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Abstract—In this paper, we study the contribution of network
coding (NC) in improving the multicast capacity of random

wireless ad hoc networks when nodes are endowed with multi-

packet transmission (MPT) and multi-packet reception (MPR
capabilities. We show that a per session throughput capagitof

studies, the impact of NC on the multicast scaling law remain
uncharacterized.

Approaches such as [13], [14] implicitly assume the combi-
nation of NC (transmitting multiple packets encoded in a sin

© (nT”(n))where n is the total number of nodes andT'(n) is gle transmission) with Multi-packet Transmission (MPT)lan

the transmission range, can be achieved as a tight bound when

each session contains a constant number of sinks. Surprigjty,

Multi-packet Reception (MPR) [15]-[17](ability to trareige

an identical order capacity can be achieved when nodes have Successfully multiple concurrent transmissions by emiplgy

only MPR and MPT capabilities. This result proves that NC
does not contribute to the order capacity of multicast traffic
in wireless ad hoc networks. The result is in sharp contrast
to the general belief (conjecture) that NC improves the orde
capacity of multicast. Furthermore, if the communication range
is selected to guarantee the connectivity in the network, é.,

T(n)>© (\/log n/n), then the combination of MPR and MPT

3
log2 n
Vvn

achieves a throughput capacity ofo which provides an

order capacity gain of © (log2 n) compared to the point-to-point
communication capacity that was reported by Gupta and Kumar

I. INTRODUCTION

physical-layer interference cancelation techniques) RMfas
been shown to increase the capacity regions of ad hoc net-
works [18], and very recently Garcia-Luna-Aceves et al.][19
have shown that the order capacity in wireless ad hoc network
subject to multi-pair unicast traffic is increased with MPR.
These prior efforts raise the following question: (a) Wisathe
multicast throughput order achieved by the combination 6f N
with MPT and MPR ? (b) Does this combination provide us
with a order gain over tractional techniques based on rgutin
and point-to-point communication ? (c) If yes, what exactly
leads to this gain? Is NC necessary or is the combination of
MPT and MPR sufficient?

The seminal work by Gupta and Kumar [1] has sparked aln this work we address the above questions. The answers
growing amount of interest in understanding the fundamengan be summarized by our main results:

capacity limits of wireless ad hoc networks. Several teghes

[2]-[8] have been developed with the objective of improving « When each multicast group consists of a constant number

the capacity of wireless ad hoc networks. Network coding
(NC), which was originally proposed by Ahlswede et al. in

[9], is one such technique. Unlike traditional store-andafard

routing algorithms, network coding schemes encode the mes-

sages received at intermediate nodes, prior to forwardiegt

to subsequent next-hop neighbors. In [9] it has been shoatn th
for a single source, and under the assumptions of a directed
graph, network coding can achieve a multicast flow equal to

the min-cut.

of sinks, the combination of NC, MPT and MPR provides
a per session throughput capacity ®fn73(n)), where
T'(n) is the transmission range.

This scaling law represents an order gairagf.?7T*(n))
over a combination of routing and single packet trans-
mission/reception.

The combination of only MPT and MPR is sufficient
to achieve a per-session multicast throughput order of
©(nT3(n)). Consequently, NC DOES NOT ADD TO

The work in [9]-[11] has motivated a large number of = THE MULTICAST CAPACITY !l

researchers to investigate the impact of NC in increasieg th

throughput capacity of wireless ad hoc networks. However, The remainder of this paper is organized as follows. In
Liu et al. [12] recently showed that NC does not increasgection Il, we give an overview of capacity analysis for NC,
the order of throughput capacity for multi-pair unicasfffim = MPT, MPR, and other existing techniques. In Section IIl, we
Nevertheless, a number of efforts (analog network codi®j, [1 introduce the models we used. In Section IV and V, we give
physical network coding [14]) have continued the the quasst four main results with MPT and MPR when network coding
improving the multicast capacity of ad-hoc networks by gsinis not used and used respectively. We conclude our paper in

NC. Despite the claims of throughput improvement by suchection VI.



