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Abstract—In this paper, we study the contribution of network
coding (NC) in improving the multicast capacity of random
wireless ad hoc networks when nodes are endowed with multi-
packet transmission (MPT) and multi-packet reception (MPR)
capabilities. We show that a per session throughput capacity of
Θ

`

nT 3(n)
´

,where n is the total number of nodes andT (n) is
the transmission range, can be achieved as a tight bound when
each session contains a constant number of sinks. Surprisingly,
an identical order capacity can be achieved when nodes have
only MPR and MPT capabilities. This result proves that NC
does not contribute to the order capacity of multicast traffic
in wireless ad hoc networks. The result is in sharp contrast
to the general belief (conjecture) that NC improves the order
capacity of multicast. Furthermore, if the communication range
is selected to guarantee the connectivity in the network, i.e.,
T (n) ≥ Θ

“

p

log n/n
”

, then the combination of MPR and MPT

achieves a throughput capacity ofΘ
„

log
3
2 n

√
n

«

which provides an

order capacity gain of Θ
`

log2 n
´

compared to the point-to-point
communication capacity that was reported by Gupta and Kumar.

I. I NTRODUCTION

The seminal work by Gupta and Kumar [1] has sparked a
growing amount of interest in understanding the fundamental
capacity limits of wireless ad hoc networks. Several techniques
[2]–[8] have been developed with the objective of improving
the capacity of wireless ad hoc networks. Network coding
(NC), which was originally proposed by Ahlswede et al. in
[9], is one such technique. Unlike traditional store-and-forward
routing algorithms, network coding schemes encode the mes-
sages received at intermediate nodes, prior to forwarding them
to subsequent next-hop neighbors. In [9] it has been shown that
for a single source, and under the assumptions of a directed
graph, network coding can achieve a multicast flow equal to
the min-cut.

The work in [9]–[11] has motivated a large number of
researchers to investigate the impact of NC in increasing the
throughput capacity of wireless ad hoc networks. However,
Liu et al. [12] recently showed that NC does not increase
the order of throughput capacity for multi-pair unicast traffic.
Nevertheless, a number of efforts (analog network coding [13],
physical network coding [14]) have continued the the quest for
improving the multicast capacity of ad-hoc networks by using
NC. Despite the claims of throughput improvement by such

studies, the impact of NC on the multicast scaling law remains
uncharacterized.

Approaches such as [13], [14] implicitly assume the combi-
nation of NC (transmitting multiple packets encoded in a sin-
gle transmission) with Multi-packet Transmission (MPT) and
Multi-packet Reception (MPR) [15]–[17](ability to transceive
successfully multiple concurrent transmissions by employing
physical-layer interference cancelation techniques). MPR has
been shown to increase the capacity regions of ad hoc net-
works [18], and very recently Garcia-Luna-Aceves et al. [19]
have shown that the order capacity in wireless ad hoc networks
subject to multi-pair unicast traffic is increased with MPR.
These prior efforts raise the following question: (a) What is the
multicast throughput order achieved by the combination of NC
with MPT and MPR ? (b) Does this combination provide us
with a order gain over tractional techniques based on routing
and point-to-point communication ? (c) If yes, what exactly
leads to this gain? Is NC necessary or is the combination of
MPT and MPR sufficient?

In this work we address the above questions. The answers
can be summarized by our main results:

• When each multicast group consists of a constant number
of sinks, the combination of NC, MPT and MPR provides
a per session throughput capacity ofΘ(nT 3(n)), where
T (n) is the transmission range.

• This scaling law represents an order gain ofΘ(n2T 4(n))
over a combination of routing and single packet trans-
mission/reception.

• The combination of only MPT and MPR is sufficient
to achieve a per-session multicast throughput order of
Θ(nT 3(n)). Consequently, NC DOES NOT ADD TO
THE MULTICAST CAPACITY !!!!

The remainder of this paper is organized as follows. In
Section II, we give an overview of capacity analysis for NC,
MPT, MPR, and other existing techniques. In Section III, we
introduce the models we used. In Section IV and V, we give
our main results with MPT and MPR when network coding
is not used and used respectively. We conclude our paper in
Section VI.



