

cells in groups so that simultaneous transmissions within
each group does not violate the conditions for successful
communication in the MPT and MPR protocol model. Let
L represent the minimum number of cell separations in each
group of cells that communicate simultaneously. Utilizing the
protocol model, L satisfies the following condition:

L =
⌈
1 +

T (n) + (1 + ∆)T (n)
T (n)/

√
2

⌉
= d1 +

√
2(2 + ∆)e. (5)
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Fig. 3. Cell construction used to derive a lower bound on capacity

If we divide time into L2 time slots and assign each time
slot to a single group of cells, interference is avoided and
the protocol model is satisfied. The separation example can
be shown for the upper two receiver circles in Fig. 3. For
the MPT and MPR protocol model, the distance between
two adjacent receiving nodes is (2 + ∆)T (n). Because this
distance is smaller than (L − 1)T (n), this organization of
cells guarantees that the MPT and MPR protocol model is
satisfied. Fig. 3 represents one of these groups with a cross
sign inside those cells for L = 4. We can derive an achievable
multicast capacity for MPT and MPR by taking advantage
of this cell arrangement and TDMA scheme. The capacity
reduction caused by the TDMA scheme is a constant factor
and does not change the order capacity of the network.

Next our objective is to find an achievable lower bound
using the Chernoff bound, such that the distribution of the
number of edges in this unit space is sharply concentrated
around its mean, and hence the actual number of simultaneous
transmissions occurring in the unit space in a randomly chosen
network is indeed Θ(n2T 2(n)) w.h.p..

Lemma 4.5: The circular area of radius T (n) corresponding
to the transceiver range of any node j in the cross area in Fig. 3
contains Θ(nT 2(n)) nodes w.h.p., and is uniformly distributed
for all values of j, 1 ≤ j ≤ 1

(LT (n)/
√

2)2
.

Proof: The statement of this lemma can be expressed as

lim
n→∞

P




1
(LT (n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)


 = 1, (6)

where Nj and E (Nj) are the random variables that represent
the number of transmitters in the receiver circle of radius
T (n) centered by the receiver j and the expected value of this
random variable respectively, and δ is a positive arbitrarily
small value close to zero.

From the Chernoff bound in Eq. (2), for any given 0 < δ <
1, we can find θ > 0 such that P [|Nj − E(Nj)| > δE(Nj)] <
e−θE(Nj). Thus, we can conclude that the probability that the
value of the random variable Nj deviates by an arbitrarily



small constant value from the mean tends to zero as n →∞.
This is a key step in showing that when all the events
⋂ 1

(LT (n)/
√

2)2

j=1 |Nj − E(Nj)| < δE(Nj) occur simultaneously,
then all Nj’s converge uniformly to their expected values.
Utilizing the union bound, we arrive at

P




1
(LT (n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)




≥ 1−
1

(LT (n)/
√

2)2∑

j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1− 1
(LT (n)/

√
2)2

e−θE(Nj). (7)

Given that E(Nj) = πnT 2(n), then we have

lim
n→∞

P




1
(LT (n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)




≥ 1− lim
n→∞

1
(LT (n)/

√
2)2

e−θπnT 2(n) (8)

Utilizing the connectivity criterion, limn→∞ e−θπnT2(n)

T 2(n) →
0, which finishes the proof.

Furthermore, we can arrange all of the nodes in the left
side of the corresponding transceiver circle be the transmitters,
and all of the nodes in the right side of the corresponding
transceiver circle be the receivers. Thus, we arrive at the
following lemma.

Lemma 4.6: In the unit square area for a wireless ad hoc
network shown in Fig. 3, the total number of transmitter-
receiver links (simultaneous transmissions) is Ω

(
n2T 2(n)

)
.

Proof: From Lemma 4.5, for any node in the cross cell
in the whole network shown in Fig. 3, there are Θ(nT 2(n))
nodes in the transceiver circle. We divided the total nodes
into two categories, transmitters in the left of the transceiver
circles and receivers in the right of the transceiver circles.
To guarantee all of the transmitters and receivers are in the
transceiver range, we only consider the nodes in the circle with
radius T (n)/2. Because of the MPT and MPR capabilities, so
that every transmitter in the left of the transceiver circle with
T (n)/2 radius can transmit successfully to every receiver in
the right, then the total number of successful transmissions
is π2n2T 4(n)/16 which is the achievable lower bound. The
actual number of the transmissions can be much larger than
this because we only consider T (n)/2 instead of T (n). Using
the Chernoff Bound in Eq. 2 and Lemma 4.5, we can get
w.h.p. that the total number of successful transmissions is

Ω

(
1

(
LT (n)/

√
2
)2 ×

π2n2T 4(n)
16

)
= Ω

(
n2T 2(n)

)
(9)

The above results enables us to obtain the following achiev-
able lower bound.