Il. LITERATURE REVIEWS

Gupta and Kumar in their seminal paper [1] proved that
the throughput capacity in wireless ad hoc network is not
scalable. Subsequently, many researchers have focused on
identifying techniques that could alter this conclusianhas
been shown that changing physical layer assumptions, such
as using multiple channels [2] or ultra wide band (UWB) oo @+MIm) -=-=- AT -
technology [3], [4], can increase the capacity of wireleds a ° Transmitters * Receivers
hoc networks. Recently, Ozgur et al. [5] proposed a hieiiarch
cal cooperation technique based on virtual MIMO to achieve
linear per source-destination capacity. Cooperation can b
extended to the simultaneous transmission and receptite at
various nodes in the network, which is so caltedny-to-many

communicationrand can result in significant improvement "}or all their communication. The network area is assumed

capacity [6]. . . to be a unit square area. Nod€, can successfully transmit
Most of the the research on network coding, since tf}g node X; if for any node Xi. k # i, that transmits at
J ’ ’

original proposal in [9], has focused on the model of dirdctethe same time as; it is true that|X, — X,| < T(n) and
networks, where each communication link has a fixed direr:)-( X >0+ Al)T(n) ' 7=
E— X5 = .

tion. [20] were the first to study the benefits of network cadin We make the following extensions to account for MPT and

in undirected networks, where each communication link | : . .
ﬁlPR capabilities at the transmitters and receivers resshygt

bidirectional. The result in [20] shows that, for a singleaast . . .
. . . In wireless ad hoc networks with MPT capability, any trans-
or broadcast session, there are no improvement with respec%

to throughput due to network coding. In the case of a sin ni ter node can transmit different information simultansly
multicast session, such an improvement is bounded by arfach)(; ”.‘“'“p"? nqdes within the circle who_se radius jé(”)Z.
of two. Meanwhile, [15]-[17] studied the throughput capaci imilarly, in wireless ad hoc networks with MPR capability,
of NC in wireless ad hoc networks. However [15]-[17] emplol\grL

Fig. 1. MPT and MPR protocol model

Definition 3.1: The Protocol Model of Point-to-Point Com-
munication: All nodes use a common transmission rar(@e

any node can receive different information simultaneously
. . . -from multiple transmitters within the circle whose radius i
network models which are fundamentally inconsistent wi ;
. n) [19]. We further assume that nodes cannot transmit and
the more commonly accepted assumptions of ad-hoc network

[1].Specifically, the model constraints of [15]-{17], [2021] receive at the same time, which is equivalent to half-duplex

. ) X " communications [1]. From system point of view, MPT and
differ as follows:(a) All the prior works assume a single s MPR are dual if we consider the source and destination gualit
for unicast, multicast or even broadcast (b) [16], [17] elién-

tiate the total nodes into source set, relay set and deix;tlinatThe MPT and. MPR model are sh_own_ in Fig. 1. It .ShOUI.d be
noted thatRs is the another receiver in the reception circle

set. They don't allow all of the nodes to concurrently serse a ) . . , .
Lo . of R,. Since R3 is already a receiveR, can't receive any

sources, relays or destinations, as allowed in [1]. (b) Aarev. . : .

. A . - information from R3 in the same time slot because of the
bigger limitation of these works is that they do not consider I

. . Lo alf-duplex communication.

the impact of interference in wireless ad hoc networks. finition 3.2- Feasible th hout ity

In the absence of interference, the communication scenaii(Pe Ini |Ion ' d heaS| t?N EL:)? plij capar\10| Y- h
equates an ideal case where a node can simultaneously trtrﬂ - W|_rte _etss a K ?CtO?Led otr_ " no esthw erﬁ ea:c source
mit and receive from multiple nodes. Interference canamfat ransmits 1ts packets estinations, a throughput 6, (n)

techniques such as MPT and MPR indeed enable nodes V\HH’? per second for each node is feasible if there is a spatial
and temporal scheme for scheduling transmissions, such tha

the ability of multi-point communication within a communi-b tina th work i lti-hoo fashi d buffari
cation range ofl'(n). Thus, the model assumptions in [15]— y operating the hetwork in a muti-hop fashion and butigrn