II. L ITERATURE REVIEWS

Gupta and Kumar in their seminal paper [1] proved that
the throughput capacity in wireless ad hoc network is not
scalable. Subsequently, many researchers have focused on
identifying techniques that could alter this conclusion. It has
been shown that changing physical layer assumptions, such
as using multiple channels [2] or ultra wide band (UWB)
technology [3], [4], can increase the capacity of wireless ad
hoc networks. Recently, Ozgur et al. [5] proposed a hierarchi-
cal cooperation technique based on virtual MIMO to achieve
linear per source-destination capacity. Cooperation can be
extended to the simultaneous transmission and reception atthe
various nodes in the network, which is so calledmany-to-many
communicationand can result in significant improvement in
capacity [6].

Most of the the research on network coding, since the
original proposal in [9], has focused on the model of directed
networks, where each communication link has a fixed direc-
tion. [20] were the first to study the benefits of network coding
in undirected networks, where each communication link is
bidirectional. The result in [20] shows that, for a single unicast
or broadcast session, there are no improvement with respect
to throughput due to network coding. In the case of a single
multicast session, such an improvement is bounded by a factor
of two. Meanwhile, [15]–[17] studied the throughput capacity
of NC in wireless ad hoc networks. However [15]–[17] employ
network models which are fundamentally inconsistent with
the more commonly accepted assumptions of ad-hoc networks
[1].Specifically, the model constraints of [15]–[17], [20], [21]
differ as follows:(a) All the prior works assume a single source
for unicast, multicast or even broadcast (b) [16], [17] differen-
tiate the total nodes into source set, relay set and destination
set. They don’t allow all of the nodes to concurrently serve as
sources, relays or destinations, as allowed in [1]. (b) An even
bigger limitation of these works is that they do not consider
the impact of interference in wireless ad hoc networks.

In the absence of interference, the communication scenario
equates an ideal case where a node can simultaneously trans-
mit and receive from multiple nodes. Interference cancelation
techniques such as MPT and MPR indeed enable nodes with
the ability of multi-point communication within a communi-
cation range ofT (n). Thus, the model assumptions in [15]–
[17] at the very least assume that nodes are capable of MPT
and MPR. Similarly works such as Physical-Layer Network
Coding (PNC) [14] by Zhang et al. and Analog Network
Coding [13] by Katti et al. also implicitly assume the ability
of MPT and MPR.

III. N ETWORK MODEL, DEFINITIONS, AND

PRELIMINARIES

We assume a random wireless ad hoc network withn
nodes distributed uniformly in a unit-square network area.Our
capacity analysis is based on the protocol model for dense
networks, introduced by Gupta and Kumar [1]. The case of
what we call point-to-point communication corresponds to the
original protocol model.

( )T n
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Fig. 1. MPT and MPR protocol model

Definition 3.1: The Protocol Model of Point-to-Point Com-
munication: All nodes use a common transmission ranger(n)
for all their communication. The network area is assumed
to be a unit square area. NodeXi can successfully transmit
to node Xj if for any node Xk, k 6= i, that transmits at
the same time asXi it is true that |Xi − Xj | ≤ T (n) and
|Xk − Xj | ≥ (1 + ∆)T (n).

We make the following extensions to account for MPT and
MPR capabilities at the transmitters and receivers respectively.
In wireless ad hoc networks with MPT capability, any trans-
mitter node can transmit different information simultaneously
to multiple nodes within the circle whose radius isT (n).
Similarly, in wireless ad hoc networks with MPR capability,
any node can receive different information simultaneously
from multiple transmitters within the circle whose radius is
T (n) [19]. We further assume that nodes cannot transmit and
receive at the same time, which is equivalent to half-duplex
communications [1]. From system point of view, MPT and
MPR are dual if we consider the source and destination duality.
The MPT and MPR model are shown in Fig. 1. It should be
noted thatR3 is the another receiver in the reception circle
of R2. SinceR3 is already a receiverR2 can’t receive any
information from R3 in the same time slot because of the
half-duplex communication.

Definition 3.2: Feasible throughput capacity:
In a wireless ad hoc network ofn nodes where each source
transmits its packets tom destinations, a throughput ofCm(n)
bits per second for each node is feasible if there is a spatial
and temporal scheme for scheduling transmissions, such that
by operating the network in a multi-hop fashion and buffering
at intermediate nodes when awaiting transmission, every node
can sendCm(n) bits per second on average to itsm chosen
destination nodes. That is, there is aT < ∞ such that in every
time interval[(i− 1)T, iT ] every node can sendTCm(n) bits
to its corresponding destination nodes.

