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Abstract—The throughput capacity of wireless ad hoc networks
is derived when the traffic is heterogeneous but the node
distribution is homogeneous. For the heterogeneous traffic we
consider two types of traffic in the network, namely, unicast and
data gathering communications. There are k sources that send
different data to a single node and the rest of n− k nodes in the
network participate in unicast communications with a uniform
assignment of source-destination pairs. Under the physical model,
it is proved that the capacity of these heterogeneous networks is
Θ( n

Tmax
), where Tmax and n denote the maximum traffic for a cell

and the number of nodes in the network, respectively. The result
demonstrates that the capacity is dominated by the maximum
congestion in any area of the network. More specifically, the
network capacity is equal to Θ

(√
n

log n

)
for k = O(

√
n log n)

and equal to Θ
(

n
k

)
for k = Ω(

√
n log n).

I. INTRODUCTION

The scaling laws of wireless ad hoc networks with homo-
geneous traffic and uniform distribution have been extensively
studies in the literature. Gupta and Kumar [1] evaluated the
capacity of wireless ad hoc network with uniform traffic
and showed that for the physical model, the lower bound of
the capacity is Θ( n√

log n
), but the upper bound is Θ (

√
n).

Later on, this capacity is closed by Franceschetti in [2]. The
information theoretic capacity of wireless ad hoc networks
with cooperation among nodes was investigated by Xie and
Kumar [3], [4].

Few prior works investigate heterogeneous traffic in the
network. Keshavarz-Haddad et al. [5] introduced the concept
of transmission arena. Based on that definition, they introduced
a method to compute the upper bound of the capacity for
different traffic patterns and different topologies of the net-
work. However, the paper did not introduce any closed-form
scaling laws for the network capacity. Krishnamurthy et al. [6]
discussed different heterogeneous traffic requirements, which
depend on the type of data such as audio and video. Liu et al.
[7] assumed a heterogeneous traffic for low-priority and high-
priority data with different traffic models for them. Rodoplu et
al. [8], [9] consider a network with many sources selecting a
single node as destination. They introduce the concept of ”core
capacity” and derived some analytical results for capacity of
this type of network and compared it with uniform unicast core
capacity. However, their derivations did not lead to a closed
form scaling laws; instead, they showed simulation results for

the case in which there is a limited number of nodes in the
network. We have derived the capacity of wireless networks
with heterogeneous traffic under the protocol model in [10].
This paper extends those results to physical model assumption.

Our paper provides the scaling laws of such network with
heterogeneous traffic as a function of n and other network
parameters under the physical model. The result indicates that
the capacity is dominated by the area in which the majority of
traffic in the network passes. This result is intuitive when we
assume that the capacity should be achieved by all the nodes
in the network. Clearly, the node with the highest traffic will
dominate the capacity.

The paper is organized as follows. Section II presents the
assumptions and definitions. Section IV provides the routing
scheme and the lower bound throughput capacity for this
network model. Section III provides the upper bound. Some
discussions are presented in Section V and the paper is
concluded in Section VI.

II. WIRELESS NETWORK MODEL

Nodes are uniformly distributed in a dense network where
the area of the network is a constant unit square. The het-
erogeneous traffic consists of data gathering traffic in which
a single node (called the access node) is the destination for
k sources in the network. For the rest of the n − k nodes
in the network, we assume random and uniformly distributed
source-destination pairs. Therefore, the source-destination pair
selection for unicast communications is similar to that used
by Gupta and Kumar [1]. This network model is shown in
Figure 1.

The transmission range is the same for all the nodes and the
communication between nodes is point-to-point. A successful
communication between two nodes is modeled according to
the physical model, which is defined below.

Definition 2.1: Physical Model: Let {Xk; k ∈ K} be the
subset of nodes simultaneously transmitting at the same time
over a certain subchannel. All nodes in this subchannel choose
a common power level P for all their transmissions. For each
subchannel, the noise power is N . A node can transmit over
several subchannels. A transmission from a node X i, i ∈ K,



Fig. 1. The Network Model

is successfully received by a node Xi(R) if

P
|Xi−Xi(R)|α

N +
∑

k∈K,k �=i
P

|Xk−Xk(R)|α
≥ β. (1)

for every subchannel.
Definition 2.2: Feasible Throughput:

A throughput of λi(n) bits per second is said to be feasible
for the ith source-destination pair if there is a common trans-
mission range r(n), and a scheme to schedule transmissions
and there are routes between source and destination, such that
source i can transmit to its destination at such rate successfully.
For heterogeneous traffic, the feasible throughput is defined for
each source-destination pair.