[17] at the very least assume that nodes are capable of Mgtﬂntermcgjlate antdes when aV\:jaltlng transmeK_f)t;, (avedye no
and MPR. Similarly works such as Physical-Layer Networ an sen m(n) bits per second on average 1o 1ts chosen
Coding (PNC) [14] by Zhang et al. and Analog Networ .estlnatlon nodes. Thz?\t is, there i§'a< oo such that in every
Coding [13] by Katti et al. also implicitly assume the alyilit time interval((; — 1)T,iT] every node can serifiCyy(n) bits

to its corresponding destination nodes.
of MPT and MPR. o . .
Definition 3.3: Order of throughput capacityC,,(n) is
IIl. NETWORK MODEL, DEFINITIONS, AND said to be of orde®©(f(n)) bits per second if there exist
PRELIMINARIES deterministic positive constantsandc’ such that

We assume a random wireless ad hoc network with
nodes distributed uniformly in a unit-square network af@ar
capacity analysis is based on the protocol model for dense lim Prob(C,,(n) = ¢ f(n) is feasible < 1.
networks, introduced by Gupta and Kumar [1]. The case of nee
what we call point-to-point communication correspondshi® t  Definition 3.4: Euclidean Minimum Spanning Tree
original protocol model. (EMST): Consider a connected undirected graph= (V, F),

lim Prob(C,,(n) = cf(n) is feasiblg =1
h 1)



whereV and E are sets of vertices and edges in the graph Therefore, for anyd > 0, there exist constants such that
G, respectively. The EMST off is a spanning tree af with  deviations from the mean by more than these constants occur
the minimum sum of Euclidean distances between connecteith probability approaching zero as— oo. It follows that,
vertices of this tree. w.h.p., we can get a very sharp concentration on the nhumber
Definition 3.5: Minimum Euclidean Multicast Tree of nodes in an area, so we can find the achievable lower bound
(MEMT(T'(n))): The MEMT(T'(n)) is a multicast tree in w.h.p., provided that the upper bound (mean) is given. In the
which them destinations for each source receive informatiofollowing sections, we first derive the upper bound, and then
from the source and this multicast tree has the minimum totade the Chernoff bound to prove the achievable lower bound.
Euclidean distance. In [9] it was proved that the max-flow min-cut is equal to
In the rest of this papet|T|| denotes the total Euclideanmulticast capacity of a directed graph with single sourdee T
distance of a tre&"; #7T is used to denote the total number oflirected graph model is more applicable for wired networks.
vertices (nodes) in a treg; and||T'|| is used for the statistical However, in this work we wish to study the utility of NC
average of the total Euclidean distance of a tree. in wireless environment, where the links are bidirectional
Keshavarz et al. [22] used Maximum Independent Sklence,we utilize the following terminology, which buildpan
MIS(A, r(n)) to describe the maximum number of simultathe model set-up in [15], [16], for analysis of NC.
neous transmitters. Similarly, to account for MPT and MPR Definition 3.9: The connectivity graply = (V, E) is a sub-
ability, we define the Maximum MPT and MPR Independemjraph of the random geometric graph with souscea setT
Set (MMMIS(A, T'(n)). of destinations, and a sé? of relay nodes such thatl =
Definition 3.6: Maximum MPT and MPR Independent Sefs} | J D (JT. In this paper, we only consider the case where
(MMMIS(A,T(n))): An MPT and MPR independent set is|T| = m is a constant anfD| = n—m — 1 for each multicast
a set of nodes inG that contains one transceiver and alsession.
its transceiver nodes within a distance @in) from the The analysis in [16] can be summarized to obtain the
transceiver node. A Maximum MPT and MPR Independefdllowing result for a connectivity graph.
Set (MMMIS (A, T'(n))) consists of the maximum number Theorem 3.10Let G be a connectivity graph with one
channel links of MPT and MPR sets that simultaneousBource nodes;, n — m — 1 relay nodes, and a séf of
transceive packets while MPT and MPR protocol model gestinations nodes. We have
satisfie(_j for all these MPT and MPR sets. If we gdd any, lim Prob (CST(n) >(1—e)(n—1- 7rT2 )
transceiver node fronG to MMMIS(A,T'(n)), there is at n—0o0 '

least one MPT and MPR set that violates the MPT and MP =1-0(m/n?)

protocol model. lim Prob (Csr(n) < (1+e)(n—1-— m)rT%(n (n))
Definition 3.7: Minimum Connected Dominating Set noee

(MCDS(r(n))): A dominating setDS(r(n))) of a graphG =1-0(1/n"?)