Definition 3.3: Order of throughput capacity:Cm(n) is
said to be of orderΘ(f(n)) bits per second if there exist
deterministic positive constantsc andc′ such that







lim
n→∞

Prob (Cm(n) = cf(n) is feasible) = 1

lim
n→∞

Prob (Cm(n) = c′f(n) is feasible) < 1.
(1)

Definition 3.4: Euclidean Minimum Spanning Tree
(EMST):Consider a connected undirected graphG = (V, E),



whereV and E are sets of vertices and edges in the graph
G, respectively. The EMST ofG is a spanning tree ofG with
the minimum sum of Euclidean distances between connected
vertices of this tree.

Definition 3.5: Minimum Euclidean Multicast Tree
(MEMT(T (n))): The MEMT(T (n)) is a multicast tree in
which them destinations for each source receive information
from the source and this multicast tree has the minimum total
Euclidean distance.

In the rest of this paper,‖T ‖ denotes the total Euclidean
distance of a treeT ; #T is used to denote the total number of
vertices (nodes) in a treeT ; and‖T ‖ is used for the statistical
average of the total Euclidean distance of a tree.

Keshavarz et al. [22] used Maximum Independent Set
MIS(∆, r(n)) to describe the maximum number of simulta-
neous transmitters. Similarly, to account for MPT and MPR
ability, we define the Maximum MPT and MPR Independent
Set (MMMIS(∆, T (n)).

Definition 3.6: Maximum MPT and MPR Independent Set
(MMMIS(∆, T (n))): An MPT and MPR independent set is
a set of nodes inG that contains one transceiver and all
its transceiver nodes within a distance ofT (n) from the
transceiver node. A Maximum MPT and MPR Independent
Set (MMMIS (∆, T (n))) consists of the maximum number
channel links of MPT and MPR sets that simultaneously
transceive packets while MPT and MPR protocol model is
satisfied for all these MPT and MPR sets. If we add any
transceiver node fromG to MMMIS(∆, T (n)), there is at
least one MPT and MPR set that violates the MPT and MPR
protocol model.

Definition 3.7: Minimum Connected Dominating Set
(MCDS(r(n))): A dominating set(DS(r(n))) of a graphG
is defined as a set of nodes such that every node in the network
either belongs to this set or it is within a transmission range
of r(n) of one of the elements of DS(r(n)). A Connected
Dominating Set(CDS(r(n))) is a dominating set such that
the subgraph induced by its nodes is connected. A Minimum
Connected Dominating Set(MCDS(r(n))) is a CDS(r(n)) of
G with the minimum number of nodes.

Given that the distribution of nodes in a random network is
uniform, if there aren nodes in a unit square, then the density
of nodes equalsn. Hence, if |S| denotes the area of space
region S, the expected number of the nodes,E(NS), in this
area is given byE(NS) = n|S|. Let Nj be a random variable
defining the number of nodes inSj . Then, for the family of
variablesNj , we have the following standard results known
as the Chernoff bounds [23]:

Lemma 3.8:Chernoff bound

• For anyδ > 0, P [Nj > (1+ δ)n|Sj |] <
(

eδ

(1+δ)1+δ

)n|Sj|

• For any0 < δ < 1, P [Nj < (1 − δ)n|Sj |] < e−
1
2n|Sj |δ2

Combining these two inequalities we have, for any0 < δ < 1:

P [|Nj − n|Sj || > δn|Sj |] < e−θn|Sj|, (2)

whereθ = (1+ δ) ln(1+ δ)− δ in the case of the first bound,
andθ = 1

2δ2 in the case of the second bound.

Therefore, for anyθ > 0, there exist constants such that
deviations from the mean by more than these constants occur
with probability approaching zero asn → ∞. It follows that,
w.h.p., we can get a very sharp concentration on the number
of nodes in an area, so we can find the achievable lower bound
w.h.p., provided that the upper bound (mean) is given. In the
following sections, we first derive the upper bound, and then
use the Chernoff bound to prove the achievable lower bound.

In [9] it was proved that the max-flow min-cut is equal to
multicast capacity of a directed graph with single source. The
directed graph model is more applicable for wired networks.
However, in this work we wish to study the utility of NC
in wireless environment, where the links are bidirectional.
Hence,we utilize the following terminology, which builds upon
the model set-up in [15], [16], for analysis of NC.