Definition 2.3: Order of Throughput Capacity: The total
throughput capacity is said to be of order Θ(f(n)) bits per
second if there exist a constant c and c′ such that

limn→∞ Pr(λ(n) =
n∑

i=1

λi(n) = cf(n) is feasible) = 1; and

lim infn→∞ Pr(λ(n) =
n∑

i=1

λi(n) = c′f(n) is feasible) < 1.

(2)

One important assumption of our analysis is that the band-
width for each traffic is assumed to be the same, which means
that the bandwidth for each node is proportional to its traffic.
In another word, the fairness for each flow is guaranteed. Let’s
define bandwidth Wi and traffic Ti for cell i, then

Wi

Ti
= c(n), (3)

where c(n) is a pre-determined function of n.

III. THE UPPER BOUND OF THE CAPACITY

In this section, we compute the upper bound of the capacity.
From [1] and [2], we know that the minimum transmission
range under the physical model is Θ

(
1√
n

)
. Therefore, the

maximum number of hops for each source-destination pair

is L−o(1)
r(n) = Θ(

√
n). Note that there are at most n source-

destination pairs in the network. Thus, the total traffic is∑
l

Tl = Θ(n
√

n). (4)

We know that each transmission consumes a disk of ra-
dius Θ(r(n)) and these disks are disjoint. Note that all the
traffic are carried by these disjoint disks and the bandwidth
distributed to each cell is proportional to the traffic. Therefore,
the upper bound of the capacity is given by

Cupper =
the sum of traffic for all nodes

the average number of hops for source-destination pairs

× 1
maximum bandwidth expansion

,

=
1

Wmax
·
∑n

l=1 Wl

L−o(1)
r(n)

=
1

Wmax
·
∑n

l=1 Tlc(n)
L−o(1)

r(n)

,

=
1

Tmaxc(n)
· Θ(n

√
nc(n))

L−o(1)
1√
n

= Θ
(

n

Tmax

)
, (5)

where Wmax is the maximum bandwidth and Tmax is the
maximum traffic for a cell in the network.

IV. THE LOWER BOUND OF THE CAPACITY

For the lower bound of the capacity we need to emphasize
that there are two types of traffic in our model. One traffic is
associated to the k sources transmitting packets to the access
node and the other traffic stems from the rest of n− k nodes
in the network with unicast communications. Therefore, the
routing protocol and scheduling are defined under this traffic
model.

A. The Routing Scheme and the Scheduling Protocol

The selection of sources for the access node i is based on
the technique described in [11]. We randomly and uniformly
select k locations in the network and choose the closest
nodes to these k locations as sources for the access node.
The routing trajectory is a straight line Li from access node
to these k locations. Then the packets traverse from each
source to destination in a multi-hop fashion passing through
all the cells that cross Li. The side length of each cell dn is

selected as Θ(r(n)) = C1

√
log n

n [1], where C1 is a positive
constant. For the rest of j nodes with unicast traffic where
1 ≤ j ≤ n−k, both selections of source-destination pairs and
routing is similar to the above technique.

For the scheduling scheme, we utilize a TDMA scheme
similar to [11] with some modifications to take into account
the heterogeneity of the traffic.

B. The Lower Bound of the Capacity

For the lower bound of the capacity, we will introduce
a specific network structure which divides the network into
square cells. To guarantee the connectivity in the network, the

side length of each cell is chosen as Θ
(√

log n
n

)
. We will

show that the lower bound of the capacity is still Θ
(

n
Tmax

)
.



1) Case of n − k = Ω
(√

n log n
)
: From [10], it can be

deduced that the number of lines passing through a cell with
distance x from the access node is upper bounded as

Tl <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2dnk

(2l − 1)
√

2dn

2

+ C2(n − k)

√
log n

n
l �= 0

k + C2(n − k)

√
log n

n
l = 0

(6)

In the traditional analysis of capacity with homogeneous
traffic, the inverse of traffic for a cell using a TDMA scheme
provides the throughput capacity. Given that this value varies
for different cells in heterogeneous traffic, as mentioned be-
fore, we assign a bandwidth to the cell that is proportional to
the number of lines passing through a cell. This assignment
is based on the fact that each link in the network has the
same bandwidth (similar to the approach by Gupta and Kumar)
but more allocation of bandwidth is given to a cell with
higher traffic. Clearly, our results demonstrate that the cell
that contains the access node has the highest traffic. If we
divide the network into layers of cells starting from the access
node as shown in Fig. 2, the traffic for cells in each layer is
the same order. Let’s assume the traffic for each layer is T i

where i = 1, ..., Θ(
√

n
log n ). Then our bandwidth requirement

for each layer is given by

W0

T0
=

W1

T1
= ... =

WΘ(
√

n
log n )