is defined as a set of nodes such that every node in the network ®3)

. . . Ly . .. 6] 41
either belongs to this set or it is within a transmission engvhere,e; = / mfc]i?pgz?n), €2 =\/mmatezmy andl/4 < e <

of r(n) of one of the elements of O8(n)). A Connected 1. Thus for a constant number of sinks we have a tight bound

Dominating Set(CDS(r(n))) is a dominating set such thaton the cut-capacity

the subgraph induced by its nodes is connected. A Minimum 9

Connected Dominating SEMCDS(r(n))) is a CDSr(n)) of Cs.r(n) = © (nT*(n)) )

G with the minimum number of nodes. In a single source network, the cut capacity is equal to the
Given that the distribution of nodes in a random network isiaximum flow. Thus the above theorem provides an upper

uniform, if there aren nodes in a unit square, then the densitound on the multicast capacity of a network with single

of nodes equals.. Hence, if|S| denotes the area of spac&ource and NC+MPT+MPR capability. However, in [15]-

region S, the expected number of the nodE§Ns), in this [17], the source, relays and destinations are strictlyedffit

area is given by¥(Ng) = n|S|. Let N; be a random variable and information can not be transmitted directly towards the

defining the number of nodes ifi; . Then, for the family of destinations. These two assupmtions will be eventualbyxes

variablesN;, we have the following standard results knowin this paper.

as the Chernoff bounds [23]:

Lemma 3.8:Chernoff bound . IV. THE THROUGHPUTCAPACITY WITH MPT AND MPR
s nlSi In this Section, we start to analyze the scaling law in

e Foranyé >0, P[N, > (1+6)n|S; s ) ! . y _g._
y [N; > (1+0)nl5]] ((1”)1+ random geometric graphs with MPT and MPR abilities. In

—ln .15 . . . . .
. FFW. any0 <4 < 1_, P[N; < (1= 0)n|S;[] < em=mISil? [24], Wang et al. proved the unifying capacity with point-
Combining these two inequalities we have, for & ¢ < 1.  to-point communication, which resolves the general mattic
PIIN, — _ _ —on|S,]| o) Ccase withm destmaﬂon; fpr each source being a function qf
[IN; = nIS;ll > on|S;l] < e ’ 2) n. Here, we use the similar approach to prove the capacity
wheref = (14 6)In(1+6) — ¢ in the case of the first bound,with MPT and MPR whenm is not a function ofn but a
andf = 342 in the case of the second bound. constant.



A. Upper Bound )

The following Lemma provides an upper bound for the /,
per-session capacity in terms of the ratio of the size of Transcaiver ciroe %] () ST /
#MMMIS (A, T'(n)) to the size of MEMTT'(n)). Essentially, e
#MEMT (T'(n)) equals the minimum number of transmis-

sions required to multicast a packet 1o destinations, and

#MMMIS (A, T'(n)) represents the maximum number of suc- <T(n) °

cessful simultaneous transmissions when MPT and MPR are T(ny <T(n)

used " . o SO T(n)’ O Source or Destinations
Lemma 4.1:In random dense wireless ad hoc networks, the S O RealRelay

per-node throughput capacity of multicast with MPT and MPR - A Minimum Relay

W(A,T(n))) - MEMT

is ai 1
is given byO (n X S EMT ()
Proof: We observe that*MEMT(T'(n)) represents the
total number of channel usage required to transmit infoionat _. N . -
. . . . Fig. 2. The direct line between any two adjacent nodes in alicast tree
from a multicast source to all its: destinations. Denote by jg equal to or smaller than the total Euclidean distance éttee through

N the total number of multicast bits generated(nT], then multiple relays.