Definition 3.9: The connectivity graphG = (V, E) is a sub-
graph of the random geometric graph with sources, a setT
of destinations, and a setD of relay nodes such thatV =
{s}⋃D

⋃

T . In this paper, we only consider the case where
|T | = m is a constant and|D| = n−m−1 for each multicast
session.

The analysis in [16] can be summarized to obtain the
following result for a connectivity graph.

Theorem 3.10:Let G be a connectivity graph with one
source nodesi, n − m − 1 relay nodes, and a setT of
destinations nodes. We have


























lim
n→∞

Prob
(

Cs,T (n) ≥ (1 − ǫ1)(n − 1 − m)πT 2(n)
)

= 1 − O(m/n2)

lim
n→∞

Prob
(

Cs,T (n) ≤ (1 + ǫ2)(n − 1 − m)πT 2(n)
)

= 1 − O(1/n4/3)
(3)

where,ǫ1 =
√

26 log n
nπc1T 2(n) , ǫ2 =

√

4 log n
nπc1T 2(n) , and1/4 ≤ c1 ≤

1. Thus for a constant number of sinks we have a tight bound
on the cut-capacity

Cs,T (n) = Θ
(

nT 2(n)
)

(4)

In a single source network, the cut capacity is equal to the
maximum flow. Thus the above theorem provides an upper
bound on the multicast capacity of a network with single
source and NC+MPT+MPR capability. However, in [15]–
[17], the source, relays and destinations are strictly different
and information can not be transmitted directly towards the
destinations. These two assupmtions will be eventually relaxed
in this paper.

IV. T HE THROUGHPUTCAPACITY WITH MPT AND MPR

In this Section, we start to analyze the scaling law in
random geometric graphs with MPT and MPR abilities. In
[24], Wang et al. proved the unifying capacity with point-
to-point communication, which resolves the general multicast
case withm destinations for each source being a function of
n. Here, we use the similar approach to prove the capacity
with MPT and MPR whenm is not a function ofn but a
constant.



A. Upper Bound

The following Lemma provides an upper bound for the
per-session capacity in terms of the ratio of the size of
#MMMIS(∆, T (n)) to the size of MEMT(T (n)). Essentially,
#MEMT(T (n)) equals the minimum number of transmis-
sions required to multicast a packet tom destinations, and
#MMMIS(∆, T (n)) represents the maximum number of suc-
cessful simultaneous transmissions when MPT and MPR are
used.

Lemma 4.1:In random dense wireless ad hoc networks, the
per-node throughput capacity of multicast with MPT and MPR

is given byO
(

1
n × #MMMIS(∆,T (n))

#MEMT(T (n))

)

.

Proof: We observe that#MEMT(T (n)) represents the
total number of channel usage required to transmit information
from a multicast source to all itsm destinations. Denote by
NT the total number of multicast bits generated in[0, T ], then

nCm(n) = lim
T→∞

NT

T
. (5)

Since all multicast packets are received within a finite time
Tmax, at timeT + Tmax all transmissions ofNT bits are fin-
ished. Therefore, with the definition of#MMMIS(∆, T (n)),
we have

#MMMIS(∆, T (n))(T + Tmax) ≥ NT #MEMT(T (n)).

By combining the two previous equations we obtain

Cm(n) =
1

n
× lim

T→∞

NT

T

=
1

n
× lim

T→∞

NT

T + Tmax

≤ 1

n
× #MMMIS(∆, T (n))

#MEMT(T (n))
, (6)

which proves the lemma.
Lemma 4.1 provides the upper bound for the multicast

throughput capacity with MPT and MPR as a function of
#MMMIS(∆, T (n)) and#MEMT(T (n)). We next compute
the upper bound of#MMMIS(∆, T (n)) and the lower bound
of #MEMT(T (n)). Combining these results provides an up-
per bound for the multicast throughput capacity with MPT and
MPR.

Lemma 4.2:In multicast applications, the average number
of nodes in MEMT(T (n)) has the following lower bound as a
function of the transceiver rangeT (n) whenm is a constant:

#MEMT(T (n)) ≥ Θ

(

1

T (n)

)

(7)

Proof: Since the total number of destinationsm is a
constant, the total Euclidean length from the sources to all of
the m destination is greater than1 [24]. Since the transceiver
range isT (n) we need atleast1/T (n) transmissions to cover
the total length of the tree.

The next lemma states the upper bound for
#MMMIS(∆, T (n)) with MPT and MPR.

