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Abstract—We define composite networks when nodes commu-
nicate only with their long-range social contacts and there is
no direct link between a node and its long-range contact. Each
node has a single long-range contact and all nodes within its
transmission range are local contacts for the node. The long-
range contact is the destination for each node in the network
and since there is no direct link from source to its destination,
nodes communicate using multi-hop communications. This is an
extension of the famous work by Kleinberg [3] to random wireless
ad hoc networks. The throughput capacity of such networks are
studied. The routing is based on each node sending the packets
to one of its local contact until the packets reach the destination.
The long-range contact distance from a source follows power law
distribution with parameter α which is a characteristic of social
networks. A tight bound of throughput capacity for different
values of α is derived. The results demonstrate that when α
increases or equivalently the distance between source and desti-
nation decreases, the throughput capacity increases. For α > 3,
throughput capacity of Θ(1/ log n) is achieved by utilizing simple
point-to-point communications where n is the total number of
nodes in the network. This is the maximum feasible throughput
that can be achieved in point-to-point communications. The result
demonstrates the effect of social groups on wireless ad hoc
networks. A new parameter called degradation factor is defined
which illustrates the asymptotic behavior of networks for large
values of n1.

I. INTRODUCTION

Gupta and Kumar [1] computed the achievable throughput
capacity of wireless ad hoc networks. They derived the ca-
pacity in a dense network with randomly distributed nodes,
in which the source-destination pair is selected randomly,
and the routing algorithm transports information through the
shortest path to the destination. However, in most practical
networks the source-destination association does not have
uniform and random distribution. Each source belongs to a
social group and it only communicates to the members of
social group. Therefore, a wireless network at least consists
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of two underlying networks, namely, wireless communication
and social networks. These networks are called composite
networks. To the best of our knowledge, there is no single
publication in literature on the study of interaction between
wireless communication and social networks.

Social networks have been proven to exhibit the small-
world phenomenon [3], and to model this phenomenon, Watts
and Strogatz divided the edges of the network into local and
long-range contacts [7]. The famous work by Kleinberg [3]
studied a two-dimensional grid network with the small-world
property. The source node s in his work selects any other node
v as its long-range contact with a probability proportional to
d−α(s, v), where d(s, v) is the lattice distance between s and
v. Li et al. studied an extended network’s capacity considering
almost the same assumptions [2].

In this paper, we study the dense composite networks that
consist of social and communication networks in which each
node has local and one long-range contacts. To simplify the
analysis and routing protocol, for each node only four local
contacts are selected in random from four possible directions
that are located within one hop distance. Probability that node
t is the destination for source node s follows the power-law
distribution, Pr(t is long-range contact of s) = d(s,t)−αP

d(s,v)−α ,
where d(s, v) is the Euclidean distance between s and any
other node v. This power-law distribution for the probability
of selecting a node as long-range contact is one of the main
characteristics of social networks. The destination for each
node in the network is its long-range contact. All source nodes
know the locations of their social contacts.

The main contribution of this paper is to compute the
throughput capacity of composite networks. This is the first
paper in literature to analytically compute the scaling laws
for such networks. This analysis is important since in many
practical wireless communication networks, nodes communi-
cate only with their social contacts. This interaction between
social and communication networks has remained an open
problem in literature. This paper is the first attempt to study
this interaction for a simple model for social networks that
was first introduced by Kleinberg in [3].

The rest of the paper is organized as follows. In section II,
we introduce the model which is used for the network, and the



main results of our work on the lower bound for throughput
capacity are derived in section III. Section IV computes the
upper bound of throughput capacity for composite networks
and section IV discusses the results. The paper is concluded
in section V.

II. PRELIMINARIES

In this work, a dense network with a unit square area
containing n uniformly and randomly distributed nodes is
considered. To guarantee connectivity in this network [6],
the transmission range (r(n)) is assumed to be r(n) =
K0

√
logn/n.

The protocol model defined in [4] considers a common
transmission range r(n) for all nodes in the network. Node
i at position Xi can successfully transmit to node j at
position Xj if for any node k at position Xk, k 6= i, that
transmits at the same time as i, then |Xi − Xj | ≤ r(n) and
|Xk − Xj | ≥ (1 + ∆)r(n), where Xi, Xj and Xk are the
cartesian positions in the unit square network for these nodes,
and ∆ > 0 is the guard zone factor.

The TDMA medium access control scheme is shown in
figure 1. The network area is divided into square-lets with
side-length C1r(n), (C1 < 1

4 ), and at any given time only cells
separated by M square-lets distance are allowed to transmit
as shown in grey color in figure 1 where M ≥ (2 + ∆)/C1.