Let us define #MEMTC(T (n)) as the total number of
cells that contain all the nodes in a multicast group. The
following lemma establishes the achievable lower bound for
the multicast throughput capacity of MPT and MPR as a
function of #MEMTC(T (n)).

Lemma 4.7: The achievable lower bound of the multicast
capacity is given by

Cm(n) = Ω

(
nT 2(n)

#MEMTC(T (n))

)
. (10)

Proof: There are (T (n)/
√

2)−2 cells in the unit square
network area. From the definition of #MEMTC(T (n))
and the fact that our TDMA scheme does not change the
order capacity, it is clear that there are at most in the
order of #MEMTC(T (n)) interfering cells for multicast
communication. Hence, from Lemma 4.6, there are a total
of Θ

(
n2T 2(n)

)
nodes transmitting simultaneously, which

are distributed over all the (T (n)/
√

2)−2 cells. For each
cell, the order of nodes in each cell is Ω

(
n2T 4(n)

)
.

Accordingly, the total lower bound capacity is given by

Ω
((

T (n)/
√

2
)−2 × (

n2T 4(n)
)×

(
#MEMTC(T (n))

)−1
)

.

Normalizing this value by total number of nodes in the
network, n, proves the lemma.

Given the above lemma, to express the lower bound of
Cm(n) as a function of network parameters, we need to
compute the upper bound of #MEMTC(T (n)), which we do
next.

Lemma 4.8: The average number of cells covered by the
nodes in MEMTC(T (n)), is upper bounded w.h.p. as follows:

#MEMTC(T (n)) ≤ Θ
( √

m

T (n)

)
(11)

Proof: Because T (n) is the transceiver range of the
network, the maximum number of cells for this multicast tree
must be at most Θ

(√
mT−1(n)

)
, i.e., #MEMTC (T (n)) ≤

Θ
(√

mT−1(n)
)
. This upper bound can be achieved only if

every two adjacent nodes in the multicast tree belong to
two different cells in the network. However, in practice, it
is possible that some adjacent nodes in multicast tree locate
in a single cell. Consequently, this value is upper bound as
described in (11).

Combining Lemmas 4.7 and 4.8, we arrive at the achievable
lower bound of the multicast throughput capacity in dense
random wireless ad hoc networks with MPT and MPR.

Theorem 4.9: When the number of the destinations m is
a constant, the achievable lower bound of the m multicast
throughput capacity with MPT and MPR is

Cm(n) = Ω
(

nT 3(n)√
m

)
(12)

In this paper, we have utilized an edge-counting argument
to calculate the per-tree capacity when n multicast trees are
packed in the network. Due to brevity we have focused on
an average case analysis and are aware that a more rigorous
deduction requires us to show that even in the worst case,



appropriate load balancing is maintained so as to not create any
bottlenecks that diminish network capacity. Details of such an
argument are similar to Lemma in [21] and have been reserved
for a longer version of the current document.

C. Tight Bound and Comparison with Point-to-Point Commu-
nication

From Theorems 4.4 and 4.9, we can provide a tight bound
throughput capacity for multicasting when nodes have MPT
and MPR capabilities in dense random wireless ad hoc net-
works as follows.

Theorem 4.10: The throughput capacity of multicast in
random dense wireless ad hoc network with MPT and MPR
is

CMPT+MPR
m (n) = Θ

(
nT 3(n)√

m

)
(13)

The transceiver range of MPT and MPR should satisfy T (n) ≥
Θ

(√
log n/n

)
.

The multicast throughput capacity with point-to-point com-
munication is given by the following lemma [20].

Lemma 4.11: In multicast with a constant number m of
destinations, without MPR or MPR ability, the capacity is

CRouting
m (n) = Θ

(
1√

mnr(n)

)
(14)

where, r(n) ≥ Θ
(√

log n/n
)

. When r(n) = Θ
(√

log n/n
)

for the minimum transmission range to guarantee the
connectivity, then we obtain the maximum capacity as
CRouting-Max

m (n) = Θ
(

1√
mn log n

)
.

Combining Theorem 4.10 with Lemma 4.11, the gain of
throughput capacity with MPT and MPR capability in wireless
ad hoc networks can be stated as follows.

Theorem 4.12: In multicast with a constant number m of
destinations, with MPT and MPR ability, the gain of per-node
throughput capacity compared with point-to-point communica-
tion is Θ

(
n2T 4(n)

)
, where, T (n) = r(n) ≥ Θ

(√
log n/n

)
.

When T (n) = Θ
(√

log n/n
)

, the gain of per-node capacity

is at least Θ
(
log2 n

)
.