( )T n

( )T n

( )T n

( )T n

( )T n

( )T n£

( )T n£

( )T n£

( )T n£

( )T n£

( )T n£
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Source or Destinations

Real Relay

Minimum Relay

MEMT

Real Routing Tree

Transceiver Circle

Fig. 2. The direct line between any two adjacent nodes in an multicast tree
is equal to or smaller than the total Euclidean distance in the tree through
multiple relays.

Lemma 4.3:The average number of channels that can trans-
mit simultaneously,#MMMIS(∆, T (n)), has the following
upper bound in networks with MPT and MPR.

#MMMIS(∆, T (n)) ≤ Θ
(

n2T 2(n)
)

(8)

Proof: We want to find out the maximum number of
simultaneous transmissions in these dense networks. Thus,it
is clear that, on average, there areπT 2(n)n transmissions
in one transceiver rangeT (n) consuming an area of at least

π
(

T (n) + ∆T (n)
2

)2

in a dense network. Consider for each of

the node in that area can transmit or receive at mostπnT 2(n)
other transceivers. Using this argument, it is obvious thatthe
upper bound of#MMMIS(∆, T (n)) is given by n×πnT 2(n)

(1+∆
2 )

2 ,

which proves the lemma.
Combining Lemmas 4.1, 4.2, and 4.3, we can compute the

upper bound of multicast capacity of MPT and MPR in the
following theorem.

Theorem 4.4:In wireless ad hoc networks with MPT and
MPR, the upper bound on the per-node throughput capacity
of multicast with constant number of destinations is

Cm(n) = Θ
(

nT 3(n)
)

(9)

B. Lower Bound

To derive an achievable lower bound, we use a TDMA
scheme for random dense wireless ad hoc networks similar
to the approach used in [25], [26].

We first divide the network area into square cells. Each
square cell has an area ofT 2(n)/2, which makes the diagonal
length of square equal toT (n), as shown in Fig. 3. Under this
condition, connectivity inside all cells is guaranteed andall
nodes inside a cell are within communication range of each
other. We build a cell graph over the cells that are occupied
with at least one vertex (node). Two cells are connected if
there exist a pair of nodes, one in each cell, that are less than
or equal toT (n) distance apart. Because the whole network



is connected whenT (n) = r(n) ≥ Θ
(

√

log n/n
)

, it follows
that the cell graph is connected [25], [26].

To satisfy the MPT and MPR protocol model, we organize
cells in groups so that simultaneous transmissions within
each group does not violate the conditions for successful
communication in the MPT and MPR protocol model. Let
L represent the minimum number of cell separations in each
group of cells that communicate simultaneously. Utilizingthe
protocol model,L satisfies the following condition:

L =

⌈

1 +
T (n) + (1 + ∆)T (n)

T (n)/
√

2

⌉

= ⌈1 +
√

2(2 + ∆)⌉ (10)

If we divide time intoL2 time slots and assign each time
slot to a single group of cells, interference is avoided and
the protocol model is satisfied. The separation example can
be shown for the upper two receiver circles in Fig. 3. For
the MPT and MPR protocol model, the distance between
two adjacent receiving nodes is(2 + ∆)T (n). Because this
distance is smaller than(L − 1)T (n), this organization of
cells guarantees that the MPT and MPR protocol model is
satisfied. Fig. 3 represents one of these groups with a cross
sign inside those cells forL = 4. We can derive an achievable
multicast capacity for MPT and MPR by taking advantage
of this cell arrangement and TDMA scheme. The capacity
reduction caused by the TDMA scheme is a constant factor
and does not change the order capacity of the network.

Next our objective is to find an achievable lower bound
using the Chernoff bound, such that the distribution of the
number of edges in this unit space is sharply concentrated
around its mean, and hence the actual number of simultaneous
transmissions occurring in the unit space in a randomly chosen
network is indeedΘ(n2T 2(n)) w.h.p..

Lemma 4.5:The circular area of radiusT (n) corresponding
to the transceiver range of any nodej in the cross area in Fig. 3
containsΘ(nT 2(n)) nodes w.h.p., and is uniformly distributed
for all values ofj, 1 ≤ j ≤ 1

(LT (n)/
√

2)2
.

Proof: The statement of this lemma can be expressed as

lim
n→∞

P

2

6

4

1
(LT (n)/

√

2)2
\

j=1

|Nj − E(Nj)| < δE(Nj)

3

7

5
= 1, (11)

whereNj andE (Nj) are the random variables that represent
the number of transmitters in the receiver circle of radius
T (n) centered by the receiverj and the expected value of this
random variable respectively, andδ is a positive arbitrarily
small value close to zero.