The decentralized routing protocol used in this work is
very simple. Each node knows the location of its long-
range contact. Therefore, the node selects one of its four
local contacts which is the closest one to the destination
and transmits the packets to this local contact. This multi-
hop transmission of packets continues until the packets reach
the destination. We assume that there is one local contact in
each of the 4 adjacent cells of the source which gaurantees
that this simple routing protocol converges. It is important to
note that if each node has more than four local contacts, i.e.,
all nodes within transmission range are local contacts, then
the order throughput capacity computation will not change
and the same results can be derived. The four local contacts
and decentralized routing protocol assumptions were first
considered in [3].

III. THROUGHPUT CAPACITY OF COMPOSITE NETWORKS -
LOWER BOUND

In this network model, each node is a source transmitting
data at a rate λ. Let X be the number of hops traveled by each
bit from source to destination. Thus, the total number of con-
current transmissions in this network would be nλE[X], where
E[X] is the average number of hops for any source-destination
pair. This value is upper bounded by the total bandwidth W
available divided by the number of non-interfered groups in
TDMA scheme ((MC1r(n))2 = M2C2

1r2(n)) as shown in
figure 1. Therefore, the maximum rate of transferring data in
this network is

λ ≤ λmax =
W

M2C2
1r2(n)

nE[X]
. (1)

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

�

M Square-lets 

C1r(n) 

�

Fig. 1. TDMA Scheme, grey square-lets can transmit at the same time.

The average number of hops can be computed through
E[X] =

∑
xP (X = x). P (X = x) is the probability that

the packets travel x hops from s to reach destination (long-
range contact) t. Let’s assume the range of Euclidean distance
for longe-range contact is 1

n1+δ = dmin ≤ d ≤ dmax = K1

for any δ > 0 [5]. Then we have

P (X = 1) ≤
r(n)∫

dmin

2πnx.x−αdx∑
v d−α(s, v)

=
2πn∑

v d−α(s, v)

r(n)∫
dmin

x1−αdx. (2)

To compute P (X = x) for x > 1, the long-range contact
outside the circle with radius r(n) centered at the source node
should be considered. Thus, it is easy to show from figure
2 that P (X = x) = 0, for 1 < x < d 1

C1
+ 1e. The

maximum number of hops is 2
C1r(n) . Thus, P (X = x) should

be calculated for x = d 1
C1

+ 1e, ..., d 2
C1r(n)e.

To compute P (X = x), we need to compute the number
of nodes in a distance of x hops from the source and
their corresponding Euclidean distances from the source. The
geometric place of such nodes is a rhombus around the source
node as shown in figure 2. The probability that the number of
hops between source and destination is x hops is equal to the
probability that the destination is located in one of the cells
on the boundaries of this rhombus.

P (X = x) =
4x∑
i=1

P (destination is located inside si)

=
4x∑
i=1

∑
t in si

d−α(s, t)∑
v d−α(s, v)

≤ 8
1+b x

2 c∑
i=1

∑
t in si

d−α(s, t)∑
v d−α(s, v)

The probability that node t is the destination is inversely
proportional to its Euclidean distance from s. In our calcula-
tion, we compute the distance for square-lets hi (in light grey
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Fig. 2. Dark grey square-lets (si’s) show the region containing the nodes
with P (X = x). Light grey square-lets (hi’s) are used in calculations instead
of the actual geometric place.

in the figure) instead of si square-lets which provides an upper
bound for the P (X = x) probability.

P (X = x) ≤ 8
x−1∑

i=b x−1
2 c

∑
t in hi

d−α(s, t)∑
v d−α(s, v)

≤ 8[nC2
1r2(n)

((x− 1)C1r(n))−α∑
v d−α(s, v)

+ nC2
1r2(n)

((x− 2)C1r(n))−α∑
v d−α(s, v)

+ ...

+ nC2
1r2(n)

(bx−1
2 cC1r(n))−α∑

v d−α(s, v)
]

=
8C2−α

1 n∑
v d−α(s, v)

r2−α(n)
x−1∑

j=b x−1
2 c

j−α

≤ K2nr2−α(n)∑
v d−α(s, v)

∫ x

b x−1
2 c

(u− 1)−αdu

Note that K2 = 8C2−α
1 . Thus,

E[X] ≤ P (X = 1) +

2
C1r(n)∑

x= 1
C1

+1

xP (X = x)

≤ 2πn∑
v d−α(s, v)

r(n)∫
dmin

u1−αdu

+

2
C1r(n)∑

x= 1
C1

+1

K2nr2−α(n)∑
v d−α(s, v)

x

∫ x

b x−1
2 c

(u− 1)−αdu.