V. CAPACITY WITH NC, MPT AND MPR

We now study the multi-source multicast capacity of a
wireless network in the absence of interference when nodes
use NC. The results we present serve as an upper-bound for
what can be achieved by combining NC, MPT and MPR in
the presence of interference. Our arguments are generic and
can be used to deduce upper bounds for the multicast capacity
of other interesting cases where NC is used along with only
one of MPT or MPR, or even the scenario where NC is used
with traditional single packet transmission and reception.

We deduce the bounds for the case of multi-source multi-
casting by reducing it to a suitable unicast routing problem.
Under the reduction, an upper bound for the unicast problem
also serves for the original multicast routing problem. Thus
consider the following simple yet powerful lemma

Lemma 5.1: Consider a network with n nodes V =
{a1, . . . , an} and k multicast sessions. Each session consists
of one of the n nodes acting as a source with an arbitrary
finite subset of V acting as the set of destinations. Let si be
the source of the ith session and let Di = {di1, . . . , dimi

} be
the set of mi destinations. Now, there exists a joint routing-
coding-scheduling scheme that can realize a throughput of λi

for the ith session, i.e. λ = [λ1, . . . λk] is a feasible rate vector.
Then λ is also a feasible vector for any unicast routing problem
in the same network such that the traffic consists of k unicast
sessions with si being the source of the ith session and the
destination bi is any arbitrary element of the set Di.

If a multicast capacity from a source to multiple destinations
is feasible, then clearly it is feasible to achieve the same
capacity to only any single node from this set of destinations.

Lemma 5.2: Consider a random geometric network with
n nodes distributed uniformly in a unit square. Consider a
decomposition of the unit-square into two disjoint regions R
and Rc such that the area of each region is of order Θ(1). Now
consider a multicast traffic scenario consisting of n sessions
with each node being the source of a session and m randomly
chosen nodes being the destination of the session. We say that
a source satisfies property P if the source belongs to region
R and at least one of its destination belongs to Rc OR if the
source belongs to region Rc and at least one of its destination
belongs to R. It can be shown that w.h.p the number of sources
satisfying property P are Θ(n)

Theorem 5.3: In a wireless ad hoc network formed by n
nodes distributed randomly in a unit square with traffic formed
by each node acting as source for a multicast sessions with
m = Θ(1) randomly chosen nodes as destinations, the per-
session multicast capacities are

CNC+PTP
m = Θ

(
1

nT (n)

)
(15)

CNC+MPT
m = CNC+MPR

m = Θ(T (n)) (16)
CNC+MPT+MPR

m = Θ
(
nT 3(n)

)
(17)

where NC + PTP denotes the use of NC with point-to-point
communication (no MPT or MPR), i.e., a node can only
transmit or receive at most one packet at a time.

Proof: (Sketch) For any sparsity cut of the unit area as
illustrated in Fig. 4, the middle line induces a sparsity cut,
lemmas 5.2. 5.1 tell us that we can construct a unicast routing
problem satisfying the property that any rate for the unicast
problem is feasible for the original multicast problem and
we have Θ(n) source-destination pairs across the cut. Thus,
the capacity of the sparsity cut provides an upper bound for
the unicast problem, which can in turn be used to provide a
bound for the multicast problem. Liu et al. [8] showed that
the maximum number of packets that can be simultaneously
transmitted across the cut is Θ

(
1

T (n)

)
for the case of unicast

with point-to-point communication and NC. With similar
arguments, we can show that the combination of NC+MPT
or NC+MPR allows us to transmit a maximum of Θ(nT (n))
packets across the cut. Finally, we can extend such arguments
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Fig. 4. All the nodes in the shaded region can send a message simultaneously

to show that the combination of NC+MPT+MPR allows us to
simultaneously transmit a maximum of Θ

(
n2T 3(n)

)
packets

across the cut. The result of the theorem then follows from the
fact that the cut capacity has to be divided among the Θ(n)
source-destination pairs across the cut.

VI. DISCUSSION

By combining the results from theorems 4.10 and 5.3, the
main contribution of this paper is stated in the following
theorem.

Theorem 6.1: In wireless ad hoc networks with multi-pair
multicast sessions and with a finite number of destinations for
each source (m), the throughput capacity utilizing NC, MPT
and MPR capabilities for all nodes is the same order as when
the nodes are endowed only with MPT and MPR.

CMPT+MPR+NC
m (n) = CMPT+MPR

m (n) (18)

It is also important to emphasize that, as Theorem 5.3
shows, NC does not provide any order capacity gain for
multi-source multicasting when the size of receiver groups
is m = Θ(1) and nodes use point-to-point communication.
Hence, the result in Theorem 6.1 implies that NC does not
provide an order capacity gain when either MPT and MPR are
used, or point-to-point communication is used, and that MPT
and MPR are the real contributing factor for order capacity
increases in wireless networks.
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