From the Chernoff bound in Eq. (2), for any given0 < δ <
1, we can findθ > 0 such thatP [|Nj − E(Nj)| > δE(Nj)] <
e−θE(Nj). Thus, we can conclude that the probability that the
value of the random variableNj deviates by an arbitrarily
small constant value from the mean tends to zero asn → ∞.
This is a key step in showing that when all the events
⋂

1

(LT (n)/
√

2)2

j=1 |Nj − E(Nj)| < δE(Nj) occur simultaneously,

then all Nj ’s converge uniformly to their expected values.
Utilizing the union bound, we arrive at

P







1
(LT (n)/

√

2)2
⋂

j=1

|Nj − E(Nj)| < δE(Nj)







= 1 − P







1
(LT (n)/

√

2)2
⋃

j=1

|Nj − E(Nj)| > δE(Nj)







≥ 1 −

1
(LT (n)/

√

2)2
∑

j=1

P [|Nj − E(Nj)| > δE(Nj)]

> 1 − 1

(LT (n)/
√

2)2
e−θE(Nj). (12)

Given thatE(Nj) = πnT 2(n), then we have

lim
n→∞

P







1
(LT (n)/

√

2)2
⋂

j=1

|Nj − E(Nj)| < δE(Nj)







≥ 1 − lim
n→∞

1

(LT (n)/
√

2)2
e−θπnT 2(n) (13)

Utilizing the connectivity criterion in Eq. (??),

limn→∞
e−θπnT 2(n)

T 2(n) → 0, which finishes the proof.
Furthermore, we can arrange all of the nodes in the left

side of the corresponding transceiver circle be the transmitters,
and all of the nodes in the right side of the corresponding
transceiver circle be the receivers. Thus, we can get the
following lemma.

Lemma 4.6:In the unit square area for a wireless ad hoc
network shown in Fig. 3, the total number of transmitter-
receiver links (simultaneous transmissions) isΩ

(

n2T 2(n)
)

.
Proof: From the Lemma 4.5, for any node in the cross

cell in the whole network shown in Fig. 3, there areΘ(nT 2(n)
nodes in the transceiver circle. We divided the total node
into two categories, transmitters in the left of the transceiver
circles and receivers in the right of the transceiver circles.
To guarantee all of the transmitters and receivers are in the
transceiver range, we only consider the nodes in the circle with
radiusT (n)/2. Because of the MPT and MPR capabilities, so
that every transmitter in the left of the transceiver circlewith
T (n)/2 radius can transmit successfully to every receiver in
the right, then the total number of successful transmissions
is π2n2T 4(n)/16 which is the achievable lower bound. The
actual number of the transmissions can be much larger than
this because we only considerT (n)/2 instead ofT (n). Using
the Chernoff Bound in Eq. 2 and Lemma 4.5, we can get
w.h.p. that the total number successful transmissions is

Ω

(

1
(

LT (n)/
√

2
)2 × π2n2T 4(n)

16

)

= Ω
(

n2T 2(n)
)

(14)

With Lemmas?? and 4.6, we have done the preparation for
the following achievable lower bound.
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Fig. 3. Cell construction used to derive a lower bound on capacity

Let us define#MEMTC(T (n)) as the total number of
cells that contain all the nodes in a multicast group. The
following lemma establishes the achievable lower bound for
the multicast throughput capacity of MPT and MPR as a
function of #MEMTC(T (n)).

Lemma 4.7:The achievable lower bound of the multicast
capacity is given by

Cm(n) = Ω

(

nT 2(n)

#MEMTC(T (n))

)

. (15)

Proof: There are(T (n)/
√

2)−2 cells in the unit square
network area. From the definition of#MEMTC(T (n))
and the fact that our TDMA scheme does not change the
order capacity (Lemma??), it is clear that there are at
most in the order of#MEMTC(T (n)) interfering cells for
multicast communication. Hence, from Lemma 4.6, there are
a total of Θ

(

n2T 2(n)
)

nodes transmitting simultaneously,
which are distributed over all the(T (n)/

√
2)−2 cells. For

each cell, the order of nodes in each cell isΩ
(

n2T 4(n)
)

.
Accordingly, the total lower bound capacity is given by

Ω

(

(

T (n)/
√

2
)−2 ×

(

n2T 4(n)
)

×
(

#MEMTC(T (n))
)−1

)

.