<— Real Routing Tree

nCpm(n) = lim —. (5)

Lemma 4.3:The average number of channels that can trans-
Since all multicast packets are received within a finite timeit simultaneously#MMMIS (A, T(n)), has the following

Tmax. at timeT + Ty, all transmissions oV bits are fin- upper bound in networks with MPT and MPR.

ished. Therefore, with the definition MMMIS (A, T'(n)),

we have #MMMIS (A, T(n)) < © (n*T?%(n)) (8)
H#MMMIS (A, T(n))(T + Tinax) > Nr#MEMT (T (n)). Proof: We want to find out the maximum number of
o _ _ _ simultaneous transmissions in these dense networks. Tthus,
By combining the two previous equations we obtain is clear that, on average, there ar&?(n)n transmissions
1 Ny in one transceiver rang€(n) consuming an area of at least
Cm(n) = —x lim —/— AT (n) 2 .
n  T—oo T m (T(n) + T) in a dense network. Consider for each of
_ 1 % lim Nr the node in that area can transmit or receive at magt?(n)
n T—oo T + Tiax other transceivers. Using this argument, it is obvious2 that
_ 1 #MMMIS(A T(n) (6) Upper bound offMMMIS (&, 7(n)) is given byin?ffi)g"),
on #MEMT (T (n)) which proves the lemma. o
which proves the lemma. m Combining Lemmas 4.1, 4.2, and 4.3, we can compute the

Lemma 4.1 provides the upper bound for the multicagiPP€r bound of multicast capacity of MPT and MPR in the

throughput capacity with MPT and MPR as a function dfllowing theorem.
#MMMIS (A, T(n)) and #MEMT (T (n)). We next compute ~ Theorem 4.4:In wireless ad hoc networks with MPT and
the upper bound offMMMIS (A, T'(n)) and the lower bound MPR, t.he upper bound on the per-node .thro.ughp_ut capacity
of #MEMT (T'(n)). Combining these results provides an upof multicast with constant number of destinations is

er bound for the multicast throughput capacity with MPT and
EAPR ghput capacity Crm(n) = © (nT3(n)) 9)

Lemma 4.2:In multicast applications, the average numb&s. | ower Bound
of nodes in MEMTT'(n)) has the following lower bound as a
function of the transceiver rangg(n) whenm is a constant:

To derive an achievable lower bound, we use a TDMA
scheme for random dense wireless ad hoc networks similar
1 to the approach used in [25], [26].

#MEMT(T'(n)) = © (m) (@) We first divide the network area into square cells. Each
square cell has an area®f(n)/2, which makes the diagonal
Proof: Since the total number of destinatioms is a |ength of square equa' tﬁ(n), as shown in F|g 3. Under this
constant, the total Euclidean length from the sour¢e all of  condition, connectivity inside all cells is guaranteed aid
the m destination is greater than[24]. Since the transceiver nodes inside a cell are within communication range of each
range isT'(n) we need atleast/T'(n) transmissions to cover gther. We build a cell graph over the cells that are occupied
the total length of the tree. B \ith at least one vertex (node). Two cells are connected if

The next lemma states the upper bound fahere exist a pair of nodes, one in each cell, that are less tha

#MMMIS (A, T'(n)) with MPT and MPR. or equal toT'(n) distance apart. Because the whole network




is connected wheff'(n) = r(n) > © g\/log n/n), it follows then all N;’s converge uniformly to their expected values.
5

that the cell graph is connected [25], [26]. Utilizing the union bound, we arrive at
To satisfy the MPT and MPR protocol model, we organize L
cells in groups so that simultaneous transmissions within (T2
each group does not violate the conditions for successful P ﬂl |N; — E(N;)| < dE(N;)
=

communication in the MPT and MPR protocol model. Let
L represent the minimum number of cell separations in each T T

group of cells that communicate simultaneously. Utilizthe - 1_p U IN; — E(N;)| > 6E(N;)
protocol model,L satisfies the following condition: i1 ' '

1
(LT(n)/V2)2

T(n)+ (1+ A)T(n)-‘
L=|1+ =[1+V2(2+A)] (10 > 1- P[|N; — E(N;)| > 6 E(N;
[ T(n)/v2 ( (2+4)] (10) > g IN; = E(N;)| > 6E(N;)]
If we divide time into L? time slots and assign each time S 1- 1 —0B(N;) (12)
slot to a single group of cells, interference is avoided and (LT(n)/V/2)2

the protocol model is satisfied. The separation example Calsiven thatE(N;) = mnT?(n), then we have
be shown for the upper two receiver circles in Fig. 3. For ’

the MPT and MPR protocol model, the distance between TTo VA2

two adjacent receiving nodes {& + A)T'(n). Because this lim P ﬂ |N; — E(N;)| < §E(N;)
distance is smaller thafL — 1)T'(n), this organization of neee j=1

cells guarantees that the MPT and MPR protocol model is 1

satisfied. Fig. 3 represents one of these groups with a cross >1— lim UL O (13)
sign inside those cells fat = 4. We can derive an achievable oo (LT (n)/V2)?