(3)

A. Lower bound throughput for α = 0

When α = 0, this is equivalent of assuming that the long-
range contact is uniformly and randomly selected among all
the nodes in the network. This is almost the same scenario
as Gupta and Kumar and therefore, we expect to arrive at the
same throughput capacity. Average number of hops traveled
by the data between source and destination is obtained by
replacing α with 0 in eq. (3) and is given by

E[X] ≤ 2π

∫ r(n)

dmin

udu +

2
C1r(n)∑

x= 1
C1

+1

K2r
2(n)x

∫ x

b x−1
2 c

du,

= π(r2(n)− d2
min)

+

2
C1r(n)∑

x= 1
C1

+1

K2r
2(n)x(x− bx− 1

2
c),

≤ πr2(n) +

2
C1r(n)∑

x= 1
C1

+1

K2r
2(n)(

x2

2
+ x),

≤ πr2(n) + K2r
2(n)

∫ 2
C1r(n)+1

1
C1

+1

(
x2

2
+ x)dx,

= r2(n)(
32

3C1r3(n)
+

32
r2(n)

+
24C1

r(n)
+ K3),

a
≤ 64

3C1r(n)
= K4

√
n

log n
,

where (a) holds for large n.
The maximum rate of transferring information in this net-

work is

λmax ≥
KL

α0
n

log n

n
√

n
log n

=
KL

α0√
n log n

,

where KL
α0

= 3W
64M2C1K0

.

B. Lower bound throughput for α > 3

The probability that the destination is within one hop from
source when α > 3 is derived from eq. (2).

P (X = 1) =
2πn∑

v d−α(s, v)
(−r(n)2−α + d2−α

min)
α− 2

≤ 1

The average number of hops between source and destination
for x > 1 is derived using the second term of eq. (3).

2
C1r(n)∑

x= 1
C1

+1

xP (X = x)

≤ K2nr2−α(n)
(1− α)

∑
v d−α(s, v)

×

2
C1r(n)∑

x= 1
C1

+1

x((x− 1)1−α − (bx− 1
2

c − 1)1−α)

≤ K2nr2−α(n)∑
v d−α(s, v)

1
α− 1

2
C1r(n)∑

x= 1
C1

+1

2
α−1

x

(x− 4)α−1



≤ 2α−1K2n

(α− 1)rα−2(n)
∑

v d−α(s, v)

∫
2

C1r(n)+1

1
C1

+1

(x− 1)dx

(x− 5)α−1

≤ K2n(K3 + K4r
−1(n) + ... + Kα+1r

2−α)∑
v d−α(s, v)

b
≤ K2n2Kα+1r

2−α(n)∑
v d−α(s, v)

Inequality (b) is valid for sufficiently large values of n.
Moreover, the lower bound for

∑
d(s, v)−α for large values

of n can be obtained as follows.∑
d(s, v)−α ≥

∫ K1/2

C1r(n)

2πn.xdx.x−α (4)

=
2πn

α− 2
((C1r(n))2−α − (K1/2)2−α)

≥ πnC2−α
1 r2−α(n)
α− 2

Thus E[X] is upper bounded by:

E[X] ≤ K2n2Kα+1r
2−α(n)

πnC2−α
1 r2−α(n)

+ 1 = K5

Replacing E[X] in eq. (1) leads to the following maximum
rate of transferring information.

λmax ≥
KL

α4
n

log n

n
=

KL
α4

log n

where
KL

α4
=

πW

M2C2
1K2

0 (16Kα+1 + π)
,

and
Kα+1 =

2α−1(α− 2)
α− 1

(
1

α− 3
(

C1

1− 4C1
)α−3

+
4

α− 2
(

C1

1− 4C1
)α−2).

IV. THROUGHPUT CAPACITY OF COMPOSITE NETWORK :
UPPER BOUND

In order to calculate the upper bound throughput capacity
of eq. (1), the lower bound of E[X] is needed.

E[X] = P (X = 1) +

2
C1r(n)∑

x= 1
C1

+1

xP (X = x)

≥

2
C1r(n)∑

x= 1
C1

+1

xP (X = x)

≥

2
C1r(n)∑

x= 1
C1

+1

x
1
4
4x(C1r(n))2n

((x + 1)C1r(n))−α∑
v d−α(s, v)

=
C2−α

1 nr2−α(n)∑
v d−α(s, v)

2
C1r(n)∑

x= 1
C1

+1

x2(1 + x)−α (5)

and the upper bound on the normalization factor is obtained
as

∑
d(s, v)−α ≤

∫ K1

r(n)

2πn.xdx.x−α. (6)

Combining eq.s (5), (6), and (1) and following the same
derivations, we arrive at the same upper bound throughput
capacity as lower bound with different constant factors which
are given below.