Normalizing this value by total number of nodes in the
network,n, proves the lemma.

Given the above lemma, to express the lower bound of
Cm(n) as a function of network parameters, we need to
compute the upper bound of#MEMTC(T (n)), which we do
next.

Lemma 4.8:The average number of cells covered by the
nodes in MEMTC(T (n)), is upper bounded w.h.p. as follows:

#MEMTC(T (n)) ≤ Θ

(

1

T (n)

)

(16)

Proof: BecauseT (n) is the transceiver range of the
network, the maximum number of cells for this multicast tree
must be at mostΘ

(

mT−1(n)
)

, i.e., #MEMTC (T (n)) ≤
Θ
(

T−1(n)
)

. This upper bound can be achieved only if every

two adjacent nodes in the multicast tree belong to two different
cells in the network. However, in practice, it is possible that
some adjacent nodes in multicast tree locate in a single cell.
Consequently, this value is upper bound which is Eq. (16).

Combining Lemmas 4.7 and 4.8, we arrive at the achievable
lower bound of the multicast throughput capacity in dense
random wireless ad hoc networks with MPT and MPR.

Theorem 4.9:When the number of the destinationsm is
a constant, the achievable lower bound of them multicast
throughput capacity with MPT and MPR is

Cm(n) = Ω
(

nT 3(n)
)

(17)

C. Tight Bound and Comparison with Point-to-Point Commu-
nication

From Theorems 4.4 and 4.9, we can provide the tight bound
throughput capacity for the multicast when the node have MPT
and MPR capability in dense random wireless ad hoc networks
as follows.

Theorem 4.10:The throughput capacity of multicast in a
random dense wireless ad hoc network with MPT and MPR
is

CMPT+MPR
m (n) = Θ

(

nT 3(n)
)

(18)

The transceiver range of MPT and MPR should satisfyT (n) ≥
Θ
(

√

log n/n
)

.
The throughput capacity with point-to-point communication

can be get from [24] as following lemma.
Lemma 4.11:In multicast with a constant numberm of

destinations, without MPR or MPR ability, The capacity is

CRouting
m (n) = Θ

(

1

nr(n)

)

(19)

where,r(n) ≥ Θ
(

√

log n/n
)

. Whenr(n) = Θ
(

√

log n/n
)

for the minimum transmission range to guarantee the connec-
tivity, then we get the maximum capacity asCRouting-Max

m (n) =

Θ
(

1√
n log n

)

.

Combine the Theorem 4.13 and Lemma 4.14, the gain of
throughput capacity with MPT and MPR capability in wireless
ad hoc networks can be get as followings.

Theorem 4.12:In multicast with a constant numberm of
destinations, with MPT and MPR ability, the gain of per-node
throughput capacity compared with point-to-point communica-
tion is Θ

(

n2T 4(n)
)

, where,T (n) = r(n) ≥ Θ
(

√

log n/n
)

.

WhenT (n) = Θ
(

√

log n/n
)

, the gain of per-node capacity

is at leastΘ
(

log2 n
)

.

D. Tight Bound and Comparison with Point-to-Point Commu-
nication

From Theorems 4.4 and 4.9, we can provide the tight bound
throughput capacity for the multicast when the node have MPT
and MPR capability in dense random wireless ad hoc networks
as follows.



Theorem 4.13:The throughput capacity of multicast in a
random dense wireless ad hoc network with MPT and MPR
is

CMPT+MPR
m (n) = Θ

(

nT 3(n)
)

(20)

The transceiver range of MPT and MPR should satisfyT (n) ≥
Θ
(

√

log n/n
)

.
The throughput capacity with point-to-point communication

can be get from [24] as following lemma.
Lemma 4.14:In multicast with a constant numberm of

destinations, without MPR or MPR ability, The capacity is

CRouting
m (n) = Θ

(

1

nr(n)

)

(21)

where,r(n) ≥ Θ
(

√

log n/n
)

. Whenr(n) = Θ
(

√

log n/n
)

for the minimum transmission range to guarantee the connec-
tivity, then we get the maximum capacity asCRouting-Max

m (n) =

Θ
(

1√
n log n

)

.
Combine the Theorem 4.13 and Lemma 4.14, the gain of

throughput capacity with MPT and MPR capability in wireless
ad hoc networks can be get as followings.