TΘ(
√

n
log n )

= c(n). (7)

Note that W0 = Wmax, To = Tmax. This assumption basically
means that more bandwidth is provided to a cell with higher
traffic1.

iX

1l 2l 3l 4l
log

n
n

l

Fig. 2. The layers around access node Xi

For the Physical Model, it is important to show that un-
der the schedule given in Section IV-A, the required SINR

1The bandwidth allocation in this paper is based on the common definition
of throughput capacity that is utilized in literature. Under this assumption,
the achievable througput capacity is based the fact that all the nodes in the
network achieve the same rate. However, if one changes this definition of
capacity and allows different nodes to have different throughput capacity,
then the bandwidth allocation should accordingly changes in order to achieve
the highest possible throughput.

threshold β can be guaranteed. We can consider that all the
interference comes from cells that are active at the same time.
It is obvious to see that there are at most 8k interfering cells
from the kth layer of the network. Moreover, the distance from
an interfering cell is at least k

√
Msn − sn, where M is the

number of non-interference groups and sn is the side length
of each cell.

Thereafter, for each specific node i, we can calculate a lower
bound on the achieved SINR as shown below.

P
|Xi−Xi(R)|α

N +
∑

k∈K,k �=i
P

|Xk−Xi(R)|α

(a)

≥
P

(2
√

2sn)α

N +
∑∞

k=1 8k P
(k

√
Msn−sn)α

=
P

(2
√

2)α

Nsα
n + 8P

M
α
2

∑∞
k=1

1
(k− 1√

M
)α

(8)

Figure 3 shows the relationship between traffic in a cell and
allocated bandwidth as described in Eq. (7). Since each layer
of cells has different bandwidth requirement, therefore only
portion of the transmitted signal in a layer will interfere with
adjacent cells. For example, when Tk ≥ Ti, the interfering
portion of bandwidth for the cells in layer i from cells in
layer k is at most Ti. Similarly, when Tk < Ti, the interfering
bandwidth for the cells in layer i from cells in layer k is at
most Tk. So for each subchannel, the interference may come
from part of every layer of the network that is active at the
same time. Since in the inequality (a) in Eq. (8), we calculate
the entire signal power while only portion of it may interfere
with i, then this value is the lower bound.

0th

thi
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n

n
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iW
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n
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W

Fig. 3. The distribution of the bandwidth in different cell layers of the
network.

The summation in the denominator converges to a constant
value when α > 2 as described below.

∞∑
k=1

1
(k − 1√

M
)α

=
∞∑

k=1

1
(k − 1√

M
)α−1

+
1√
M

∞∑
k=1

1
(k − 1√

M
)α−1



≤ 1
(k − 1√

M
)α−1

+
∫ ∞

1− 1√
M

1
xα−1

+
1√
M

(
1

(k − 1√
M

)α
+
∫ ∞

1− 1√
M

1
xα

)

=
1

(1 − 1√
M

)α−1
+

(
1 − 1√

M

)−(α−2)

α − 2

+
1√
M

1
(1 − 1√

M
)α

+
1√
M

(
1 − 1√

M

)−(α−1)

α − 1

= constant (9)

It is clear from these results that when M is sufficiently
large, then the SINR of an arbitrary subchannel can be made
larger than the specific threshold β to satisfy the Physical
Model (1).

The average number of nodes in each cell is proportional
to Θ(log n), then the lower bound capacity is

Clower =
1

MWmax

⎛
⎜⎝

Θ(
√

n
log n )∑

l=1

8lWl

Tl
+

W0

T0

⎞
⎟⎠ · Θ(log n),

=
1

MWmax

⎛
⎜⎝

Θ(
√

n
log n )∑

l=0

8lc(n) + c(n)

⎞
⎟⎠ · Θ(log n),

=
1

MWmax
· Θ(

n

log n
+
√

n

log n
) · Θ(log n) · c(n),

= Ω(
c(n)n
Wmax

) = Ω(
n

Tmax
), (10)

where M is the TDMA parameter that is required to separate
cells in order to satisfy the physical model.

Note that the capacity defined in this paper is the total
capacity since the traffic for each node is different and per
node capacity may not be meaningful.

2) Case of n − k = o
(√

n log n
)
: Under this condition,

clearly most of the traffic is contributed by the access node
and since each source is sending different packet to the access
node, the achievable capacity is Ω(1) by allowing one source
at the time to transmit its packet to the access node.

Combining the above results, we state the following theorem
for the achievable lower bound.

Theorem 4.1: The achievable lower bound for a heteroge-
neous traffic with maximum number of traffic of Tmax in a cell
can be given as follows.