multicast capacity for MPT and MPR by taking advantage Utilizing the connectivity criterion in  Eq. 1?),
of this cell arrangement and TDMA scheme. The capacify,, *‘;fz” ™ _, 0, which finishes the proof. -

reduction caused by the TDMA scheme is a constant faCtorFurthermore we can arrange all of the nodes in the left

and does not change the order capacity of the network.  sjde of the corresponding transceiver circle be the tratiersi
Next our objective is to find an achievable lower boungng all of the nodes in the right side of the corresponding

using the Chernoff bound, such that the distribution of thgansceiver circle be the receivers. Thus, we can get the
number of edges in this unit space is sharply concentrat@fiowing lemma.

around its mean, and hence the actual number of SimultaHGOU§emma 4.6:1n the unit square area for a wireless ad hoc

transmissions occurring in the unit space in a randomly @hosnetwork shown in Fig. 3, the total number of transmitter-
network is indeed(n*T?(n)) w.h.p.. receiver links (simultaneous transmissions)lign>7?(n)).
Lemma 4.5:The circular area of radiug (n) corresponding Proof: From the Lemma 4.5, for any node in the cross
to the transceiver range of any nogln the cross area in Fig. 3 cell in the whole network shown in Fig. 3, there &¢én12(n)
contains®(nT?(n)) nodes w.h.p., and is uniformly distributednodes in the transceiver circle. We divided the total node
for all values ofj, 1 < j < W into two categories, transmitters in the left of the tramsee
Proof: The statement of this lemma can be expressed eiscles and receivers in the right of the transceiver cicle

To guarantee all of the transmitters and receivers are in the

1
' LT/ V)2 transceiver range, we only consider the nodes in the ciritle w
S P ﬂ INj = E(N;)| <0BE(N;)| =1, (1) radiusT(n)/2. Because of the MPT and MPR capabilities, so
=t that every transmitter in the left of the transceiver ciralih

T'(n)/2 radius can transmit successfully to every receiver in
whereN; and E (N;) are the random variables that represenhe right, then the total number of successful transmission
the number of transmitters in the receiver circle of radiug 72,,274(n)/16 which is the achievable lower bound. The
T'(n) centered by the receivgrand the expected value of thisactual number of the transmissions can be much larger than
random variable respectively, andis a positive arbitrarily this because we only consid@&(n)/2 instead ofI’(n). Using
small value close to zero. the Chernoff Bound in Eq. 2 and Lemma 4.5, we can get

From the Chernoff bound in Eq. (2), for any given< 6 < w.h.p. that the total number successful transmissions is
1, we can findd > 0 such thatP [|N; — E(N;)| > dE(N;)] <
e~9E(N;)_ Thus, we can conclude that the probability that the (, *n*T*(n)
value of the random variabl&/; deviates by an arbitrarily (LT(n)/\/i)Q 16
small constant value from the mean tends to zerae as cc.
This is] a key step in showing that when all the events

) =Q(n*T?(n)) (14)

[ |
2 With Lemmas?? and 4.6, we have done the preparation for
N7 |IN; — BE(N;)| < $E(N;) occur simultaneously, the following achievable lower bound.



two adjacent nodes in the multicast tree belong to two difier
cells in the network. However, in practice, it is possiblatth
SIN some adjacent nodes in multicast tree locate in a single cell
S o Consequently, this value is upper bound which is Eq. (18).
T B | Combining Lemmas 4.7 and 4.8, we arrive at the achievable
| e ( ’K, lower bound of the multicast throughput capacity in dense
LT L () random wireless ad hoc networks with MPT and MPR.
Theorem 4.9:When the number of the destinations is
a constant, the achievable lower bound of themulticast
T(n) throughput capacity with MPT and MPR is
% Cm(n) =Q (nTg(n)) a7)
o k—p. 1) — T(n)
o Receivers R C. Tight Bound and Comparison with Point-to-Point Commu-
o Transmitters ﬁ,) Iﬂﬁg:gzgiﬁmﬁf nication