Theorem 4.15:In multicast with a constant numberm of
destinations, with MPT and MPR ability, the gain of per-node
throughput capacity compared with point-to-point communica-
tion is Θ

(

n2T 4(n)
)

, where,T (n) = r(n) ≥ Θ
(

√

log n/n
)

.

WhenT (n) = Θ
(

√

log n/n
)

, the gain of per-node capacity

is at leastΘ
(

log2 n
)

.
The multicast throughput capacity with MPT and MPR can

be extended to 3-D easily.

V. CAPACITY WITH NC, MPT AND MPR

In this section, we study network coding capacity for
multiple sources and multiple destinations transmission in the
absence of interference. This capacity serves as an upper-
bound for that achieved by combining NC,MPT and MPR in
the presence of interference. Consider the following scheme:

Scheme 5.1 (Hierarchical Scheme):Separate the routing in
the network inton disjoint levels, each corresponding to a
connectivity graph associated with a distinct multicast session.
The hierarchical scheme distributes the time slots equallyin
activating each of the connectivity graphs. The scheme can be
described by Fig. 4. The right of that figure is the model as
[15]–[17]. Si, Ti = {ti1, ti2, · · · , tim} are the source and them
destinations ini-th level.

From Scheme 5.1, for each level, the network model is
combined with NC, MPT and MPR, and we assume the nodes
in the source set{s}, relay setD and destination setT can’t be
interchanged with each other. In the followings, we will prove
that this effect won’t affect the scaling law of the capacity.

Lemma 5.2:For one layer, the minimum number of links
needed to transmitCs,T (n) = Θ

(

nT 2(n)
)

information is
Θ (nT (n)), when the number of the destination for each
sourcem is a constant.

Proof: There should beΘ
(

nT 2(n)
)

different information
units (or packets)which will be transmitted tom destinations

Relay
i
s

1

i
t

2

i
t

i

m
t

1
s

2
s

n
s

Relay

Relay

Relay

1
T

2
T

n
T

i
T

1,2,...i n=

Fig. 4. Hierarchical transmissions scheme

ti1, t
i
2, · · · , tim from the sources. Thus we requireΘ

(

nT 2(n)
)

edge-disjoint paths from the source to each sink. Since the
sinks are chosen at random, each information unit has to travel
atleast Θ(1) distance. Furthurmore, since the transmission
range isT (n) each path consists of at leastΘ (1/T (n)) edges
with high probability. Therefore we should consume at least
Θ (nT (n)) links to transmitΘ

(

nT 2(n)
)

information units.
Now, let’s consider the whole networks and use our Scheme

5.1 to analyze, then we can get our result as followings.
Theorem 5.3:In a wireless ad hoc networks with NC plus

MPT and MPR ability, the throughput capacity per node is
upper bounded byΘ

(

nT 3(n)
)

.
Proof: From the Lemma??, the total possible number

of links from any source/relay to any relay/destinations is
upper bounded byΘ

(

n2T 2(n)
)

. Combining Theorem 3.10
and Lemma 5.2, we can get the capacity for the whole
networks is upper bounded by the capacity for one level
times the links available for the total networks, which gets

the
Θ(nT 2(n))×Θ(n2T 2(n))

Θ(nT (n)) for total capacity, which proved this
theorem by dividingn for per node capacity.

VI. D ISCUSSION

From the above analysis, we can get some implications for
the design of protocols in wireless ad hoc networks. Combin-
ing our result Theorem 4.13 in Section IV and Theorem 5.3
in Section V, we can get the final result which is the primary
contribution of this paper.

Theorem 6.1:In wireless ad hoc networks, with multicast
application with constantm destinations for each source, the
throughput capacity when all of the nodes are endowed with
NC, MPT and MPR capabilities is the same order as the one
when all of the nodes are endowed with only MPT and MPR
abilities.

CMPT+MPR+NC
m (n) = CMPT+MPR

m (n) (22)

The result of this paper implies that, in the wireless ad
hoc networks, the interference is the real bottleneck. The
reason MPT and MPR increase the capacity is because they
do combat the interference by allowing multiple transmission
at a time. Once the interference is canceled NC does not
add anything to the capacity and in an order sense behaves
identical to traditional routing. Since, NC adds significantly



to the complexity of the network, we believe that future
designs of wireless networks need not deviate from using
traditional routing schemes and rather concentrate on realizing
interference cancelation that enables MPT + MPR.
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