KU
α0

=
3W

4M2C1K0
,KU

α1
=

πWK1

M2C1K0
,KU

α2
=

4π(1 + δ)W
M2C1K0

KU
α3

=
16πW

M2C2
1K2

0

,KU
α4

=
4π(1 + 2C1)α−3W (α− 3)

M2Cα−1
1 K2

0 (α− 3)

The details derivation of throughput capacity for different
values of α is omitted here.

V. DISCUSSION

Table 1 summarizes the tight bound on the average number
of hops to be traversed from source to reach destination, E[X],
and the tight bound for the maximum throughput capacity,
λmax, that can be obtained as a function of α. Note that
parameter α determines the power law distribution in social
networks.

If there is no constraint or preference for each source node to
choose its destination, the source-destination pair is selected
uniformly in the network area, i.e., α = 0. The analysis of
composite networks in this case shows that the average number
of hops between source and destination is proportional to the
inverse of the transmission range, and the throughput capacity
is similar to the results derived by Gupta and Kumar [1].

For large values of α (α > 3), the destination is within
the transmission range with probability close to 1. Thus, the
information needs to pass just one hop to reach the destination.
Consequently, the maximum throughput capacity is achieved.
The results can be justified by noticing that when a node is
activated, based on protocol model all nodes within transmis-
sion range (r(n) =

√
log n

n ) must be silenced. The number of
these nodes is equal to πr2(n)n = Θ(log n). Therefore, by
using a TDMA approach with parameter proportional to 1

log n ,
all nodes can transmit their packets to their destinations which
is the maximum capacity with a point-to-point communication
scheme. Therefore, the results implies that when the members
of a social group are physically located close to each other,
the maximum throughput capacity in wireless ad hoc networks
can be obtained.

Increasing the value of α will decrease the average distance
between source and long-range contact (or destination in this
paper) which results in increase in capacity.

The constant factor Kαi for i ≥ 0 plays an important
role in the analysis of the network. However, in order to
better understand the asymptotic behavior of the network, we
define degradation factor (DF (n)) as the rate of throughput



capacity decrease as a function of the number of nodes
when both values are computed in logarithmic scale. This
factor is independent of constant factors of capacity bounds
and demonstrates the asymptotic behavior of the composite
networks more accurately. DF (n) is defined as

DF (n) = −∂(log λmax)
∂(log n)

.

Figure 3 illustrates degradation factor for different values of
α. As can be seen, the degradation factor reaches a constant
value when the number of nodes increases. For example for
α = 0, 1, 2 the degradation factor goes to the constant value
of 0.5. This result implies that for large number of nodes, the
value of the throughput capacity bound is degraded by a factor
of 10−0.5 if the number of nodes increased tenfold.

Fig. 3. λmax Degradation Factor.

Figure 4 demonstrates the behavior of throughput capacity
for composite networks when the number of nodes increases.
The figure shows that when α increases, the rate of throughput
degradation as a function of n decreases. It appears that when
α = 1, the long-range social contacts behave as if they are
distributed uniformly and randomly. Therefore, the throughput
capacity is the same for α equal to 0 (no social network) and
1.

Fig. 4. Maximum throughput capacity vs. number of nodes.

E[X] λmax

α = 0 Θ(
q

n
log n

) Θ( 1√
n log n

)

α = 1 Θ(
q

n
log n

) Θ( 1√
n log n

)

α = 2 Θ( 1
log n

q
n

log n
) Θ(

q
log n

n
)

α = 3 Θ(log n) Θ( 1
(log n)2

)

α > 3 Θ(1) Θ( 1
log n

)

TABLE I
λmax AND E[X] FOR DIFFERENT VALUES OF α

VI. CONCLUSION AND FUTURE WORK

This paper defines composite networks as a combination of
social and communication networks. Each node is associated
with four local contacts inside its transmission range and a sin-
gle long-range contact with its distance from source following
power law distribution. There is no direct link from source
to destination and source-destination pairs communicate using
multi-hop communications. The interaction between social and
wireless communication networks are studied. A tight bound
of the throughput capacity for different values of α is derived.
The results demonstrate that when the distance between source
and destination decreases, the throughput capacity increases.
For α > 3, maximum throughput capacity of Θ(1/ log n) is
achieved by utilizing simple point-to-point communications.
This is the maximum feasible throughput that can be achieved
in point-to-point communications.

As the future work, we can generalize this work by allowing
each source to have more than one long-range contact, one of
which is the destination.
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