From Theorems 4.4 and 4.9, we can provide the tight bound
throughput capacity for the multicast when the node have MPT
and MPR capability in dense random wireless ad hoc networks

Let us defineZZMEMTC(Z(n)) as the total number of @S follows. _ _ _
cells that contain all the nodes in a multicast group. The Theorem 4.10:The throughput capacity of multicast in a
following lemma establishes the achievable lower bound f§Rndom dense wireless ad hoc network with MPT and MPR
the multicast throughput capacity of MPT and MPR as '&

Fig. 3. Cell construction used to derive a lower bound on cipa

function of #MEMTC(T'(n)). CYFTMPR(n) = © (nT°(n)) (18)
Lemma 4.7:The achievable lower bound of the multicast )
capacity is given by The transceiver range of MPT and MPR should sati3fy) >
, 6(\/10gn/n).
Chn(n) = ( nT(n) ) ) (15) The throughput capacity with point-to-point communicatio
#MEMTC(T'(n)) can be get from [24] as following lemma.

Lemma 4.11:In multicast with a constant numben of

. 72 . .
Proof: There are(T(n)/\/i)_ _ _cells in the unit square destinations, without MPR or MPR ability, The capacity is
network area. From the definition oftMEMTC(T'(n))

and the fact that our TDMA scheme does not change the Routing;\ __ 1

order capacity (Lemma??), it is clear that there are at G Hn) = © (nr(n)) (19)
most in the order o#£MEMTC(T'(n)) interfering cells for

multicast communication. Hence, from Lemma 4.6, there avwhere,r(n) > © (\/W) Whenr(n) = © (\/W)

a total of © (n°T?(n)) nodes transmitting simultaneouslyfor the minimum transmission range to guarantee the connec-

which are distributed over all théT'(n)/v/2)~2 cells. For tivity, then we get the maximum capacity @5 "M2(,,) —
each cell, the order of nodes in each cellign*T*(n)). ¢ 1

Accordingly, the total lower bound capacity is ghlen by Conmllg%r;le .the Theorem 4.13 and Lemma 4.14, the gain of

_ 1
Q ((T(n)/\/ﬁ) ? (n*T*(n)) x (#MEMTC(T(n))) . throughput capacity with MPT and MPR capability in wireless
Normalizing this value by total number of nodes in th&d hoc networks can be get as followings.
network, n, proves the lemma. - Theorem 4.12:In multicast with a constant numben of
Given the above lemma, to express the lower bound @gstinations, with MPT and MPR ability, the gain of per-node
C,(n) as a function of network parameters, we need fhroughput capacity compared with point-to-point comneani
compute the upper bound gfMEMTC(T'(n)), which we do tion is © (n*T*(n)), where,T'(n) = r(n) > © (\/log n/n)-
next. - -
WhenT(n) =0 (/1 , the gain of per-node capacit
Lemma 4.8:The average number of cells covered by the (n) 2( Ogn/n) g P pacty
nodes in MEMTGT'(n)), is upper bounded w.h.p. as follows:S at least® (log"n).

EMEMTC(T(n)) < © ( 1 ) (16) D. Tight Bound and Comparison with Point-to-Point Commu-

T(n) nication

Proof: BecauseT'(n) is the transceiver range of the From Theorems 4.4 and 4.9, we can provide the tight bound
network, the maximum number of cells for this multicast trethroughput capacity for the multicast when the node have MPT
must be at mos® (mT~'(n)), i.e., #MEMTC (T(n)) < and MPR capability in dense random wireless ad hoc networks
© (T~'(n)). This upper bound can be achieved only if evergs follows.




Theorem 4.13:The throughput capacity of multicast in a o O@
random dense wireless ad hoc network with MPT and MPR \

is
CTTMPR(n) = © (nT°(n)) (20) D e & N
The transceiver range of MPT and MPR should saf3fy) >
@gw/logn/n), i=12,.n — Si o
he throughput capacity with point-to-point communicatio /'
can be get from [24] as following lemma. o
Lemma 4.14:In multicast with a constant number of o s T)

destinations, without MPR or MPR ability, The capacity is
1 ) Fig. 4. Hierarchical transmissions scheme