Clower =

⎧⎪⎨
⎪⎩

Ω(
n

Tmax
) when n − k = Ω

(√
n log n

)
Ω(1) when n − k = o

(√
n log n

) (11)

Finally, from the analysis above, we derive a tight bound
for the capacity.

Theorem 4.2: In a random ad hoc network, under the het-
erogeneous traffic pattern with one node performing as the

destination for k source nodes and other nodes have unicast
communications, the overall capacity is

C = Θ
(

n

Tmax

)
(12)

V. DISCUSSION

Eq.(6) provides the value of Tmax when k is small value
compared to n. But when k is a large number, i.e., n − k =
o
(√

n log n
)
, then the dominant traffic in the network is the

data gathering traffic and for computation of Tmax, one can ig-
nore the contribution of unicast traffic. Under this assumption,
then the data gathering traffic provides the maximum traffic
for the access node, i.e., Tmax = k. Thus, Eq. (12) becomes

C =

⎧⎪⎨
⎪⎩

Θ
(√

n

log n

)
, k = O(

√
n log n)

Θ
(n

k

)
, k = Ω(

√
n log n)

(13)

Fig. 4 shows the throughput capacity of a wireless network
obtained from (13) as a function of the number of sources for
the access node k. When k increases from 1 to Θ(

√
n log n),

the capacity of the network is dominated by the unicast traffic
and it is equal to the well known result computed by Gupta
and Kumar for unicast communications as Θ(

√
n

log n ). This

region is called unicast region. Once the value of k passes
this threshold of Θ(

√
n log n), the capacity of the network

is equal to Θ(n
k ) and it is affected by both the unicast

and data gathering traffics. We call this capacity region as
Heterogeneous Traffic region. This result implies that for the
cells near the access node, we should assign more resources
(bandwidth or time) to guarantee the data rate for each traffic.
Finally when k = Θ(n), then the capacity is Θ(1) which is the
same as broadcast transport capacity [12]. Since the number
of sources is relatively large in this case, we call this capacity
region as All to One Traffic region. We can see that almost
all of the nodes have traffic for the access node, thus, for the
extreme case that all the nodes have traffic to the access node,
at each time, only one node can transmit.

C

n
k

log
n

n

log
n

n

1

1

logn n n kn

Fig. 4. The capacity result

The nodes with higher traffic consume more power for
transmission of information. Our goal is to demonstrate the



relationship between k and maximum required power. From
(8), it is easy to observe that the minimum transmit power P
for each subchannel to guarantee the SINR ≥ β condition is

Pmin = Θ(sα
n) = Θ

((
log n

n

)α
2
)

. (14)

Thus, the maximum required power is

Pmax = PminWmax = PminTmaxc(n). (15)

Combining the above result with Eq. (6), we arrive at

Pmax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ

(
(log n)

α
2 + 1

2

n
α
2 − 1

2

)
c(n), k = O(

√
n log n)

Θ
(

(log n)
α
2

n
α
2

)
kc(n), Ω(

√
n log n) = k = O(n)

Θ
(

(log n)
α
2

n
α
2 −1

)
c(n). k = Θ(n)

,

(16)
Figure 5 shows the order of the maximum power as a function
of k. It is clear that the node with the maximum required
power is the access node since it carried more traffic than
any other node in the network. In the unicast traffic region,
the order of the maximum power for the access node is not
growing because the unicast traffic is the dominant traffic. In
the homogeneous traffic region, as k increases, the traffic for
the access node increases and accordingly, this node requires
more transmit power. In the final region of all to one traffic,
the traffic in the network is dominated by the data gathering
scheme and the access node carries majority of the traffic in
the network. The maximum transmit power is achieved in this
region because the traffic for the access node has reached its
order upper bound traffic. These results imply that if the traffic
for the access node is restricted with k = O(

√
n logn), then

the optimal power consumption for the access node can be
attained.

maxP

k

1
2 2

1
2 2

(log )
( )

n
c n

n

2

1
2

(log )
( )

n
c n

n

logn n n n

2

2

(log )
( )

n
kc n

n

Fig. 5. The Growth of Power as a function of k

VI. CONCLUSION

This paper presents a closed-form scaling law for the
capacity of wireless ad hoc networks with heterogeneous

traffic under physical model. More specifically, a combina-
tion of unicast communications and data gathering has been
chosen for this paper. It is shown that the capacity of such
heterogeneous network is Θ( n

Tmax
). Further, the capacity is

equal to Θ
(√

n
log n

)
for k = O(

√
n log n) and equal to Θ

(
n
k

)
for k = Ω(

√
n log n). The results confirms our intuition that

the capacity of a heterogeneous network is dominated by the
maximum traffic (congestion) in any area of the network.
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