CRMY(n) = © ( (21)

nr(n)
where,r(n) > © (\/W) Whenr(n) = © (\/W) t4,th, -+, t¢, from the sources. Thus we requir® (n1?(n))

for the minimum transmission range to guarantee the Conngg_ge—dlspmt paths from the source to e"?‘Ch S'F‘k- Since the
tivity, then we get the maximum capacity égoutmg—Max(n) _ sinks are chosen at random, each information unit has teltrav

1 atleast©(1) distance. Furthurmore, since the transmission

© Wgn)‘ . range isT'(n) each path consists of at le&3t(1/7'(n)) edges
ombine the Theorem 4.13 and Lemma 4.14, the gain @iy, high probability. Therefore we should consume at least

throughput capacity with MPT and MPR capability in wirelesg, (nT(n)) links to transmitd (nT2(n)) information units. m

ad hoc networks can be get as followings. Now, let's consider the whole networks and use our Scheme

Theorem 4.151n multicast with a constant number of 5 1 {5 analyze, then we can get our result as followings.
destinations, with MPT and MPR ability, the gain of per-node 1paorem 5.3:1n a wireless ad hoc networks with NC plus

throughput capacity compared with point-to-point comneani MPT and MPR ability, the throughput capacity per node is

tion is © (n?T*(n)), where,T'(n) = r(n) > © (\/log n/n) upper bounded b (nT3(n)).

WhenT(n) = © (\/W) the gain of per-node capacity ~_Proof: From the Lemmaz??, the total possible number

s atoast ). o ke o Sy fo ny odesrs
The multicast throughput capacity with MPT and MPR caggg Lemma 5.2 %vgn can(ngge.t the capa?:ity for the \;vhole

be extended to 3-D easily. networks is uppér bounded by the capacity for one level

V. CAPACITY WITH NC, MPTAND MPR times the links available for the total networks, which gets
n 2 n 7L2 2 n . . .
In this section, we study network coding capacity fothe ot (@)(ZLXT%)) ) for total capacity, which proved this

multiple sources and multiple destinations transmissiothe theorem by dividingr for per node capacity. [ ]
absence of interference. This capacity serves as an upper-
bound for that achieved by combining NC,MPT and MPR in VI. DiscussioN

the presence of interference. Consider the following séhem From the above analysis, we can get some implications for
Scheme 5.1 (Hierarchical Scheme§eparate the routing in the design of protocols in wireless ad hoc networks. Combin-
the network intorn disjoint levels, each corresponding to ang our result Theorem 4.13 in Section IV and Theorem 5.3
connectivity graph associated with a distinct multicassg&n. in Section V, we can get the final result which is the primary
The hierarchical scheme distributes the time slots equally contribution of this paper.
activating each of the connectivity graphs. The scheme ean b Theorem 6.1:In wireless ad hoc networks, with multicast
described by Fig. 4. The right of that figure is the model agpplication with constant» destinations for each source, the
[15]-[17]. S;, T; = {1, 15, ,t;, } are the source and the  throughput capacity when all of the nodes are endowed with
destinations in-th level. NC, MPT and MPR capabilities is the same order as the one

From Scheme 5.1, for each level, the network model ighen all of the nodes are endowed with only MPT and MPR
combined with NC, MPT and MPR, and we assume the nodggiities.

in the source sefs}, relay setD and destination s&t can’'t be CMPTHMPRNG ;) — (IMPT+MPR(, (22)
interchanged with each other. In the followings, we will yeo
that this effect won't affect the scaling law of the capacity = The result of this paper implies that, in the wireless ad
Lemma 5.2:For one layer, the minimum number of linkshoc networks, the interference is the real bottleneck. The
needed to transmiCs; r(n) = © (nTQ(n)) information is reason MPT and MPR increase the capacity is because they
O (nT'(n)), when the number of the destination for eacdo combat the interference by allowing multiple transntssi
sourcem is a constant. at a time. Once the interference is canceled NC does not
Proof: There should b® (nTQ(n)) different information add anything to the capacity and in an order sense behaves
units (or packets)which will be transmitted to destinations identical to traditional routing. Since, NC adds signifittan




to the complexity of the network, we believe that futurgz3] R. Motwani and P. RaghavamRandomized Algorithms Cambridge

designs of wireless networks need not deviate from usi
traditional routing schemes and rather concentrate oiziegl

interference cancelation that enables MPT + MPR.
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